From BSM toward new gradient flow based lattice determination of the strong QCD coupling at the Z-pole
collaborators at various stages of the project

Szabolcs Borsanyi, Zoltan Fodor, Kieran Holland, Daniel Nogradi, Chik Him Wong

Julius Kuti

University of California, San Diego

THE GRADIENT FLOW IN QCD AND OTHER STRONGLY COUPLED FIELD THEORIES
March 20, 2023 - March 24, 2023
ETC* Trento, Italy

Why are we doing this?

Wong et al. e-Print: 2301.06611 [hep-lat] Lattice 2022
YM plot from LatHC

Foreword:

- After careful high precision calculations of the Alpha collaboration who needs another QCD strong coupling?
- Even the simplest $\operatorname{SU}(3)$ Yang-Mills model shows considerable tension after repeated FLAG reviews
- FLAG 2019 was without first high precision GF result
- combined FLAG 2021 error analysis partially hides the tension
- the two new GF results increase the tension against other methods
- Our YM analysis is based on the Harlander-Neumann 3-loop beta-function over infinite Euclidean volume in the continuum limit - to be explained

YM plot from LatHC
A. Hasenfratz et al. e-Print 2303.00704 [hep-lat]

Foreword:

- After careful high precision calculations of the Alpha collaboration who needs another QCD strong coupling?
- Even the simplest $\operatorname{SU}(3)$ Yang-Mills model shows considerable tension after repeated FLAG reviews
- FLAG 2019 was without first high precision GF result
- combined FLAG 2021 error analysis partially hides the tension
- the two new GF results increase the tension against other methods
- Our YM analysis is based on the Harlander-Neumann 3-loop beta-function over infinite Euclidean volume in the continuum limit - to be explained
- Similar results in Boulder-Siegen project
- Recent YM developments have an interesting history — useful to recall
- Toward an ambitious goal: to create similar competing result in QCD with three massless fermions? - to be explained

timeline and results

Lattice 2017

1711.04833 LatHC

sextet beta-function $\beta_{G F}\left(g_{G F}^{2}(t)\right)=t d g^{2} / d t$ in the massless fermion limit over infinite Euclidean volume where the scale $\mu=1 / \sqrt{8 t}$ is implicit from target choice $g_{G F}^{2}$ - only one target $g_{G F}^{2}=6.7$ at strong coupling motivated by the BSM CW controversy
— massless fermion limit of infinite volume $t d g^{2} / d t$ is approached from chiral symmetry breaking phase (like in QCD with three massless fermions)

- getting rid of zero mode in direct $\mathrm{m}=0 \mathrm{~L} \rightarrow \infty$ implementation in the strong coupling phase?
problem with exactly massless pions?
intrinsic scale? worth trying?
- contact with 3-loop perturbation theory would be more accurate than reach from $\chi S B$ phase
- before 2019 experimenting with various $\mathrm{m}=0$ direct implementations of $t d g^{2} / d t$ for infinite volume limit at strong coupling unpublished tests before $2019 \mathrm{nf}=10$ and $\mathrm{nf}=12$ models
limited understanding of fitting in a^{4} / L^{4}, or a^{2} / L^{2} for $L \rightarrow \infty$ limit, weak coupling, frozen topology, other hidden effects from gapless spectrum?

Lattice 2019

direct calculation with two massless fermions presented going public for the first time $1910.06408 \quad 1911.11531$ [hep-lat] A. Hasenfratz and O. Witzel
first LatHC results published for massless QCD with ten and twelve flavors. e-Print: 1912.07653 [hep-lat] with limited understanding of fitting in a^{4} / L^{4}
First YM result: PoS LATTICE2021 (2022) 174 e-Print: 2109.09720 , A. Hasenfratz, C. Peterson, J. Van Sickle and O. Witzel

Lattice 2022

YM test of infinite volume β-function is easier with gap in the spectrum
High precision YM results presented by LatHC at Lattice 2022 and the results published January, 2023. Boulder-Siegen result followed almost immediately

$\left[-g^{2}(t+2 \epsilon)+8 g^{2}(t+\epsilon)-8 g^{2}(t-\epsilon)+g^{2}(t-2 \epsilon)\right] /(12 \epsilon)=d g^{2} / d t+O\left(\epsilon^{4}\right)$

$$
\text { checked by 7-point stencil } \quad \frac{1}{30} f^{(5)}(x) \cdot \epsilon^{4}
$$

original sextet algorithm

sextet model beta=function infinite volume approach from p-regime
step 1 select target coupling g^{2} at some lattice spacing (several m fermion masse, several L at each m)
step 2 at each m take $\mathrm{L} \rightarrow \infty$ limit $\quad M_{\pi}, t_{0}, t d g^{2} / d t$
step 3 chiral limit $m \rightarrow 0$ at fixed a and g^{2} for $t_{0}, t d g^{2} / d t$
step 4 repeat for 3 a values and take $a^{2} / t \rightarrow 0$ continuum limit of $t d g^{2} / d t$

$$
t_{0}=t_{0, \text { ch }}\left(1+k_{1} \frac{M_{\pi}^{2}}{(4 \pi f)^{2}}+k_{2} \frac{M_{\pi}^{4}}{(4 \pi f)^{4}} \log \left(\frac{M_{\pi}^{2}}{\mu^{2}}\right)+k_{3} \frac{M_{\pi}^{4}}{(4 \pi f)^{4}}\right)
$$

Golterman, Baer

original sextet algorithm

sextet model beta=function infinite volume approach from p-regime
step 1 select target coupling g^{2} at some lattice spacing (several m fermion masse, several L at each m)
step 2 at each m take $\mathrm{L} \rightarrow \infty$ limit $\quad M_{\pi}, t_{0}, t d g^{2} / d t$
step 3 chiral limit $m \rightarrow 0$ at fixed a and g^{2} for $t_{0}, t d g^{2} / d t$
step 4 repeat for 3 a values and take $a^{2} / t \rightarrow 0$ continuum limit of $t d g^{2} / d t$

original sextet algorithm

sextet model beta=function infinite volume approach from p-regime
step 1 select target coupling g^{2} at some lattice spacing (several m fermion masse, several L at each m)
step 2 at each m take $\mathrm{L} \rightarrow \infty$ limit $\quad M_{\pi}, t_{0}, t d g^{2} / d t$
step 3 chiral limit $m \rightarrow 0$ at fixed a and g^{2} for $t_{0}, t d g^{2} / d t$
step 4 repeat for 3 a values and take $a^{2} / t \rightarrow 0$ continuum limit of $t d g^{2} / d t$

timeline and results

Lattice 2017

1711.04833 LatHC

sextet beta-function $\beta_{G F}\left(g_{G F}^{2}(t)\right)=t d g^{2} / d t$ in the massless fermion limit over infinite Euclidean volume where the scale $\mu=1 / \sqrt{8 t}$ is implicit from target choice $g_{G F}^{2}$ - only one target $g_{G F}^{2}=6.7$ at strong coupling motivated by the BSM CW controversy
— massless fermion limit of infinite volume $t d g^{2} / d t$ is approached from chiral symmetry breaking phase (like in QCD with three massless fermions)

- getting rid of zero mode in direct $\mathrm{m}=0 \mathrm{~L} \rightarrow \infty$ implementation in the strong coupling phase?
problem with exactly massless pions?
intrinsic scale? worth trying?
- contact with 3-loop perturbation theory would be more accurate than reach from $\chi S B$ phase
- before 2019 experimenting with various $\mathrm{m}=0$ direct implementations of $t d g^{2} / d t$ for infinite volume limit at strong coupling unpublished tests before $2019 \mathrm{nf}=10$ and $\mathrm{nf}=12$ models
limited understanding of fitting in a^{4} / L^{4}, or a^{2} / L^{2} for $L \rightarrow \infty$ limit, weak coupling, frozen topology, other hidden effects from gapless spectrum?

Lattice 2019

direct calculation with two massless fermions presented going public for the first time $1910.06408 \quad 1911.11531$ [hep-lat] A. Hasenfratz and O. Witzel
first LatHC results published for massless QCD with ten and twelve flavors. e-Print: 1912.07653 [hep-lat] with limited understanding of fitting in a^{4} / L^{4}
First YM result: PoS LATTICE2021 (2022) 174 e-Print: 2109.09720 , A. Hasenfratz, C. Peterson, J. Van Sickle and O. Witzel

Lattice 2022

YM test of infinite volume β-function is easier with gap in the spectrum
High precision YM results presented by LatHC at Lattice 2022 and the results published January, 2023. Boulder-Siegen result followed almost immediately

Yang-Mills project

lattice ensembles
SU(3) lattice Yang-Mills gauge action
Symanzik tree-level improved with bare lattice gauge coupling $6 / g_{0}^{2}$
periodic gauge field boundary conditions (the notorious zero mode!)
smearing with 4 stout steps $\rho=0.12$
multi-platform over-relaxation + heat bath code
lattice ensembles at 45 lattice gauge couplings in $6 / g_{0}^{2}=4.39-11.5$ range
several volumes at each lattice gauge coupling including $L=32,36,40,48,56,64,80,96,112,128,160$
not all L-values exist at every gauge coupling
$\mathrm{L}=80,96,112,128,160$ for master field analysis (plan for increased precision)
gradient flow
Symanzik tree-improved SU(3) Yang-Mills gauge action
we use Wilson flow and Symanzik flow (Zeuthen flow not used)
tree-level improvement
two operators are clover and the Symanzik lattice action

SSC, WSC, SSS, WSS scheme
SSC stands for S(flow)S(action)C(clover)
adaptive Runge-Kutta integration on the flow
strategies for getting $\beta\left(g^{2}(t)\right)=t d g^{2} / d t$ over infinite Euclidean volume will be discussed in the YM analysis and in the QCD analysis with massless fermions

$$
L / a \rightarrow \infty
$$

$\beta=t \cdot d g^{2} / d t$
$F_{\mu \nu} F^{\mu \nu}$ gradient flow footprint t / a^{2} fixed
at weak coupling:

$$
g_{c}^{2}=g_{\overline{\mathrm{MS}}}^{2}\left(1-a_{1}(c) g_{\overline{\mathrm{MS}}}+O\left(g_{\overline{\mathrm{MS}}}^{2}\right)\right) \quad \begin{aligned}
& \text { initiated by Dani Nogradi } \\
& \mathrm{JK} \text { cross-checked }
\end{aligned}
$$

$\tilde{g}_{c}^{2}=g_{c}^{2}\left(1+a_{1}(c) g_{c}\right)$
fixes β-function to two loop

but we want 3-loop accuracy
and at finite lattice spacing
lattice $a_{1}\left(c, a^{4} / L^{4}\right)$ has been now calculated
$a_{1}\left(c, a^{4} / L^{4}\right)$ is being incorporated in weak coupling $a^{4} / L^{4} \rightarrow 0$ analysis
reaching the continuum over infinite Euclidean volume requires three steps:
(1) For each L-value at fixed $6 / g_{0}^{2}$ we calculate $\left.g^{2}\right|_{L}$ and $t \cdot d g^{2} /\left.d t\right|_{L}$ on the gradient flow at each flow time t / a^{2} and take the $L \rightarrow \infty$ limit on g^{2} and $t \cdot d g^{2} / d t$ from a sequence of Lvalues $(c \rightarrow 0)$ at each flow time and each bare coupling
(2) We select (target) some g^{2} in the infinite volume limit at finite cutoff, with flow time $t\left(g^{2}\right)$ set by $6 / g_{0}^{2}$ and the target g^{2}. At this flow time $t\left(g^{2}\right)$ we calculate the value of $t \cdot d g^{2} / d t$. The errors in $g^{2}, t\left(g^{2}\right)$, and $t \cdot d g^{2} / d t$ propagate.
(3) From a sequence of $6 / g_{0}^{2}$ values we take the continuum limit $a^{2} / t\left(g^{2}\right) \rightarrow 0$ of the $t \cdot d g^{2} / d t$ sequence set by available bare gauge couplings.

only samples of all t fits are shown at fixed $6 / g_{0}^{2}$

$6 / \mathrm{g}_{0}^{2}=4.49$ improved SSC scheme linear $\mathrm{a}^{4} / L^{4} \rightarrow 0$ fit
extrapolation to $\mathrm{L}=\infty$
at grad flow times $\mathrm{t} / \mathrm{a}^{2}=1.0,2.0,3.0,4.0,4.6$

infinite volume limit for each $6 / g_{0}^{2}$ value after using several L at the same bare gauge coupling
similarly, though not shown, we generate plots for $t \cdot d g^{2} / d t$ at each $6 / g_{0}^{2}$ and at each flow time step
ready to go to step 2 with $g^{2}(t), t \cdot d g^{2} / d t$ available in the the infinite volume limit at each $6 / g_{0}^{2}$
step 1 illustrated
repeated for each $6 / g_{0}^{2}$ at all flow rime steps using four L values in the fits
\qquad

step 1 similarly at $6 / g_{0}^{2}=11.1$ and 11.2
step 2 and step 3 at weak coupling

tdg ${ }^{2} / d t$ beta-function at strong coupling

new 2023 analysis with extended

 data set is in the workssome details of the analysis
$t_{0} \cdot \Lambda_{G F}=\left(b_{0} \bar{g}^{2}\right)^{-b_{1} / 2 b_{0}^{2}} \cdot \exp \left(-1 / 2 b_{0} \bar{g}^{2}\right) \cdot \exp \left(-\int_{0}^{\bar{s}} d x\left[1 / \beta(x)+1 / b_{0} x^{3}-b_{1} / b_{0}^{2} x\right]\right)$
integral broken up into two parts:

- in the $g^{2}=0-1.2$ range the three-loop Harlander-Neumann beta-function was used
- in the $g^{2}=1.2-g^{2}\left(t_{0}\right)$ range spline based numerical integration was used with error analysis

QCD with three massless flavors
lattice ensembles
SU(3) lattice Yang-Mills gauge action
Symanzik tree-level improved with bare lattice gauge coupling $6 / g_{0}^{2}$
periodic gauge field boundary conditions (the notorious zero mode!)
smearing with 4 stout steps $\rho=0.12$
staggered fermions, apbc, RHMCalgorithmlattice ensembles at 22 lattice gauge couplings in $6 / g_{0}^{2}=4.0-10.5$ range
several volumes at each lattice gauge coupling including $L=32,36,40,48,56,64$

gradient flow

Symanzik tree-improved SU(3) Yang-Mills gauge action
we use Wilson flow and Symanzik flow (Zeuthen flow not used)
tree-level improvement
two operators are clover and the Symanzik lattice action

SSC, WSC, SSS, WSS scheme
SSC stands for S(flow)S(action)C(clover)
adaptive Runge-Kutta integration on the flow
strategies for getting $\beta\left(g^{2}(t)\right)=t d g^{2} / d t$ over infinite Euclidean volume will be discussed in the QCD analysis with massless fermions

$\mathrm{nf}=3$ data base (strong)

$\mathrm{nf}=3$ data base (intermediate)

$\mathrm{nf}=3$ data base (weak)

$\mathrm{nf}=3$ data base (strong)

$\mathrm{nf}=3$ data base (intermediate)

$\mathrm{nf}=3$ data base (weak)

4x8 added ensembles
$L=40,48,56,64$

nf=3 infinite volume step beta-function at weak coupling

$\mathrm{nf}=3$ infinite volume step beta-function at strong coupling?

rotator geometry to reach t_{0} scale and match to hadronic scale?
known results in rotator geometry

Physics Letters B 687 (2010) 410-414
Pion in a box
QCDSF Collaboration
W. Bietenholz ${ }^{\text {a }}$, M. Göckeler ${ }^{\text {b }}$, R. Horsley ${ }^{\text {c }}$, Y. Nakamura ${ }^{\text {b }}$, D. Pleiter ${ }^{\text {d }}$, P.E.L. Rakow ${ }^{\mathrm{e}}$, G. Schierholz ${ }^{\text {f,b, },}$ J.M. Zanotti ${ }^{\text {c }}$

massless pion approached from p-regime

$$
E_{l}=\frac{l(l+2)}{2 \Theta}, \quad l=0,1,2, \ldots
$$

Hasenfratz, Weingart

$$
\Theta=F^{2} L_{s}^{3}\left[1-\frac{2 \bar{G}^{*}}{F^{2} L_{s}^{2}}+\frac{1}{F^{4} L_{s}^{4}}[0.088431628\right.
$$

$$
\left.\left.+\partial_{0} \partial_{0} \bar{G}^{*} \frac{1}{3 \pi^{2}}\left(\frac{1}{4} \log \left(\Lambda_{1} L_{s}\right)^{2}+\log \left(\Lambda_{2} L_{s}\right)^{2}\right)\right]\right]
$$

$$
\bar{G}^{*}=0.2257849591, \quad \partial_{0} \partial_{0} \bar{G}^{*}=0.8375369106
$$

$$
\eta=F^{2} L_{s}^{3} M^{2}\left[1-\frac{3 \bar{G}^{*}}{F^{2} L_{s}^{2}}\right]
$$

$$
E_{L_{s}}=\frac{3}{2 \Theta}\left[1+\frac{(\Theta \eta)^{2}}{15}-\frac{193}{120} \frac{(\Theta \eta)^{4}}{15^{2}}\right]
$$

known results in rotator geometry
$E_{L}=-\left(N^{2}-1\right) \gamma_{0} / 2 L+N\left(N^{2}-1\right) / 8 F^{2} L^{3} . \quad$ vacuum (Casimir) energy Leutwyler N flavors

$$
\begin{aligned}
& \left(-\Delta-r^{2} \operatorname{Retr} U\right) \psi_{n}=e_{n}(r) \psi_{n}, \\
& E_{n}=E_{L}+\left(1 / 2 F^{2} L^{3}\right) e_{n}\left(F^{2} L^{3} M\right)
\end{aligned}
$$

$$
-2\left(N^{2}-1\right) / N . \quad 2 N^{2} \text { degeneracy rotator eigenvalues }
$$

$$
\left(N^{2}-1\right) / N F^{2} L^{3}, \quad \text { gap }
$$

Hasenfratz, Weingart
$\Theta=F^{2} L_{s}^{3}\left[1-\frac{2 \bar{G}^{*}}{F^{2} L_{s}^{2}}+\frac{1}{F^{4} L_{s}^{4}}[0.088431628\right.$

$$
\left.\left.+\partial_{0} \partial_{0} \bar{G}^{*} \frac{1}{3 \pi^{2}}\left(\frac{1}{4} \log \left(\Lambda_{1} L_{s}\right)^{2}+\log \left(\Lambda_{2} L_{s}\right)^{2}\right)\right]\right]
$$

$\bar{G}^{*}=0.2257849591, \quad \partial_{0} \partial_{0} \bar{G}^{*}=0.8375369106$
$\eta=F^{2} L_{s}^{3} M^{2}\left[1-\frac{3 \bar{G}^{*}}{F^{2} L_{s}^{2}}\right]$
$E_{L_{s}}=\frac{3}{2 \Theta}\left[1+\frac{(\Theta \eta)^{2}}{15}-\frac{193}{120} \frac{(\Theta \eta)^{4}}{15^{2}}\right]$
some concluding remarks:

YM theory is under reasonable control at weak and strong coupling (undiscovered hidden problems?)
new analysis of YM based on the extended data set in the works

QCD with three massless fermions control at weak coupling
harder at strong coupling (is frozen topology the only $\sim 1 / \mathrm{V}$ effect on hypercube?)
balanced use of hypercubic and rotator geometry?
backup slides

