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  Foreword: 


• After careful high precision calculations of the Alpha collaboration who needs 
another QCD strong coupling?


• Even the simplest SU(3) Yang-Mills model shows considerable tension after    
repeated FLAG reviews 


     —  FLAG 2019 was without first high precision GF result

     —  combined FLAG 2021 error analysis partially hides the tension

     —  the two new GF results increase the tension against other methods


• Our YM analysis is based on the Harlander-Neumann 3-loop beta-function over 
infinite Euclidean volume in the continuum limit — to be explained


Wong et al. e-Print: 2301.06611 [hep-lat] Lattice 2022
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FIG. 13. Comparison of our result for
˘
8t0⇤GF (ü) to the prelimi-

nary result by Wong et al. [20] (⁄) and Dalla Brida/Ramos [7] (À).
In addition we show values for r0⇤MS which enter the FLAG 2021
averages: ALPHA 98 [39] (ù), QCDSF/UKQCD 05 [40] (+), Bram-
billa 10 [41] (⁄), Kitazawa 16 [42] (õ), and Ishikawa 17 [43] (~).
These values are converted to

˘
8t0⇤GF using

˘
8t0_r0 from [3] (open

symbols) or Ref. [7] (filled symbols).

In addition, we compare our value to determinations of r0⇤MS
listed by the flavor lattice averaging group (FLAG) [8] to meet
the quality criteria to enter the average. These determinations
are obtained using Schrödinger functional step-scaling meth-
ods [39, 43], Wilson loops [40, 42], or the short distance poten-
tial [41]. We use the values quoted by FLAG 2021 for r0⇤MS
and convert them to

˘
8t0⇤MS using

˘
8t0_r0 = 0.948(7) [3]

(open symbols) or
˘
8t0_r0 = 0.9414(90) [7] (filled symbols).

Following the FLAG convention, we refer to the di�erent re-
sults in Fig. 13 using either the name of the first author or,
if applicable, the name of the collaboration and the two-digit
year.

Given the spread in the values of
˘
8t0⇤MS, further scrutiny

and understanding are needed before obtaining an average. We
note, however, that the three most recent predictions are all
mutually consistent. The high-precision result of Ref. [7] was
re-a�rmed in Ref. [44] using an alternative approach with bet-
ter control over the continuum extrapolation. The estimate
given in Ref. [38] is also consistent with these predictions. A
possible source of di�erence to the older determinations is the
conversion of r0 to

˘
8t0.

D. Nonperturbative matching of di�erent schemes

A considerable source of systematical error in our analysis
is the lack of numerical data in the g

2
GF < 1.8 weak coupling

regime. The gradient flow method is not e�cient at weak cou-
pling. It would be more economical to use data from exist-
ing calculations, e.g. the high precision Schrödinger functional
data of Ref. [7] in the 0 < g

2
GF < 1.8 regime and match it non-

perturbatively to our data.
Such a matching requires finding the relation between our

g
2
GF coupling and the coupling g

2
S

of another scheme S ex-
pressed as g2GF = �

�
g
2
S

�
. The relation of the corresponding �

functions can be obtained using the chain rule applied to the

derivative of g2GF with respect to �
2, which leads to the simple

relation

�GF
�
�(g2

S
)
�

�®�g2
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í d�

�
g
2
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_dg2

S
. Parametrizing � as a polyno-

mial

�(x) ˘ x + x
2
Np*1…
n=0

cix
i
, (13)

turns Eq. (12) into a straightforward fitting problem with Np

undetermined coe�cients. The only constraint is to identify
and use the renormalized coupling range in the fit where the
two schemes overlap. Such a nonperturbative matching and
combination of di�erent schemes could lead to a significantly
improved prediction. Although we do not explore this method
in the present analysis, it is worth considering in the future.

V. DISCUSSION

In this paper we present a nonperturbative determination of
the renormalization group � function for the pure gauge Yang-
Mills action. Using the gradient flow based continuous RG �

function, we present results for a wide range of values of the
renormalized running coupling. Our results span the range of
the perturbative weak coupling region g

2
GF ˘ 1.8 up to the

strongly coupled regime at g2GF ˘ 27. This showcases the ad-
vantage of the continuous RG � function because the continu-
ous infinite volume � function can be extended without limi-
tation to the confining region. We also demonstrate the e�ec-
tiveness of tree level improvement of the gradient flow even in
the strong coupling regime.

We investigate various sources of systematical uncertain-
ties. For most of the g

2
GF range covered, the systematical un-

certainties are of similar size as our statistical uncertainties
and around 0.6%. In the strong coupling region, however, fi-
nite volume e�ects tend to dominate and we conservatively
estimate an error of approximately 1.5%.

While in the weak coupling our results are close to the per-
turbative values, we observe in the confining regime that the
GF � function depends approximately linearly on the running
coupling, implying a scaling relation of the flowed energy den-
sity ÍE(t)Î Ì ↵ + bt

c1 with exponent c1 ˘ 1.326(12). This
observation could be related to the topological structure of the
vacuum, a possibility that warrants further investigation.

In the weak coupling regime we are able to match our nu-
merical results to the 3-loop GF � function by extending the
perturbative expression with a single g10GF term. This matching
allows us to predict the ⇤ parameter in the GF scheme. Us-
ing the perturbatively determined relation of the GF coupling
g
2
GF and the MS coupling, we obtain

˘
8t0⇤MS = 0.632(12),

where the error combines statistical and systematic uncertain-
ties. This value is in good agreement with recent direct deter-
minations of

˘
8t0⇤MS [7, 20].
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   Foreword: 


• After careful high precision calculations of the Alpha collaboration who needs 
another QCD strong coupling?


• Even the simplest SU(3) Yang-Mills model shows considerable tension after    
repeated FLAG reviews 


     —  FLAG 2019 was without first high precision GF result

     —  combined FLAG 2021 error analysis partially hides the tension

     —  the two new GF results increase the tension against other methods


• Our YM analysis is based on the Harlander-Neumann 3-loop beta-function over 
infinite Euclidean volume in the continuum limit — to be explained


• Similar results in Boulder-Siegen project 


• Recent YM developments have an interesting history — useful to recall


• Toward an ambitious goal: to create similar competing result in QCD with three 
massless fermions? — to be explained

e-Print 2303.00704 [hep-lat]A. Hasenfratz et al.

Wong et al. e-Print: 2301.06611 [hep-lat] Lattice 2022

YM plot from LatHC

YM plot from Boulder-Siegen

r0ΛMS

https://arxiv.org/abs/2303.00704
https://arxiv.org/abs/2301.06611


timeline and results


Lattice 2017 


sextet beta-function  in the massless fermion limit over infinite Euclidean volume where the scale   is implicit from target choice 

— —————

— only one target  at strong coupling      motivated by the BSM CW controversy


— massless fermion limit of infinite volume   is approached from chiral symmetry breaking phase (like in QCD with three massless fermions)


— getting rid of zero mode in direct m=0  L  implementation in the strong coupling phase? 

     problem with exactly massless pions?

     intrinsic scale? worth trying? 


—  contact with 3-loop perturbation theory would be more accurate than reach from  phase


— before 2019 experimenting with various m=0 direct implementations of  for infinite volume limit  at strong coupling 

     unpublished tests before 2019   nf=10 and nf=12 models 

     limited understanding of fitting in , or   for  limit,  weak coupling, frozen topology, other hidden effects from gapless spectrum?


Lattice 2019  


direct calculation with two massless fermions presented going public for the first time 


first LatHC results published for massless QCD with ten and twelve flavors.  e-Print: 1912.07653 [hep-lat]


First YM result: PoS LATTICE2021 (2022) 174  e-Print:  2109.09720 , A. Hasenfratz, C. Peterson, J. Van Sickle and O. Witzel


Lattice 2022

YM test of infinite volume -function is easier with gap in the spectrum

High precision YM results presented by LatHC at Lattice 2022 and the results published January, 2023. Boulder-Siegen result followed almost immediately


βGF(g2
GF(t)) = tdg2/dt μ = 1/ 8t g2

GF
g2

GF = 6.7

tdg2/dt

→ ∞

χSB

tdg2/dt

a4/L4 a2/L2 L → ∞

β

1711.04833  LatHC

1910.06408   1911.11531 [hep-lat]   A. Hasenfratz and O. Witzel

with limited understanding of fitting in a4/L4

https://arxiv.org/abs/1912.07653
https://urldefense.com/v3/__https://arxiv.org/abs/2109.09720__;!!Mih3wA!H8XL9NM4c55M-6a6v9b07nUCbeosfYHxtetXBbdHzgtVISB0G9dvMX5l44Ep1i3qa5EbtyZ9WBsknDbvIFSMYoeidjbmSoNvwVc$
https://arxiv.org/abs/1711.04833
https://arxiv.org/abs/1910.06408


if a light composite scalar particle, perhaps a Higgs impostor, exists in such a model. Given the
large computational resources each such study requires, a beta function measurement which can take
advantage of pre-exisiting particle spectrum type gauge ensembles would be very valuable, since (a)
it would involve negligible additional computational cost, (b) the beta function would be measured
at renormalized gauge couplings strong enough to see if chiral symmetry could be spontaneously
broken in the chiral limit, and (c) it would complement independent beta function measurements from
simulations directly at zero fermion mass. In this report we describe such a technique. We apply it in
the context of near-conformal gauge theories, the method can just as well be applied to other gauge
theories such as QCD.

2 Gradient flow and step-scaling in finite volume

The gradient flow dAµ/dt = DνFνµ defines the gauge field Aµ(t) at flow time t. Perturbatively, the
action density E = (Fa

µν)2/4 has an expectation value

〈E〉 = 3(N2 − 1)g2

128π2t2

{
1 + c1g

2 + O(g4)
}

(1)

in the MS scheme for SU(N) gauge theory where the renormalized coupling g is defined at the renor-
malization group scale µ = 1/

√
8t. This motivates a non-perturbative definition of the renormalized

coupling

g2(t) ≡ 1
N

(
128π2

3(N2 − 1)

)
t2〈E〉latt, (2)

where the expectation value of the action density at flow time t is measured via lattice simulations and
the normalization factor N depends on the choice of boundary conditions. As the action density is a
bulk quantity, the observable 〈E〉 can be measured non-perturbatively very precisely.

One way to measure the beta function in finite volume is via step-scaling: in a physical volume
L4, the flow is adjusted holding c =

√
8t/L fixed, each choice of c corresponding to a particular

renormalization group (RG) scheme. The RG scale µ is now in terms of the only remaining scale L.
For a given lattice volume (L/a)4 the bare gauge coupling (and hence the lattice spacing) is adjusted
such that the renormalized coupling has a chosen fixed value e.g. g2

c(L/a) = 6. Keeping the lattice
spacing a fixed, a second simulation on a larger volume e.g. (sL/a)4 with s = 2 gives the discrete
step β(g2

c) = {g2
c(sL/a) − g2

c(L/a)}/ log(s2) i.e. the response of the gauge coupling as the RG scale is
changed by a finite amount. In this context discrete has nothing to do with the lattice discretization.
However the beta function will contain lattice artifacts which must be removed. To take the continuum
limit, the procedure is repeated for a sequence of lattice volumes e.g. L/a = 16, 18, 20, 24, 28 on each
of which g2

c(L/a) = 6 is tuned via the bare coupling and larger volumes e.g. 2L/a = 32, 36, 40, 48, 56
from which the discrete step is measured and the limit a/L → 0 is obtained. The final result is the
continuum finite-step beta function in finite volume. This approach, widely used in QCD, has already
been applied in the context of near-conformal gauge theories [5–11].

3 Beta function in infinite volume

The main message of this report is to describe an alternative approach. Since the gradient flow defines
a renormalized coupling g2(t) at any flow time t, one can also directly measure on the same ensemble
of gauge configurations the derivative t · dg2/dt = −µ2 · dg2/dµ2 i.e. the usual beta function with
an infinitesimal change in the RG scale at any particular g2 value. Note that asymptotic freedom

corresponds to t · dg2/dt > 0. In comparison to the approach at fixed c in Section 2, the flow time t is
not held fixed relative to the lattice size L/a in the new method as described in what follows. From a
sequence of ensembles with various lattice volumes, fermion masses and lattice spacings, a sequence
of limits can be taken to reach the continuum infinitesimal-step beta function in infinite volume in the
chiral limit.

We have previously generated a large set of such ensembles in our study of the particle spectrum
of two flavor sextet SU(3) gauge theory. We use staggered fermions with stout link improvement and
the Symanzik gauge action in generating the gauge configurations as described in [12]. Our previous
lattice studies of the model found a set of massless Goldstone bosons in the chiral limit separated
from massive vector, axial vector and baryonic states, with an emergent light scalar, as well as strong
evidence that the chiral condensate is non-zero at zero fermion mass [12–14]. These p-regime gauge
ensembles, already strongly indicative of near-conformal behavior, provide the basis for this beta
function computation.
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Figure 1. (left) The gradient
flow renormalized coupling
g2 and (right) its associated
beta function on a lattice
volume 563 × 96 at a
Goldstone boson mass of
mπ · a ≈ 0.08.

In Figure 1 we show the renormalized coupling g2 and its corresponding derivative t · dg2/dt for
one ensemble, a lattice volume 563 × 96 at the bare gauge coupling 6/g2

0 = 3.20 and fermion mass
ma = 0.001, corresponding to a Goldstone boson mass mπ · a ≈ 0.08. The derivative is approximated
by {−F(t+ 2ε)+ 8F(t+ ε)− 8F(t− ε)+ F(t− 2ε)}/(12ε) = dF/dt+O(ε4). As opposed to step-scaling
where the flow time t is set by the choice of c =

√
8t/L, in this method the value of the renormalized

coupling g2 is chosen and the flow time where this value is reached is measured. We show the choice
g2(t0) = 6.7, which for this ensemble occurs at t0/a2 = 5.487 ± 0.077. (Note that this does not
correspond to the choice of t0 set by t2 · 〈E〉t0 = 0.3 in the original investigation of [1].) A larger
choice of g2 gives a larger statistical error on t0, however too small a value of g2 gives a beta function
distorted by large cutoff effects, as seen on the right of Figure 1 for t < 2. These and other constraints
we describe later influence which fixed value of g2(t0) we choose to target.
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coupling.
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if a light composite scalar particle, perhaps a Higgs impostor, exists in such a model. Given the
large computational resources each such study requires, a beta function measurement which can take
advantage of pre-exisiting particle spectrum type gauge ensembles would be very valuable, since (a)
it would involve negligible additional computational cost, (b) the beta function would be measured
at renormalized gauge couplings strong enough to see if chiral symmetry could be spontaneously
broken in the chiral limit, and (c) it would complement independent beta function measurements from
simulations directly at zero fermion mass. In this report we describe such a technique. We apply it in
the context of near-conformal gauge theories, the method can just as well be applied to other gauge
theories such as QCD.

2 Gradient flow and step-scaling in finite volume

The gradient flow dAµ/dt = DνFνµ defines the gauge field Aµ(t) at flow time t. Perturbatively, the
action density E = (Fa

µν)2/4 has an expectation value

〈E〉 = 3(N2 − 1)g2

128π2t2

{
1 + c1g

2 + O(g4)
}

(1)

in the MS scheme for SU(N) gauge theory where the renormalized coupling g is defined at the renor-
malization group scale µ = 1/

√
8t. This motivates a non-perturbative definition of the renormalized

coupling

g2(t) ≡ 1
N

(
128π2

3(N2 − 1)

)
t2〈E〉latt, (2)

where the expectation value of the action density at flow time t is measured via lattice simulations and
the normalization factor N depends on the choice of boundary conditions. As the action density is a
bulk quantity, the observable 〈E〉 can be measured non-perturbatively very precisely.

One way to measure the beta function in finite volume is via step-scaling: in a physical volume
L4, the flow is adjusted holding c =

√
8t/L fixed, each choice of c corresponding to a particular

renormalization group (RG) scheme. The RG scale µ is now in terms of the only remaining scale L.
For a given lattice volume (L/a)4 the bare gauge coupling (and hence the lattice spacing) is adjusted
such that the renormalized coupling has a chosen fixed value e.g. g2

c(L/a) = 6. Keeping the lattice
spacing a fixed, a second simulation on a larger volume e.g. (sL/a)4 with s = 2 gives the discrete
step β(g2

c) = {g2
c(sL/a) − g2

c(L/a)}/ log(s2) i.e. the response of the gauge coupling as the RG scale is
changed by a finite amount. In this context discrete has nothing to do with the lattice discretization.
However the beta function will contain lattice artifacts which must be removed. To take the continuum
limit, the procedure is repeated for a sequence of lattice volumes e.g. L/a = 16, 18, 20, 24, 28 on each
of which g2

c(L/a) = 6 is tuned via the bare coupling and larger volumes e.g. 2L/a = 32, 36, 40, 48, 56
from which the discrete step is measured and the limit a/L → 0 is obtained. The final result is the
continuum finite-step beta function in finite volume. This approach, widely used in QCD, has already
been applied in the context of near-conformal gauge theories [5–11].

3 Beta function in infinite volume

The main message of this report is to describe an alternative approach. Since the gradient flow defines
a renormalized coupling g2(t) at any flow time t, one can also directly measure on the same ensemble
of gauge configurations the derivative t · dg2/dt = −µ2 · dg2/dµ2 i.e. the usual beta function with
an infinitesimal change in the RG scale at any particular g2 value. Note that asymptotic freedom

corresponds to t · dg2/dt > 0. In comparison to the approach at fixed c in Section 2, the flow time t is
not held fixed relative to the lattice size L/a in the new method as described in what follows. From a
sequence of ensembles with various lattice volumes, fermion masses and lattice spacings, a sequence
of limits can be taken to reach the continuum infinitesimal-step beta function in infinite volume in the
chiral limit.

We have previously generated a large set of such ensembles in our study of the particle spectrum
of two flavor sextet SU(3) gauge theory. We use staggered fermions with stout link improvement and
the Symanzik gauge action in generating the gauge configurations as described in [12]. Our previous
lattice studies of the model found a set of massless Goldstone bosons in the chiral limit separated
from massive vector, axial vector and baryonic states, with an emergent light scalar, as well as strong
evidence that the chiral condensate is non-zero at zero fermion mass [12–14]. These p-regime gauge
ensembles, already strongly indicative of near-conformal behavior, provide the basis for this beta
function computation.
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In Figure 1 we show the renormalized coupling g2 and its corresponding derivative t · dg2/dt for
one ensemble, a lattice volume 563 × 96 at the bare gauge coupling 6/g2

0 = 3.20 and fermion mass
ma = 0.001, corresponding to a Goldstone boson mass mπ · a ≈ 0.08. The derivative is approximated
by {−F(t+ 2ε)+ 8F(t+ ε)− 8F(t− ε)+ F(t− 2ε)}/(12ε) = dF/dt+O(ε4). As opposed to step-scaling
where the flow time t is set by the choice of c =

√
8t/L, in this method the value of the renormalized

coupling g2 is chosen and the flow time where this value is reached is measured. We show the choice
g2(t0) = 6.7, which for this ensemble occurs at t0/a2 = 5.487 ± 0.077. (Note that this does not
correspond to the choice of t0 set by t2 · 〈E〉t0 = 0.3 in the original investigation of [1].) A larger
choice of g2 gives a larger statistical error on t0, however too small a value of g2 gives a beta function
distorted by large cutoff effects, as seen on the right of Figure 1 for t < 2. These and other constraints
we describe later influence which fixed value of g2(t0) we choose to target.
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sextet model beta=function  infinite volume     approach from p-regime


step 1     select target coupling  at some lattice spacing   

               (several m fermion masse, several L at each m)


step 2     at each m take L  limit      


step 3     chiral limit  at fixed a and  for 


step 4    repeat for 3 a values and take  continuum limit of 

g2

→ ∞ Mπ, t0, tdg2/dt

m → 0 g2 t0, tdg2/dt

a2/t → 0 tdg2/dt

original sextet algorithm

Toward a novel determination of the strong QCD coupling at the Z-pole Chik Him Wong

mass deformations < of the p-regime in the chiral symmetry breaking phase [3]. An alternative
implementation of the infinite-volume V-function through C ·362

/3C is applied here using simulations
with massless fermions set in finite lattice volumes and extrapolated to the infinite lattice volume
limit at fixed lattice spacing. Tests are reported here in SU(3) Yang-Mills gauge theory and the
ten-flavor QCD model based on simulations directly at < = 0. The infinite-volume limit is taken at
fixed reference values of the gradient flow time C/02 before the cutoff 0 is eliminated in the 02

/C ! 0
continuum limit. This lattice algorithm was tested earlier in the ten-flavor and twelve-flavor BSM
theories [4] and in the two-flavor QCD model [5] .

2. Outline

Test results are reported in Section 3 for the SU(3) Yang-Mills gauge sector of QCD without
dynamical fermions. The three-loop V-function of Harlander and Neumann is used in the gradient
flow based renormalization scheme to connect the ⇤MS scale of the SU(3) Yang-Mills gauge sector
with the nonperturbative flow time scale C0, or the equivalent Sommer scale A0. Similarly, in Section
4, the ⇤MS scale is connected with a selected nonperturbative scale in the ten-flavor theory. The two
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3. Precision tests of the Yang-Mills sector of QCD without dynamical fermions

Algorithmic implementation of the infinite-volume V-function through C · 362
/3C is applied

in this section to new tests in the SU(3) Yang-Mills gauge sector of QCD without dynamical
fermions. The infinite-volume limit is taken at fixed reference values of the gradient flow time
C/02 in lattice units 0 before the cutoff 0 is eliminated in the 02

/C ! 0 limit. To demonstrate
achievable high precision, we present an efficient and accurate implementation of the algorithm
where the derivative 362

/3C with respect to the flow time variable C/02 is approximated numerically
by five-point discretization in the small flow time step n ,

[�62
(C + 2n) + 862

(C + n) � 862
(C � n) + 62

(C � 2n)]/(12n) = 362
/3C + O(n4

) . (1)

The discrete flow time step n in Eq. (1) is used in an adaptive integration scheme of the gradient
flow equations on the lattice with the required accuracy level. For cross-checks, we also use in the
lattice analysis spline based determination of the V-function C · 362

/3C and a robust interpolation
method of derivatives from a scheme introduced by Akima [6].

The algorithm of the lattice analysis has three steps:

Step 1: The first step is applied to a large set of lattice ensembles in the broad range of 39 bare
gauge couplings 6/62

0 at linear volume sizes ! = 32, 36, 40, 48, 64 with ! = 80 and ! = 96 added
for cross checks at a few select couplings 6/62

0 = 4.81, 6.36, 7.8. At each ! and at each of the 39
bare gauge couplings 6/62

0 we measure the renormalized coupling 62
(C) and the V-function defined

as C · 362
/3C over discretised small step increments n of the gradient flow time C/02, as given in
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Since the goal is the infinite volume beta function, it is necessary to correct for finite volume
dependence. We use an ansatz with an infinite sum g1 of Bessel functions dependent on the aspect
ratio Lt/Ls of the lattice volume to account for Goldstone bosons wrapping around the finite vol-
ume [15] e.g. Mπ(L) = Mπ + cMg1(MπL) where the complicated sum g1 is evaluated numerically. At
1-loop in chiral perturbation theory cM = M2

π/(64π2F2
π), we leave the prefactor cM of the g1 function

as a free parameter to be fitted. In Figures 2 and 3 we show examples of such infinite volume extrapo-
lations for the Goldstone boson mass, the scale t0 and the corresponding beta function. These figures
are typical: the volume effect is relatively small but visible and is well described by the ansatz. Note
that the infinite volume mass Mπ is first determined by the Goldstone boson volume fit and is then
used as one of the inputs for the t0 and beta function volume fits.
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renormalized coupling
g2(t0) = 6.7. (right) Chiral
extrapolation of the scale t0

as a function of M2
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included in the fit.

The next natural step is the extrapolation to zero fermion mass at fixed bare coupling. From [16]
if the smearing radius

√
8t is small compared to the Goldstone boson Compton wavelength, a chiral

expansion gives

t0 = t0,ch

(
1 + k1

M2
π

(4π f )2 + k2
M4
π

(4π f )4 log
(

M2
π

µ2

)
+ k3

M4
π

(4π f )4

)
(3)

where f is the Goldstone boson decay constant in the chiral limit. We show in Figure 3 an example
of such a chiral fit of the infinite-volume t0 data. We do not have sufficient data at all lattice spacings
for a quadratic fit in M2

π or to fit the chiral logarithm, hence we use a linear fit in M2
π for the data at

the lighter masses. At this leading order, linear dependence in M2
π is equivalent to linear dependence

in the fermion mass m itself, extrapolating in either variable to the chiral limit should give consistent
results. We show in Figure 4 the results of linear fits in the mass m at the same bare coupling, which
are indeed consistent with extrapolating in M2

π. The determination of the scale in the chiral limit
is t0/a2 = 6.20 ± 0.14 at this bare coupling 6/g2

0 = 3.20, which corresponds to our coarsest lattice
spacing.

The entire procedure is repeated for two other sets of ensembles: 6/g2
0 = 3.25 corresponding to

our intermediate lattice spacing, and 6/g2
0 = 3.30, our finest lattice spacing. We hold the renormalized

coupling g2(t0) = 6.7 fixed, find the corresponding t0/a2 and beta function values for a variety of
lattice volumes and fermion masses, fit their finite-volume dependence at fixed mass and then extrap-
olate to the chiral limit. The final step is shown in Figures 5 and 6. We see that estimates of the
chiral limit scale t0/a2 are 10.48± 0.23 and 15.85± 0.46 for the intermediate and fine lattice spacings
respectively, giving an overall change of ≈ 1.6 in lattice spacing from coarsest to finest ensembles.
The chiral limit of the beta function shows modest cutoff effects on the order of 10%, which makes
the continuum extrapolation mild. Note that a larger choice of the renormalized coupling to define the
scale e.g. g2(t0) = 8 would give a larger value of t0/a2, which might not be possible to accommodate
at the finest lattice spacing such that the finite-volume dependence could be removed. On the other
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where f is the Goldstone boson decay constant in the chiral limit. We show in Figure 3 an example
of such a chiral fit of the infinite-volume t0 data. We do not have sufficient data at all lattice spacings
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the lighter masses. At this leading order, linear dependence in M2
π is equivalent to linear dependence

in the fermion mass m itself, extrapolating in either variable to the chiral limit should give consistent
results. We show in Figure 4 the results of linear fits in the mass m at the same bare coupling, which
are indeed consistent with extrapolating in M2

π. The determination of the scale in the chiral limit
is t0/a2 = 6.20 ± 0.14 at this bare coupling 6/g2

0 = 3.20, which corresponds to our coarsest lattice
spacing.

The entire procedure is repeated for two other sets of ensembles: 6/g2
0 = 3.25 corresponding to

our intermediate lattice spacing, and 6/g2
0 = 3.30, our finest lattice spacing. We hold the renormalized

coupling g2(t0) = 6.7 fixed, find the corresponding t0/a2 and beta function values for a variety of
lattice volumes and fermion masses, fit their finite-volume dependence at fixed mass and then extrap-
olate to the chiral limit. The final step is shown in Figures 5 and 6. We see that estimates of the
chiral limit scale t0/a2 are 10.48± 0.23 and 15.85± 0.46 for the intermediate and fine lattice spacings
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Figure 4. Chiral extrapolations of (left) the scale t0 and (right) the beta function in the fermion mass m.

hand too small a value of g2(t0) would give much larger lattice artifacts, hence the choice g2(t0) = 6.7
balances these two considerations.
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Figure 5. Similar to Figure 4, chiral extrapolations at 6/g2
0 = 3.25, our intermediate lattice spacing.

We show the last step, the continuum extrapolation of the beta function, in Figure 7. In the chiral
limit we expect the leading cutoff effect to be O(a2), hence we fit the data linearly in a2/t0, with only
three data points a more extended fitting form is not possible. Because the fitting variable t0 has its
own error, this effect in included in the fit as described in [17], with the χ2 function being generalized
to include the error in both x and y coordinates

χ2 =

n∑

k=1



(Xk − xk)2

σ2
x,k

+
(Yk − yk)2

σ2
y,k


 , (4)

where xk and yk are the data pairs with their respective errors σx,k and σy,k, and Yk = c · Xk + d is
the fitting form with c and d as the parameters to be determined. Using this form, our result for the
infinite-volume infinitesimal beta function at g2 = 6.7 is β(g2) = 0.548 ± 0.047. Any physical target,
like the beta function in this work, requires appropriate orders of the chiral and continuum limits as
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sextet model beta=function  infinite volume     approach from p-regime


step 1     select target coupling  at some lattice spacing   

               (several m fermion masse, several L at each m)


step 2     at each m take L  limit      


step 3     chiral limit  at fixed a and  for 


step 4    repeat for 3 a values and take  continuum limit of 

g2

→ ∞ Mπ, t0, tdg2/dt

m → 0 g2 t0, tdg2/dt

a2/t → 0 tdg2/dt

original sextet algorithm



Since the goal is the infinite volume beta function, it is necessary to correct for finite volume
dependence. We use an ansatz with an infinite sum g1 of Bessel functions dependent on the aspect
ratio Lt/Ls of the lattice volume to account for Goldstone bosons wrapping around the finite vol-
ume [15] e.g. Mπ(L) = Mπ + cMg1(MπL) where the complicated sum g1 is evaluated numerically. At
1-loop in chiral perturbation theory cM = M2

π/(64π2F2
π), we leave the prefactor cM of the g1 function

as a free parameter to be fitted. In Figures 2 and 3 we show examples of such infinite volume extrapo-
lations for the Goldstone boson mass, the scale t0 and the corresponding beta function. These figures
are typical: the volume effect is relatively small but visible and is well described by the ansatz. Note
that the infinite volume mass Mπ is first determined by the Goldstone boson volume fit and is then
used as one of the inputs for the t0 and beta function volume fits.
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The next natural step is the extrapolation to zero fermion mass at fixed bare coupling. From [16]
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where f is the Goldstone boson decay constant in the chiral limit. We show in Figure 3 an example
of such a chiral fit of the infinite-volume t0 data. We do not have sufficient data at all lattice spacings
for a quadratic fit in M2

π or to fit the chiral logarithm, hence we use a linear fit in M2
π for the data at

the lighter masses. At this leading order, linear dependence in M2
π is equivalent to linear dependence

in the fermion mass m itself, extrapolating in either variable to the chiral limit should give consistent
results. We show in Figure 4 the results of linear fits in the mass m at the same bare coupling, which
are indeed consistent with extrapolating in M2

π. The determination of the scale in the chiral limit
is t0/a2 = 6.20 ± 0.14 at this bare coupling 6/g2

0 = 3.20, which corresponds to our coarsest lattice
spacing.

The entire procedure is repeated for two other sets of ensembles: 6/g2
0 = 3.25 corresponding to

our intermediate lattice spacing, and 6/g2
0 = 3.30, our finest lattice spacing. We hold the renormalized

coupling g2(t0) = 6.7 fixed, find the corresponding t0/a2 and beta function values for a variety of
lattice volumes and fermion masses, fit their finite-volume dependence at fixed mass and then extrap-
olate to the chiral limit. The final step is shown in Figures 5 and 6. We see that estimates of the
chiral limit scale t0/a2 are 10.48± 0.23 and 15.85± 0.46 for the intermediate and fine lattice spacings
respectively, giving an overall change of ≈ 1.6 in lattice spacing from coarsest to finest ensembles.
The chiral limit of the beta function shows modest cutoff effects on the order of 10%, which makes
the continuum extrapolation mild. Note that a larger choice of the renormalized coupling to define the
scale e.g. g2(t0) = 8 would give a larger value of t0/a2, which might not be possible to accommodate
at the finest lattice spacing such that the finite-volume dependence could be removed. On the other
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We show the last step, the continuum extrapolation of the beta function, in Figure 7. In the chiral
limit we expect the leading cutoff effect to be O(a2), hence we fit the data linearly in a2/t0, with only
three data points a more extended fitting form is not possible. Because the fitting variable t0 has its
own error, this effect in included in the fit as described in [17], with the χ2 function being generalized
to include the error in both x and y coordinates

χ2 =

n∑

k=1



(Xk − xk)2

σ2
x,k

+
(Yk − yk)2

σ2
y,k


 , (4)

where xk and yk are the data pairs with their respective errors σx,k and σy,k, and Yk = c · Xk + d is
the fitting form with c and d as the parameters to be determined. Using this form, our result for the
infinite-volume infinitesimal beta function at g2 = 6.7 is β(g2) = 0.548 ± 0.047. Any physical target,
like the beta function in this work, requires appropriate orders of the chiral and continuum limits as
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noted in [18]. An alternative to the approach presented here would take the chiral and continuum
limits simultaneously in terms of

√
t0 ·m and a2/t0, similar to [13]. This method is being investigated

for the beta function.
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Figure 6. Similar to Figures 4 and 5, chiral extrapolations at 6/g2
0 = 3.30, our finest lattice spacing.

4 Comparison and conclusion

The infinite volume beta function we determine is in a different scheme than the finite volume beta
function measured via step-scaling, which in turn has its own dependence on the choice of c, the ratio
of flow time to lattice volume. It is still instructive to compare these different results for the sextet
model as shown in Figure 7, where the finite volume beta function is taken from our own work in [19].
We see that the two calculations are in good agreement – the beta function is small but non-zero in
the range of renormalized couplings which, from our independent studies of the particle spectrum,
are strong enough that chiral symmetry is spontaneously broken in the chiral limit. Our recent ex-
tended study of the beta function of the twelve-flavor SU(3) model with fundamental representation
fermions [20] shows that at small values of c there is little volume dependence in the method of Sec-
tion 2. This may explain the good agreement between our infinite and finite volume beta functions at
g2 = 6.7 in the sextet model since the new beta function in some sense might be viewed as the c→ 0
limit.

The finite volume beta function, calculated directly at zero mass, starts in the perturbative regime
and moves to stronger coupling as the physical volume grows. If no infrared fixed point (IRFP) is
found i.e. a non-trivial zero of the beta function, one could argue it is simply because strong enough
coupling and large enough physical volumes have not yet been reached. However, the gauge ensem-
bles where the finite volume beta function at g2 = 6.7 could be attained are matched by p-regime
gauge configurations at the same coupling for the targeted scale but with massless fermions in the
infinite volume limit and spontaneous chiral symmetry breaking. This is demonstrated by the particle
spectrum and the eigenvalues of the Dirac operator. In this phase the theory has sufficiently strong
coupling to generate a p-regime with massive states separated from the massless Goldstone bosons,
there is no room left at stronger coupling for the theory to have a conformal spectrum of massless
states whose mass deformation would be governed by a universal anomalous dimension. This bridges
the gap between the weak and strong coupling regimes and obviates any need to continue exploring
even stronger coupling with the finite volume beta function in the hunt for an IRFP.
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Figure 7. (left) Continuum extrapolation of the beta function at g2(t0) = 6.7, yielding β = 0.548 ± 0.047 as the
continuum result. (right) Comparison of this calculation with previous finite volume beta function measurements.
In the gradient flow scheme in infinite volume, the 3-loop beta function [21] has an infrared fixed point at g2 ≈ 6.8,
in the MS scheme the corresponding 3-loop beta function has a zero at g2 ≈ 6.3.

Our beta function calculations, consistent with one another, contradict other lattice studies of the
finite volume beta function for the sextet model [22, 23]. We believe this is because of lattice artifacts
whose effects were not fully removed in those works. The range of lattice volumes we employ is
larger than in either of those studies, which allows us to push further towards the continuum. This is
mostly an issue of systematic errors, not a question of underestimated statistical errors, and should be
accounted for without any speculation about differing universality classes for different fermion dis-
cretizations, contrary to the claims made in [24]. Our beta function determinations are also consistent
with our large-volume non-perturbative study of the particle spectrum, which shows that chiral sym-
metry is spontaneously broken in the massless fermion limit, with associated Goldstone bosons and a
spectrum of massive states [12–14]. This is inconsistent with other studies of the sextet model using
Wilson fermion discretization, which interpret the sextet model as being infrared conformal [25].

In comparison to SU(3) gauge theory with Nf massless fermion flavors in the fundamental repre-
sentation, the sextet model appears to have near-conformal behavior, with a lighter composite scalar
than in the Nf = 4 and 8 theories. Our first investigations of the anomalous mass dimension, measured
via the Dirac operator eigenvalues, indicates that it could be sufficiently large to be phenomenologi-
cally viable [26]. If this first sign holds, and is combined with the other properties of the sextet model,
the theory continues to be a relevant and interesting candidate for explicit realization of the composite
Higgs paradigm. However the entangled dynamics of the light scalar and the light Goldstone pion
with need for a generalized framework in chiral perturbation theory remains an unsolved problem.
This is under active investigation as addressed in [27] with potential implications for the beta function
analysis presented here.
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sextet model beta=function  infinite volume     approach from p-regime


step 1     select target coupling  at some lattice spacing   

               (several m fermion masse, several L at each m)


step 2     at each m take L  limit      


step 3     chiral limit  at fixed a and  for 


step 4    repeat for 3 a values and take  continuum limit of 

g2

→ ∞ Mπ, t0, tdg2/dt

m → 0 g2 t0, tdg2/dt

a2/t → 0 tdg2/dt

original sextet algorithm



timeline and results


Lattice 2017 


sextet beta-function  in the massless fermion limit over infinite Euclidean volume where the scale   is implicit from target choice 

— —————

— only one target  at strong coupling      motivated by the BSM CW controversy


— massless fermion limit of infinite volume   is approached from chiral symmetry breaking phase (like in QCD with three massless fermions)


— getting rid of zero mode in direct m=0  L  implementation in the strong coupling phase? 

     problem with exactly massless pions?

     intrinsic scale? worth trying? 


—  contact with 3-loop perturbation theory would be more accurate than reach from  phase


— before 2019 experimenting with various m=0 direct implementations of  for infinite volume limit  at strong coupling 

     unpublished tests before 2019   nf=10 and nf=12 models 

     limited understanding of fitting in , or   for  limit,  weak coupling, frozen topology, other hidden effects from gapless spectrum?


Lattice 2019  


direct calculation with two massless fermions presented going public for the first time 


first LatHC results published for massless QCD with ten and twelve flavors.  e-Print: 1912.07653 [hep-lat]


First YM result: PoS LATTICE2021 (2022) 174  e-Print:  2109.09720 , A. Hasenfratz, C. Peterson, J. Van Sickle and O. Witzel


Lattice 2022

YM test of infinite volume -function is easier with gap in the spectrum

High precision YM results presented by LatHC at Lattice 2022 and the results published January, 2023. Boulder-Siegen result followed almost immediately


βGF(g2
GF(t)) = tdg2/dt μ = 1/ 8t g2

GF
g2

GF = 6.7

tdg2/dt

→ ∞

χSB

tdg2/dt

a4/L4 a2/L2 L → ∞

β

1711.04833  LatHC

1910.06408   1911.11531 [hep-lat]   A. Hasenfratz and O. Witzel

with limited understanding of fitting in a4/L4

https://arxiv.org/abs/1912.07653
https://urldefense.com/v3/__https://arxiv.org/abs/2109.09720__;!!Mih3wA!H8XL9NM4c55M-6a6v9b07nUCbeosfYHxtetXBbdHzgtVISB0G9dvMX5l44Ep1i3qa5EbtyZ9WBsknDbvIFSMYoeidjbmSoNvwVc$
https://arxiv.org/abs/1711.04833
https://arxiv.org/abs/1910.06408


 Yang-Mills project



 lattice ensembles
SU(3) lattice Yang-Mills gauge action 


Symanzik tree-level improved with bare lattice gauge coupling 


periodic gauge field boundary conditions (the notorious zero mode!)


smearing with 4 stout steps   


multi-platform over-relaxation + heat bath code


lattice ensembles at 45 lattice gauge couplings in  = 4.39 - 11.5 range    


several volumes at each lattice gauge coupling including L=32,36,40,48,56,64,80,96,112,128,160


not all L-values exist at every gauge coupling 


L=80,96,112,128,160  for master field analysis (plan for increased precision)

6/g2
0

ρ = 0.12

6/g2
0

Symanzik tree-improved SU(3) Yang-Mills gauge 
action


we use Wilson flow and Symanzik flow (Zeuthen flow not 
used)


tree-level improvement 


two operators are clover and the Symanzik lattice 
action


SSC, WSC, SSS, WSS scheme

SSC stands for S(flow)S(action)C(clover)


adaptive Runge-Kutta integration on the flow


strategies for getting    over infinite 
Euclidean volume will be discussed in the YM analysis 
and in the QCD analysis with massless fermions

β(g2(t)) = tdg2/dt

 gradient flow



c = 8t /L g2
c =

16π2⟨t2E(t)⟩
3(1 + δ(c))

δ(c) = ϑ4(e−1/c2) − 1 −
π2c4

3
zero mode becomes irrelevant in     limitc → 0
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mode is a constant and the 4-torus can just as well be considered a single point. In this

case of course discretization effects cannot come into play. Hence only the contribution

of the non-zero modes can be lattice spacing dependent. This contribution can easily be

evaluated numerically by replacing the integral in our formula (3.15) by a discrete lattice

sum over non-zero 4-momenta.

In this way we obtain the lattice spacing dependence of the finite volume correction

factor δ(
√
8t/L) of [8] where the ratio

√
8t/L was called c but in order not to introduce

confusion with the improvement coefficients, c will not be used for the ratio here. Equiva-

lently, we obtain the finite volume dependence of the finite lattice spacing correction factor

C(a2/t) of the present work,

C(a2/t,
√
8t/L) = 1 + δ(

√
8t/L, a/L) . (6.1)

Specifically, using the formula (3.15) and the finite volume results from [8] we obtain at

finite lattice spacing and finite volume and leading order in the coupling,

〈t2E(t)〉 = g2
3(N2 − 1)

128π2
C(a2/t,

√
8t/L) (6.2)

C(a2/t,
√
8t/L) =

128π2t2

3L4
+

64π2t2

3L4

L/a−1
∑

nµ=0, n2 "=0

Tr
(

e−t(Sf+G)(Sg + G)−1e−t(Sf+G)Se
)

,

where again the first term comes from the zero modes and is identical to the continuum

result and pµ = 2πnµ/L with a non-zero integer 4-vector nµ. This expression can easily be

evaluated numerically for any choice of discretizations.

For illustration we plot δ(
√
8t/L, a/L) = C(a2/t,

√
8t/L) − 1 for four examples at

various lattice volumes as a function of
√
8t/L on figure 2. We also show the continuum

result δ(
√
8t/L) from [8] for comparison.

7 Numerical test

In order to test the numerical usefulness of our tree-level formulae we will consider the

running coupling of Nf = 4 flavors [8]. For all details of the simulations we refer to the

original work [8], here we simply quote two examples of continuum extrapolations that

were performed there. At these and all the other renormalized couplings we computed the

discrete β-function corresponding to a scale change of s = 3/2 at various lattice spacings

and performed continuum extrapolations.

Since the setup in [8] is a step-scaling approach to the calculation of the β-function on

a periodic 4-torus we need to use the finite volume, finite lattice spacing factor computed

in the previous section.

For our numerical test the renormalized coupling in [8] is tree-level improved by divid-

ing by the tree-level expression C(a2/t,
√
8t/L) from (6.2) in the SSC setup, i.e. tree-level

Symanzik improved (c = −1/12) gauge action and flow with clover type observable with√
8t/L = 3/10, which was the setup used in the simulation. As it can be seen from figure 2

the continuum finite volume correction factor at
√
8t/L = 3/10 is around 3% while the
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tree-level lattice improvement at finite L on the lattice:

zero-mode
finite lattice sum 
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gradient flow footprint
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Figure 1. Finite volume correction factor δ(c).

will run according to the universal 1-loop β-function. Different choices for c correspond to

different schemes.

A note is in order about the 2-loop β-function. As is well known both the 1 and 2

loop coefficients are universal under a scheme change of the type g̃ = g(1 + O(g2)) where

the expansion on the right hand side only contains even powers of the coupling. However

if one allows scheme changes of the type g̃ = g(1 + O(g)) where the expansion contains

both even and odd powers then only the 1-loop coefficient remains scheme independent.

Our scheme is related to the MS scheme by such an expansion since it is easy to see that

both even and odd powers of the coupling will appear as subleading terms to the leading

result (1.2) but fractional powers will not. Our scheme is nevertheless well-defined and has

for instance the property that if a theory has an infrared fixed point in one scheme it will

have a fixed point in our scheme as well.

In order for the system to be controlled by a single scale L the bare fermion mass was

set to zero in the preceding sections. The spectrum of the Dirac operator nevertheless has

a gap ∼ 1/L due to the non-trivial boundary conditions for the fermions.

5 Numerical results

We have tested the new running coupling scheme in SU(3) gauge theory coupled to Nf = 4

massless fundamental fermions. The Schrödinger functional analysis of the same model

can be found in [19, 20]. The fermion action was the 4-step stout improved [21] staggered

action with smearing parameter # = 0.12. Since the number of flavors is a multiple of four

no rooting was necessary. For the gauge sector tree level improved Symanzik action [22, 23]

was used. The hybrid Monte Carlo algorithm [24] was used together with multiple time

scales [25] and Omelyan integrator [26].
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Figure 2. The tree-level finite volume and finite lattice spacing correction factors δ(
√
8t/L, a/L) =

C(a2/t,
√
8t/L)−1 for four examples, the SWS, WWC, SSS and SSC cases as a function of

√
8t/L

at various lattice spacings. The continuum result is from [8].
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Figure 3. Continuum extrapolations of the discrete β-function for two selected g2 values 1.4 (left)
and 3.8 (right) for Nf = 4 flavors with and without tree-level improvement. The data is from [8].

finite lattice spacing dependence can be 12% away from it for the smaller lattices while

only about 1% away from it for the larger L/a = 36 lattices.
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where #(q) = #3(q) =
P

n q
n2 is the 3rd Jacobi elliptic function. The two contributions

�e(c) and �a(c) are exponential and polynomial corrections in L if t is held fixed, respec-
tively. For more details on the leading order calculation see [6]. Clearly, in the large volume
limit L !1 we have �(c) ! 0 and one recovers the known infinite volume result of [2] for
the perturbative expansion of ht2E(t)i.

The evolution of the gauge field with the auxiliary parameter t is given by the gradient
flow,

dAµ

dt
= D⌫F⌫µ , (1.4)

and in the path integral one integrates over the initial condition Aµ(0) while in the ob-
servable E(t) the fields are evaluated at t > 0 which are unique functions of Aµ(0). The
composite operator E(t) was shown to be finite for t > 0 both in perturbation theory and
non-perturbatively in [2]. Hence the renormalized running coupling g

2
c (L) is a well-defined

probe of non-abelian gauge theories.
As indicated in (1.2) the first correction is O(gMS). Since the case of SU(2) is special

[5] we restrict ourselves to N � 2. Odd powers of the coupling are also familiar from
perturbative calculations at finite temperature. In the present work the next to leading
order correction is calculated in the form,

g
2
c = g

2
MS

�
1� a1(c)gMS + O(g2

MS
)
�

. (1.5)

Here the coe�cient a1(c) depends also on the flavor number Nf , representation R and
boundary conditions of the fermions. More specifically,

a1(c) =
⇣Nc

3

24(N2 � 1)(1 + �(c))
�
3N�

0
e(c) + 2c(N⌘0 � 2T (R)Nf⌘k)

�
, (1.6)

where the numerical coe�cient ⇣N depends only on N , ⌘0 is another numerical coe�cient,
and so is ⌘k where k = 1, 2, 3, 4 indicates the number of anti-periodic directions for the
fermions, and T (R) is the trace normalization constant of the representation R; T (fund) =
1/2, T (adjoint) = N , etc. The numerical values are given in table 1.

The motivation for our work is primarily that the coe�cient a1(c) is needed in order
to connect the �-function in our finite volume gradient flow scheme to the MS scheme on
the 2-loop level. As is well-known the first two coe�cients of the �-function,

µ
2 dg

2

dµ2
= b1

g
4

16⇡2
+ b2

g
6

(16⇡2)2
+ O(g8) , (1.7)

are scheme-independent, but only if one considers scheme changes, g ! g̃, of the type

g̃
2 = g

2(1 + O(g2)) . (1.8)

The fact that at leading order the two couplings agree guarantees that b1 does not change
under the change of schemes, and the absence of an O(g) term on the right hand side
guarantees that b2 does not change either.
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initiated by Dani Nogradi
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N 3 4 5
⇣N 16.73(36) 14.69(5) 18.61(6)

k 0 1 2 3 4
⌘k -5.545177 -0.356051 -3.853695 -5.965045 -7.707390

Table 1. The numerical coe�cients in the expression (1.6).

Since our scheme is related to MS by the relation (1.5) which does include an O(g)
term, only the first coe�cient, b1 is the same in our scheme as in MS. The second coe�cient
b2 is however di↵erent. But since in the present work we determine a1(c) we may define
an “improved” coupling by the expression

g̃
2
c = g

2
c (1 + a1(c)gc) . (1.9)

The O(g) term precisely cancels in the expansion of g̃
2
c in terms of g

2
MS

,

g̃
2
c = g

2
MS

(1 + O(g2
MS

)) , (1.10)

hence the �-function in the “improved” gradient flow scheme, g̃
2
c , will give the usual uni-

versal values for the first two coe�cients. Hence a 2-loop matching will be possible to all
other schemes as well.

In the following sections the derivation of formula (1.6) will be presented. The cal-
culation is performed by integrating out the non-zero fermion, ghost and gauge modes in
1-loop perturbation theory whereas the contribution of the gauge zero modes is treated
exactly; see section 2. The coe�cient ⇣N is given by the Yang-Mills matrix integral,

⇣N = �hTrX2
i = �

R
dX TrX2

e
1
2Tr[Xµ,X⌫ ]2

R
dXe

1
2Tr[Xµ,X⌫ ]2

, (1.11)

where Xµ are four anti-hermitian traceless matrices. The numbers ⇣N can only be evaluated
numerically; see section 3. In section 4, all ingredients of the calculation are put together
and shown to result in (1.6). Finally in section 5 we end with some conclusions and general
remarks.

2 Perturbative expansion in finite volume

The action we consider on the 4-torus T
4 is

S = �
1

2g2
0

Z
d

4
xTrFµ⌫Fµ⌫ +

NfX

f=1

Z
d

4
x ̄f /D f , (2.1)

where g0 is the bare coupling constant, Fµ⌫ = @µA⌫�@⌫Aµ+[Aµ, A⌫ ], the Dirac operator is
acting in representation R and we assume that the bare fermion masses are zero for all Nf
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some details of the analysis:

Toward a novel determination of the strong QCD coupling at the Z-pole Chik Him Wong

Eq. (1). At any given value of 6/62
0 for any given finite flow time step we extrapolate the volume set

! = 32, 36, 40, 48, 64 to the ! ! 1 limit.This now defines 62
(C) and C · 362

/3C in the infinite lattice
volume limit at each flow time step n and at each lattice spacing set by 6/62

0. Step 1 is illustrated in
Fig. 1 with improved SSS, SSC, WSC, and WSS schemes defined in [7].

Step 2: We select targeted continuum 62
(C) values, like 62

(C) = 15.79, or any other selected value,
implicitly defining the continuum flow time scale in physical units although not expressed yet in
terms of the scale ⇤MS. We know for example that 62

(C) = 15.79 would define implicitly the C0
continuum scale [8] to be expressed in⇤MS units as the set goal. Since we know the flow time values
C/02 in cutoff units for each step n , for each 62 selection we can read off the values of C · 362

/3C

at each C/02 by minimal interpolation within the size of a flow time step n . The small error of the
interpolation is included in the analysis. Step 2 is illustrated in Fig. 2.

Step 3: We extrapolate the values of C ·362
/3C from matching flow time values C/02 to the continuum

limit 02
/C ! 0 at the chosen target 62

(C) of the continuum theory. Leading order linear fit in 02
/C

is shown in Fig. 3 for the selection of 62
(C) = 15.79 .

The three-step procedure can be repeated for any selection of target 62 values in the covered
range of the available lattice ensembles. Fig. 4 shows the simulation results for C · 362

/3C as a
function of 62 in the extended 62 = 1.2 � 16.4 range. Based on the high precision of C · 362

/3C

expressed as a function of 62 we can calculate the value of C0 · ⇤MS in the Yang-Mills theory. First,
C0 · ⇤⌧� is calculated from Eq. (2) with 6̄2 set to 62

(C0) = 15.79,

C0 · ⇤⌧� = (106̄
2
)
�11/212

0 · exp(�1/2106̄
2
) · exp

⇣
�

π 6̄

0
3G

⇥
1/V(G) + 1/10G

3
� 11/1

2
0G
⇤ ⌘
. (2)

The integral in Eq.(2) was broken up into two parts. In the 62 = 0 � 1.2 range the three-loop
value of the V-function was used and the 62 = 1.2 � 62

(C0) range was evaluated with numerical
integration, based on spline fit to the data. The result of C0 · ⇤⌧� = 1.184(13) can be converted
from a well-know one-loop calculation [1, 2] to C0 · ⇤MS = 0.632(7), accurate on the percent level.

Our preliminary result of this pilot study has comparable accuracy to the most recent work
which used the finite-volume step V-function by authors from the Alpha collaboration [9] with
C0 · ⇤MS = 0.6227(98) reported and shown in Fig. 4. Results from the infinite volume based
V-function agree within one standard deviation with the result from the Schrödinger functional
based step V-function in [9]. Our test is very promising although we will subject the preliminary
analysis to further scrutiny from continued runs of our lattice ensembles.

We converted our result to the A0 scale using
p

8C0/A0 = 0.948(7) from [8], obtaining A0 ·⇤MS =
0.665(9). Connection with the A0 scale was done differently in [9] with the result A0 · ⇤MS =
0.660(11). Significantly lower world average A0 ·⇤MS = 0.615(18) was reported in the FLAG2019
Review which shifted to A0 · ⇤MS = 0.624(36) in the FLAG2021 Review [10]. The shift of the
central value and its increased error came from including the new result from [9] in the world
average. The more than 3-sigma deviation of A0 · ⇤MS = 0.660(11) in [9] from the central value
of the FLAG average without it remains one of the remaining unresolved issues in the Yang-Mills
sector [11].
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integral broken up into two parts: 


• in the  range the three-loop Harlander-Neumann beta-function was used


• in the  range spline based numerical integration was used with error analysis
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 QCD with three massless flavors



 lattice ensembles

SU(3) lattice Yang-Mills gauge action 


Symanzik tree-level improved with bare lattice gauge coupling 


periodic gauge field boundary conditions (the notorious zero mode!)


smearing with 4 stout steps   


staggered fermions, apbc, RHMCalgorithm


lattice ensembles at 22 lattice gauge couplings in  = 4.0 - 10.5 range    


several volumes at each lattice gauge coupling including L=32,36,40,48,56,64


not all L-values exist at every gauge coupling 


6/g2
0

ρ = 0.12

6/g2
0

Symanzik tree-improved SU(3) Yang-Mills gauge 
action


we use Wilson flow and Symanzik flow (Zeuthen flow not 
used)


tree-level improvement 


two operators are clover and the Symanzik lattice 
action


SSC, WSC, SSS, WSS scheme

SSC stands for S(flow)S(action)C(clover)


adaptive Runge-Kutta integration on the flow


strategies for getting    over infinite 
Euclidean volume will be discussed in the QCD 
analysis with massless fermions

β(g2(t)) = tdg2/dt

 gradient flow
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Fig. 1. Schematic plot of the regions in which the three low energy chiral expansions
are valid. The vertical axis shows the finite temperature scale (euclidean time in the
path integral) which probes the rotator dynamics of the δ-regime and the ε-regime.
The first two low lying rotator levels are also shown on the vertical axis for the
simple case of N f = 2. The fourfold degenerate lowest rotator excitation at mq = 0
will split into an isotriplet state (lowest energy level), which evolves into the p-
regime pion as mq increases, and into an isosinglet state representing a multi-pion
state in the p-regime. Higher rotator excitations have similar interpretations.

the pion coupling constant Fπ is enhanced by a factor N2
f com-

pared to M2
π . The chiral expansion for large N f will break down

for Fπ much faster for a given Mπ/Fπ ratio.
The finite volume corrections to Mπ and Fπ are given in the

p-regime by

Mπ (Ls,η) = Mπ

[
1 + 1

2N f

M2
π

16π2 F 2
π

· g̃1(λ,η)

]
, (13)

Fπ (Ls,η) = Fπ

[
1 − N f

2
M2

π

16π2 F 2
π

· g̃1(λ,η)

]
, (14)

where g̃1(λ,η) describes the finite volume corrections with λ =
Mπ · Ls and aspect ratio η = Lt/Ls . The form of g̃1(λ,η) is a com-
plicated infinite sum which contains Bessel functions and requires
numerical evaluation [53]. Eqs. (11)–(14) provide the foundation of
the p-regime fits in our simulations.

2.3. δ-regime and ε-regime

At fixed Ls and in cylindrical geometry Lt/Ls " 1, a crossover
occurs from the p-regime to the δ-regime when mq → 0, as shown
in Fig. 1. The dynamics is dominated by the rotator states of the
chiral condensate in this limit [56] which is characterized by the
conditions F Ls > 1 and MLs $ 1. The densely spaced rotator spec-
trum scales with gaps of the order ∼ 1/F 2L3

s , and at mq = 0 the
chiral symmetry is apparently restored. However, the rotator spec-
trum, even at mq = 0 in the finite volume, will signal that the
infinite system is in the chirally broken phase for the particular pa-
rameter set of the Lagrangian. This is often misunderstood in the
interpretation of lattice simulations. Measuring finite energy lev-
els with pion quantum numbers at fixed Ls in the mq → 0 limit
is not a signal for chiral symmetry restoration of the infinite sys-
tem [37].

Fig. 2. The crossover from the p-regime to the δ-regime is shown for the π and πi5
states at N f = 4.

If Lt ∼ Ls under the conditions F Ls > 1 and MLs $ 1, the sys-
tem will be driven into the ε-regime which can be viewed as the
high temperature limit of the δ-regime quantum rotator. Although
the δ-regime and ε-regime have an overlapping region, there is
an important difference in their dynamics. In the δ-regime of the
quantum rotator, the zero spatial momentum of the pion field U (x)
dominates with time-dependent quantum dynamics. The ε-regime
is dominated by the four-dimensional zero momentum mode of
the chiral Lagrangian.

We report simulation results of all three regimes in the chirally
broken phase of the technicolor models we investigate. The analy-
sis of the three regimes complement each other and provide cross-
checks for the correct identification of the phases. First, we will
probe Eqs. (11)–(14) in the p-regime, and follow with the study
of Dirac spectra and RMT eigenvalue distributions in the ε-regime.
The spectrum in the δ-regime is used as a signal to monitor p-
regime spectra as mq decreases. Fig. 2 is an illustrative example
for this crossover in our simulations.

3. Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in
our simulations. The link variables in the staggered fermion ma-
trix were exponentially smeared with six stout steps at N f = 4,8
and four stout steps at N f = 9. The RHMC algorithm was de-
ployed in all runs but rooting of the fermion determinant only
affected the N f = 9 simulations. The results shown in Fig. 3 are
from the p-regime of the chirally broken phase with the conditions
Mπ · Ls " 1 and Fπ · L ∼ 1 when the chiral condensate begins to
follow the expected behavior of infinite volume chiral perturbation
theory from Eqs. (11), (12) with calculable finite volume correc-
tions from Eqs. (13), (14).

The N f = 4 simulations work in the p-regime as expected. The
pion spectrum is clearly separated from the technicolor scale of
the ρ-meson whose quadratic fit is just to guide the eye. Mov-
ing towards the continuum limit with increasing β = 6/g2, we see
the split pion spectrum collapsing onto the true Goldstone pion.
The true Goldstone pion and two additional split pion states are
shown. ( is the measure of the small quadratic pion mass split-
tings in lattice units. Their origin was discussed in Section 2 in
Eqs. (7)–(10). The spectrum is parallel and the gaps appear to
be equally spaced consistent with the earlier observation in QCD
where the C4 term seems to dominate taste breaking accounting
for the equally spaced pion levels [49]. The simultaneous chiral fit
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Figure 1. On the left: an illustration of a typical shape of a δ-box, i.e. an anisotropic finite
volume where a pion gas can be treated by the δ-expansion. On the right: a schematic map
of the applicability domains of three different expansion rules of χPT, namely the p- , the ε-
and the δ-regime. The dashed lines indicate regions where clearly one expansion holds; in the
transition zones between these regions various expansions could work more or less.
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Figure 2. A qualitative picture of the expected behaviour of the pion mass squared in a δ-box.
For heavy quarks and pions we approximate the p-regime relation mq ∝ M2

π . For light quarks
the pion mass attains a plateau, and finally (in the chiral limit mq = 0) the residual value MR

π .

The value of MR
π can be computed with the δ-expansion. The spectrum of the O(4) quantum

rotator (a quantum mechanical particle on the sphere S3) is given by E" = $($+2)/(2Θ), so the
mass gap amounts to MR

π = 3/(2Θ). The challenge is now to compute the moment of inertia
Θ. In his seminal paper on the δ-regime, H. Leutwyler gave its value to leading order (LO) as
Θ ≈ F 2

πL3. Thus the residual pion mass can be written as

MR
π =

3

2F 2
πL3(1 + ∆)

. (8)

The shift ∆ captures higher order corrections, which are suppressed in powers of 1/(FπL)2.
They have been evaluated to next-to-leading order (NLO) in Ref. [8], and recently even to
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Fig. 1. Schematic plot of the regions in which the three low energy chiral expansions
are valid. The vertical axis shows the finite temperature scale (euclidean time in the
path integral) which probes the rotator dynamics of the δ-regime and the ε-regime.
The first two low lying rotator levels are also shown on the vertical axis for the
simple case of N f = 2. The fourfold degenerate lowest rotator excitation at mq = 0
will split into an isotriplet state (lowest energy level), which evolves into the p-
regime pion as mq increases, and into an isosinglet state representing a multi-pion
state in the p-regime. Higher rotator excitations have similar interpretations.

the pion coupling constant Fπ is enhanced by a factor N2
f com-

pared to M2
π . The chiral expansion for large N f will break down

for Fπ much faster for a given Mπ/Fπ ratio.
The finite volume corrections to Mπ and Fπ are given in the
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where g̃1(λ,η) describes the finite volume corrections with λ =
Mπ · Ls and aspect ratio η = Lt/Ls . The form of g̃1(λ,η) is a com-
plicated infinite sum which contains Bessel functions and requires
numerical evaluation [53]. Eqs. (11)–(14) provide the foundation of
the p-regime fits in our simulations.

2.3. δ-regime and ε-regime

At fixed Ls and in cylindrical geometry Lt/Ls " 1, a crossover
occurs from the p-regime to the δ-regime when mq → 0, as shown
in Fig. 1. The dynamics is dominated by the rotator states of the
chiral condensate in this limit [56] which is characterized by the
conditions F Ls > 1 and MLs $ 1. The densely spaced rotator spec-
trum scales with gaps of the order ∼ 1/F 2L3

s , and at mq = 0 the
chiral symmetry is apparently restored. However, the rotator spec-
trum, even at mq = 0 in the finite volume, will signal that the
infinite system is in the chirally broken phase for the particular pa-
rameter set of the Lagrangian. This is often misunderstood in the
interpretation of lattice simulations. Measuring finite energy lev-
els with pion quantum numbers at fixed Ls in the mq → 0 limit
is not a signal for chiral symmetry restoration of the infinite sys-
tem [37].

Fig. 2. The crossover from the p-regime to the δ-regime is shown for the π and πi5
states at N f = 4.

If Lt ∼ Ls under the conditions F Ls > 1 and MLs $ 1, the sys-
tem will be driven into the ε-regime which can be viewed as the
high temperature limit of the δ-regime quantum rotator. Although
the δ-regime and ε-regime have an overlapping region, there is
an important difference in their dynamics. In the δ-regime of the
quantum rotator, the zero spatial momentum of the pion field U (x)
dominates with time-dependent quantum dynamics. The ε-regime
is dominated by the four-dimensional zero momentum mode of
the chiral Lagrangian.

We report simulation results of all three regimes in the chirally
broken phase of the technicolor models we investigate. The analy-
sis of the three regimes complement each other and provide cross-
checks for the correct identification of the phases. First, we will
probe Eqs. (11)–(14) in the p-regime, and follow with the study
of Dirac spectra and RMT eigenvalue distributions in the ε-regime.
The spectrum in the δ-regime is used as a signal to monitor p-
regime spectra as mq decreases. Fig. 2 is an illustrative example
for this crossover in our simulations.

3. Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in
our simulations. The link variables in the staggered fermion ma-
trix were exponentially smeared with six stout steps at N f = 4,8
and four stout steps at N f = 9. The RHMC algorithm was de-
ployed in all runs but rooting of the fermion determinant only
affected the N f = 9 simulations. The results shown in Fig. 3 are
from the p-regime of the chirally broken phase with the conditions
Mπ · Ls " 1 and Fπ · L ∼ 1 when the chiral condensate begins to
follow the expected behavior of infinite volume chiral perturbation
theory from Eqs. (11), (12) with calculable finite volume correc-
tions from Eqs. (13), (14).

The N f = 4 simulations work in the p-regime as expected. The
pion spectrum is clearly separated from the technicolor scale of
the ρ-meson whose quadratic fit is just to guide the eye. Mov-
ing towards the continuum limit with increasing β = 6/g2, we see
the split pion spectrum collapsing onto the true Goldstone pion.
The true Goldstone pion and two additional split pion states are
shown. ( is the measure of the small quadratic pion mass split-
tings in lattice units. Their origin was discussed in Section 2 in
Eqs. (7)–(10). The spectrum is parallel and the gaps appear to
be equally spaced consistent with the earlier observation in QCD
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1. Introduction

The Large Hadron Collider will probe the mechanism of elec-
troweak symmetry breaking. It is an intriguing possibility that
new physics beyond the Standard Model might take the form of
some new strongly-interacting gauge theory. In one scenario, the
Higgs sector of the electroweak theory is replaced by a so-called
technicolor theory, whose dynamics provides the required spon-
taneous symmetry breaking [1–3]. These models avoid the fine-
tuning problem and may lead to a heavy composite Higgs particle
on the TeV scale. Although attractive, the challenge is to extend a
technicolor theory to include fermion mass generation, while sat-
isfying the various constraints of electroweak phenomenology. This
idea has lately been revived by new explorations of the multi-
dimensional theory space of nearly conformal gauge theories [4–9].
The terminology of technicolor in this report will refer in a generic
sense to these investigations. Exploring the new technicolor ideas
has to be based on non-perturbative studies which are only be-
coming feasible now with the advent of new lattice technologies.

Model building of a strongly interacting electroweak sector re-
quires the knowledge of the phase diagram of nearly conformal
gauge theories as the number of colors Nc , number of fermion
flavors N f , and the fermion representation R of the technicolor
group are varied in theory space. For fixed Nc and R the theory

* Corresponding author.
E-mail address: jkuti@ucsd.edu (J. Kuti).

is in the chirally broken phase for low N f and asymptotic free-
dom is maintained with a negative β function. On the other hand,
if N f is large enough, the β function is positive for all couplings,
and the theory is trivial. If the regulator cut-off is removed, we are
left with a free non-interacting continuum theory. There is some
range of N f for which the β function might have a non-trivial
zero, an infrared fixed point, where the theory is in fact conformal
[10,11]. This method has been refined by estimating the critical
value of N f , above which spontaneous chiral symmetry breaking
no longer occurs [12–14].

Interesting models require the theory to be very close to, but
below, the conformal window, with a running coupling which
is almost constant over a large energy range [15–20]. The non-
perturbative knowledge of the critical Ncrit

f separating the two
phases is essential and this has generated much interest and many
new lattice studies [21–47].

Our goal to unambiguously identify the chirally broken phase
below the conformal window requires the application and testing
of a comprehensive lattice tool set in finite volumes which in-
cludes the test of Goldstone pion dynamics, the spectrum of the
fermion Dirac operator, and eigenvalue distributions of Random
Matrix Theory (RMT). Inside the conformal window we investigate
the running coupling and the β function. We report new results
at N f = 4,8,9,12,16 for fermions in the fundamental represen-
tation of the SU(3) technicolor gauge group. We find N f = 4,8,9
to be in the chirally broken phase and N f = 16 is consistent with
the expected location inside the conformal window. To resolve the
N f = 12 phase from our simulations will require further analysis.
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taneous symmetry breaking [1–3]. These models avoid the fine-
tuning problem and may lead to a heavy composite Higgs particle
on the TeV scale. Although attractive, the challenge is to extend a
technicolor theory to include fermion mass generation, while sat-
isfying the various constraints of electroweak phenomenology. This
idea has lately been revived by new explorations of the multi-
dimensional theory space of nearly conformal gauge theories [4–9].
The terminology of technicolor in this report will refer in a generic
sense to these investigations. Exploring the new technicolor ideas
has to be based on non-perturbative studies which are only be-
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is in the chirally broken phase for low N f and asymptotic free-
dom is maintained with a negative β function. On the other hand,
if N f is large enough, the β function is positive for all couplings,
and the theory is trivial. If the regulator cut-off is removed, we are
left with a free non-interacting continuum theory. There is some
range of N f for which the β function might have a non-trivial
zero, an infrared fixed point, where the theory is in fact conformal
[10,11]. This method has been refined by estimating the critical
value of N f , above which spontaneous chiral symmetry breaking
no longer occurs [12–14].

Interesting models require the theory to be very close to, but
below, the conformal window, with a running coupling which
is almost constant over a large energy range [15–20]. The non-
perturbative knowledge of the critical Ncrit

f separating the two
phases is essential and this has generated much interest and many
new lattice studies [21–47].

Our goal to unambiguously identify the chirally broken phase
below the conformal window requires the application and testing
of a comprehensive lattice tool set in finite volumes which in-
cludes the test of Goldstone pion dynamics, the spectrum of the
fermion Dirac operator, and eigenvalue distributions of Random
Matrix Theory (RMT). Inside the conformal window we investigate
the running coupling and the β function. We report new results
at N f = 4,8,9,12,16 for fermions in the fundamental represen-
tation of the SU(3) technicolor gauge group. We find N f = 4,8,9
to be in the chirally broken phase and N f = 16 is consistent with
the expected location inside the conformal window. To resolve the
N f = 12 phase from our simulations will require further analysis.
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Understanding finite size effects has always been an important
issue in lattice studies of QCD. For an accurate determination of
hadron observables it is of foremost importance to account for fi-
nite volume corrections. In addition, finite size effects can provide
valuable information on the low-energy physics of the system. As
lattice calculations are reaching the physical pion mass, the im-
pact of finite volume will become pronounced. The main effect is
caused by modified pion dynamics arising from the boundary con-
ditions being imposed on the system.

In a finite spatial box chiral symmetry does not break down
spontaneously. This results in a mass gap, even if the quark masses
vanish. The physics behind that is described by a simple quan-
tum mechanical rotator [1], whose energy levels can be computed
from an expansion of the chiral effective theory in the δ regime
mπ L " 1, T # L, where L (T ) is the spatial (temporal) extent of
the box. We are now in the position to probe the pion mass near
the chiral limit and account for this effect. What makes this prob-
lem attractive, beyond the computational task of solving QCD in a
finite volume, is that it is a universal feature of quantum mechan-

* Corresponding author at: Deutsches Elektronen-Synchrotron DESY, 22603 Ham-
burg, Germany.

E-mail address: gerrit.schierholz@desy.de (G. Schierholz).

ics, which is only constrained by the symmetry of the system. For
a previous attempt of extracting the mass gap see [2].

In a series of papers Leutwyler [1], Hasenfratz and Niedermayer
[3] and Hasenfratz [4] have computed the energy levels for two
flavors of dynamical quarks to leading (L), next-to-leading (NL) and
next-to-next-to-leading (NNL) order. The mass gap, i.e. the residual
mass of the pion in the chiral limit, up to NNL order turns out to
be

mres
π = 3

2F 2
π L3(1 + #)

(1)

with

# = 2
F 2
π L2 0.2257849591 + 1

F 4
π L4

[
0.088431628

− 0.8375369106
3π2

(
1
4

ln(Λ1L)2 + ln(Λ2L)2
)]

, (2)

where Fπ is the pion decay constant, and Λi are the intrinsic scale
parameters of the low-energy constants [5],

l̄i = ln
(

Λi

mphys
π

)2

. (3)
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Note that there are several non-trivial relations that should be satisfied to be able to absorb the
singular cutoff dependence into the renormalized couplings – these are satisfied numerically to
the expected accuracy, providing an additional check.

The renormalization of g
(2)
4 and g

(3)
4 agrees with the result of ChPT in dimensional regular-

ization [2], taking into account Eq. (2.19).5 On the lattice (with Euclidean action) we have

g
(2)
41 = 1

16π2

(
14
3

− 2n1

)
, (6.17)

g
(3)
41 = − 1

16π2

8
3
. (6.18)

Note that, in contrast to the DR, the pion decay constant F0 renormalizes on the lattice. The
NLO coefficient b1 in (6.11) has been calculated earlier in [4].

ChPT in the p-regime with lattice regularization was studied earlier by Shushpanov and
Smilga [16] for the 4d O(4) case, who obtain, besides other 1- and 2-loop results, also the
renormalization of F0 to NLO. However, their result disagrees with ours – they obtain (for
n = 4) b1 = −2G(0), i.e. the −1/(2d) term of Eq. (6.13) is missing. It is easy to verify its
presence for the O(2) case in the same way as done in [16] (from the current–current correlator)
when one uses the parametrization by the angular variable. In this case the action is given by
λ−2

0
∑

x,µ(1 − cos(λ0∂µφ(x))) while the conserved current is Aµ(x) = λ−2
0 sin(λ0∂µφ(x)). In

this case one gets b1 = −1/(2d), as expected.

6.3. The moment of inertia

The isospin dependence of the lowest excitations up to (and including) NNLO corrections are
given by the rotator spectrum [17,5], i.e. by

El = l(l + 2)

2Θ
, l = 0,1,2, . . . , (6.19)

where Θ is the moment of inertia. We have also calculated the E2 − E0 gap with the method
presented here, and found agreement with this expectation. The moment of inertia is given by

Θ = L3
sF

2
[

1 + 1
F 2L2

s

0.225784959441(n − 2)

+ 1
F 4L4

s

(−0.0692984943 + 0.0101978424n)

− 1
F 4L4

s

0.007071685925
[
(3n − 10) logM2Ls + 2n logM3Ls

]

− g
(4)
4

F 4L4
s

[
−0.55835794046(n + 1)

]

− g
(5)
4

F 4L4
s

[0.55771822866 − 1.11639602502n] + O
(

1
F 6L6

s

)]
. (6.20)

The scales M2 and M3 are related to the corresponding scales Λ1, Λ2 in dimensional regulariza-
tion (cf. Eq. (2.19)). However, to get this relation, and the values of the coefficients g

(4)
4 and g

(5)
4

5 In Ref. [2] only the n = 4 result is given but it is straightforward to restore the general n dependence.
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in four-dimensional Euclidean space-time. The effective Lagrangian is expressed in the four-
component vector fields !S, where !S2(x) = 1. We will start from the effective Lagrangian in the
p-expansion (MLs ! 1)

Leff = L
(2) +L

(4) + . . . , (2.2)

where

L
(2) =

F2

2
∂µ!S(x)∂µ!S(x)−F2M2S0(x) ,

L
(4) = −"1

(

∂µ!S(x)∂µ!S(x)
)2

− "2
(

∂µ!S(x)∂ν!S(x)
)2

+ symmetry breaking terms .
(2.3)

The symmetry breaking terms in L (4) will enter only beyond NNL order in the δ -expansion and
can therefore be neglected.

Chiral perturbation series are obtained by expanding the effective action around the classical
limit !S= 1. However, in the delta regime, this expansion becomes meaningless due to the presence
of very low energy modes.

Since the Compton wavelength is much larger than the spatial extent of the box, collective
behaviour sets in. Thus, we can introduce a "global" mode for each time slice, since on a given
time slice the field variables are strongly correlated and point almost in the same direction (in the
internal space). Due to the fact that the time extent is much larger than the spatial extent, the global
mode performs a slow rotation in the internal four-dimensional space. The fluctuations (fast modes)
around the direction of the global mode (slow modes) can then be treated by perturbation theory.

We have to incorporate this non-perturbative behaviour of the slow modes in the partition
function by introducing a collective variable [10, 11]. The effective action is then expressed in
terms of the fast modes and the slow modes. We expand the effective action in the fast modes
and integrate them out in the partition function. We are applying dimensional regularisation. By
considering only contributions up to NNL order, the partition function reduces to

Z ∝
∫

[D!e]exp
(

−

∫

dt
Θ
2
!̇e(t)!̇e(t)−ηe0(t)

)

, !e2(t) = 1 . (2.4)

After renormalisation the moment of inertia gets corrections at NL [10] and NNL order [11]
and reads1

Θ= F2L3s

[

1−
2Ḡ∗

F2L2s
+

1
F4L4s

[

0.088431628

+∂0∂0Ḡ∗
1
3π2

(1
4
log(Λ1Ls)2+ log(Λ2Ls)2

)]

]

.

(2.5)

The constants Ḡ∗ and ∂0∂0Ḡ∗ are related to the finite volume Green’s function D∗(0), respectively
∂0∂0D∗(0) which enter in perturbation theory for the fast modes

Ḡ∗ = 0.2257849591 , ∂0∂0Ḡ∗ = 0.8375369106 . (2.6)

1The NNL corrections to the moment of inertia have been calculated recently by Niedermayer and Weiermann [12]
in lattice regularised ChPT. In order to compare the two results, the matching between the two different regularisation
schemes is needed.
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time slice the field variables are strongly correlated and point almost in the same direction (in the
internal space). Due to the fact that the time extent is much larger than the spatial extent, the global
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∫

[D!e]exp
(

−

∫

dt
Θ
2
!̇e(t)!̇e(t)−ηe0(t)

)

, !e2(t) = 1 . (2.4)

After renormalisation the moment of inertia gets corrections at NL [10] and NNL order [11]
and reads1

Θ= F2L3s

[

1−
2Ḡ∗

F2L2s
+

1
F4L4s

[

0.088431628

+∂0∂0Ḡ∗
1
3π2

(1
4
log(Λ1Ls)2+ log(Λ2Ls)2

)]

]

.

(2.5)

The constants Ḡ∗ and ∂0∂0Ḡ∗ are related to the finite volume Green’s function D∗(0), respectively
∂0∂0D∗(0) which enter in perturbation theory for the fast modes

Ḡ∗ = 0.2257849591 , ∂0∂0Ḡ∗ = 0.8375369106 . (2.6)

1The NNL corrections to the moment of inertia have been calculated recently by Niedermayer and Weiermann [12]
in lattice regularised ChPT. In order to compare the two results, the matching between the two different regularisation
schemes is needed.
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Λ1 andΛ2 are the intrinsic scales related to the low-energy constants !1 and !2 [3]. η which controls
the strength of the symmetry breaking:

η = F2L3sM
2
[

1−
3Ḡ∗

F2L2s

]

. (2.7)

3. The energy gap

The partition function (2.4) can be interpreted as an O(4) quantum mechanical rotator in an
external symmetry breaking potential. The corresponding Hamilton operator reads

H=
1
Θ

(L2

2
− (Θη)e0

)

, (3.1)

where L is the angular momentum operator in the internal four-dimensional space and Θ and η are
given by Eqs. (2.5), (2.7) respectively.

In the chiral limit (η = 0) the energy spectrum of the rotator is given by Eq. (1.2), where F2Vs
has to be replaced simply by Θ. Since Θη = r2(1+ . . .) is small, we can calculate the symmetry
breaking corrections to the energy spectrum by applying perturbation theory. Considering correc-
tions up to O(δ 4) we have to calculate the corrections to the rotator energy (1.2) up to fourth order
in perturbation theory.

The energy gap of the system is defined by the energy difference of the first excited state j= 1
and the ground state j= 0. Due to the presence of the symmetry breaking potential the first excited
state splits up into a singlet and a triplet energy state, whereas the triplet provides the lower energy
difference. Thus, the energy gap which includes symmetry breaking corrections up to O

(

(Θη)4
)

reads

ELs =
3
2Θ

[

1+
(Θη)2

15
−
193
120

(Θη)4

152

]

. (3.2)

We recognise the leading symmetry breaking correction F8L12s M4/15 to the energy gap which has
already been given in [9].

4. What are the constraints on Ls and M?

The moment of inertia (2.5) is an expansion in the dimensionless parameter 1/(FLs)2. In order
to have a reliable expansion, 1/(FLs)2 should be small. Hence, we can estimate that the spatial
extent of the box should be about 2.5 fm or larger

Ls ! 2.5fm . (4.1)

Since in the delta regime MLs # 1, we obtain an estimate for the upper bound on M for a given
box size Ls. From Eq. (4.1) we deduce that M should be at least smaller than roughly 80 MeV.

We have assumed that the two dimensionless expansion parameters are of the same order
(r4 ∼ δ 2). This assumption leads to an even smaller upper bound for M for a given box size Ls,
in the domain where 1/(FLs)2 is small. For Ls = 2.5 fm the corresponding upper bound on M is
about 63 MeV, see also Tab. 1.
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powers of ff and apply perturbation theory with 
the result 

E o = E L + ( 1 / 2 F 2 L 3 ) [ - N r  z + ( N  2 -  1)r 

- ( N  2 - 1 ) ( 2 N  2 - 1 ) / 8 N + O ( 1 / r ) ] .  (18) 

In the region of interest here, the functions go and 
gl = - d g 0 / d M 2  which appear in the two-loop 
formula (16) may be expanded in powers of ML: 

2T 
go(M 2, T, L ) =  - L- S E I n [ 1 -  e x p ( - % / T ) ]  

n~0 

- ( 2 T / L  3) ln[2 s h ( M / Z T ) ]  

+ M  4 ln( ML )/16~r 2 

.~ ~ 2k 4 yk ( M L )  / L ,  (19) 
k=o 

where con is defined in (6) and where ~o, 71 . . . .  are 
pure numbers, e.g. 

1 .~0 ~ = 1.67507...  (20) 
i . i  4 

With these representations, one easily verifies that 
(16) and (15) indeed agree, provided B = 1 and 

E L = _ (U 2 - 1)yo/ZL + U ( U  2 - 1)/SF2L 3. 
(21) 

We now briefly discuss the spectrum of the 
differential equation (11). The energy levels are 
controlled by the parameter  r = F2L3M 

( - - A - - r  2 Re tr U ) ~ , =  e,(r)qJ, ,  

E, = E L + (1 /2FZL 3) % ( F2L3M). (22) 

(i) M = 0. In the chiral limit, the irreducible 
representations of SU(N)  constitute a complete 
set of eigenstates. The ground state is independent 
of U and sits at E o = E L. In the massless theory, 
the vacuum energy is therefore dominated by the 
Casimir effect due to the modes with n v~ 0 [first 
term in (21)]. The box lowers the ground state 
energy; the shift is inversely proportional to the 
length of the box. The effective interaction gener- 
ates a small repulsive correction inversely propor- 
tional to the volume [second term in (21); note 
that this contribution is equivalent to a reordering 

of the kinetic energy, A ~ A - -JR]. In the chiral 
limit, the first excited level consists of a degener- 
ate multiplet of 2N 2 states, described by the two 
fundamental representations U and U * (for N = 2, 
these representations are equivalent and the multi- 
plet only contains four states). The corresponding 
eigenvalue of the laplacian is - 2 ( N  2 - 1)/N. The 
energy gap of the massless theory is therefore 
given by ( N  2 - 1 ) /NF2L 3, as claimed above. For 
two flavours, the energy spectrum and the level 
degeneracy can be read off from the explicit ex- 
pression for the trace of the heat kernel on SU(2): 

K z ( t , O ) =  ~ n 2 e x p [ - ( n  2 - 1 ) t ] .  (23) 
n = l  

For an arbitrary number of flavours, the eigenval- 
ues of a and the dimensions of the irreducible 
representations can be expressed, e.g. in terms of 
the Dynkin labels. I do not know of a compact 
formula for the heat kernel on SU(N)  for N >7 3. 

(ii) M << 1/FZL 3. As the quark mass is turned 
on, the levels split. For small masses, the shifts 
can be worked out from (22) by treating r as a 
perturbation. In the case of two quark flavours, 
the four degenerate states at the first excited level 
sprit into an isospin singlet and an isospin triplet. 
The triplet is the lower one of the two and the 
energy gap is given by 

ML= (3/2F2L3)[1 + ~ ( F 2 L 3 M )  4 + .. .] 

( N  = 2). (24) 

For three flavours, the expansion of M L in powers 
of the quark mass contains a term linear in m. If 
there are four or more flavours, the leading correc- 
tion generated by the quark mass is of order m 2 as 
in (24). 

(iii) I / F 2 L  3 << m << I / L .  In this region, the 
parameter  r is large. The potential therefore con- 
fines the wave functions to the vicinity of U = 1. 
For the low-lying states, the effective hamiltonian 
reduces to N 2 -  1 independent harmonic oscilla- 
tors and the levels become approximately equidis- 
tant with A E = M. Evaluating the correction of 
order 1/r,  one finds 

M L = M + 1 /4NF2L 3 + . . . .  (25) 
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Figure 1. On the left: an illustration of a typical shape of a δ-box, i.e. an anisotropic finite
volume where a pion gas can be treated by the δ-expansion. On the right: a schematic map
of the applicability domains of three different expansion rules of χPT, namely the p- , the ε-
and the δ-regime. The dashed lines indicate regions where clearly one expansion holds; in the
transition zones between these regions various expansions could work more or less.
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Figure 2. A qualitative picture of the expected behaviour of the pion mass squared in a δ-box.
For heavy quarks and pions we approximate the p-regime relation mq ∝ M2

π . For light quarks
the pion mass attains a plateau, and finally (in the chiral limit mq = 0) the residual value MR

π .

The value of MR
π can be computed with the δ-expansion. The spectrum of the O(4) quantum

rotator (a quantum mechanical particle on the sphere S3) is given by E" = $($+2)/(2Θ), so the
mass gap amounts to MR

π = 3/(2Θ). The challenge is now to compute the moment of inertia
Θ. In his seminal paper on the δ-regime, H. Leutwyler gave its value to leading order (LO) as
Θ ≈ F 2

πL3. Thus the residual pion mass can be written as

MR
π =

3

2F 2
πL3(1 + ∆)

. (8)

The shift ∆ captures higher order corrections, which are suppressed in powers of 1/(FπL)2.
They have been evaluated to next-to-leading order (NLO) in Ref. [8], and recently even to
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Abstract

The low lying spectrum of the O(n) effective field theory is calculated in the delta-regime in 3 and
4 space–time dimensions using lattice regularization to NNL order. It allows, in particular, to determine,
using numerical simulations in different spatial volumes, the pion decay constant F in QCD with 2 flavours
or the spin stiffness ρ for an antiferromagnet in d = 2 + 1 dimensions.
 2010 Elsevier B.V. All rights reserved.

Keywords: Chiral perturbation theory; Delta-regime

1. Introduction

The low energy phenomena in systems with spontaneously broken symmetry are governed by
the dynamics of the Goldstone bosons. This can be described by an effective field theory, and
the calculations could be performed by chiral perturbation theory (ChPT) [1,2]. The effective
action contains low energy constants (LEC) determined by the underlying microscopic theory.
The physical quantities can be systematically expanded in powers of momenta, or (as in the case
of our interest here) inverse box size. In numerical simulations one can place the system into
a space–time box of size Lt × Ld−1

s and study the dependence of different quantities on the
box size. Comparing the data with theoretical predictions one can determine the corresponding
LEC’s.
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Note that there are several non-trivial relations that should be satisfied to be able to absorb the
singular cutoff dependence into the renormalized couplings – these are satisfied numerically to
the expected accuracy, providing an additional check.

The renormalization of g
(2)
4 and g

(3)
4 agrees with the result of ChPT in dimensional regular-

ization [2], taking into account Eq. (2.19).5 On the lattice (with Euclidean action) we have

g
(2)
41 = 1

16π2

(
14
3

− 2n1

)
, (6.17)

g
(3)
41 = − 1

16π2

8
3
. (6.18)

Note that, in contrast to the DR, the pion decay constant F0 renormalizes on the lattice. The
NLO coefficient b1 in (6.11) has been calculated earlier in [4].

ChPT in the p-regime with lattice regularization was studied earlier by Shushpanov and
Smilga [16] for the 4d O(4) case, who obtain, besides other 1- and 2-loop results, also the
renormalization of F0 to NLO. However, their result disagrees with ours – they obtain (for
n = 4) b1 = −2G(0), i.e. the −1/(2d) term of Eq. (6.13) is missing. It is easy to verify its
presence for the O(2) case in the same way as done in [16] (from the current–current correlator)
when one uses the parametrization by the angular variable. In this case the action is given by
λ−2

0
∑

x,µ(1 − cos(λ0∂µφ(x))) while the conserved current is Aµ(x) = λ−2
0 sin(λ0∂µφ(x)). In

this case one gets b1 = −1/(2d), as expected.

6.3. The moment of inertia

The isospin dependence of the lowest excitations up to (and including) NNLO corrections are
given by the rotator spectrum [17,5], i.e. by

El = l(l + 2)

2Θ
, l = 0,1,2, . . . , (6.19)

where Θ is the moment of inertia. We have also calculated the E2 − E0 gap with the method
presented here, and found agreement with this expectation. The moment of inertia is given by

Θ = L3
sF

2
[

1 + 1
F 2L2

s

0.225784959441(n − 2)

+ 1
F 4L4

s

(−0.0692984943 + 0.0101978424n)

− 1
F 4L4

s

0.007071685925
[
(3n − 10) logM2Ls + 2n logM3Ls

]

− g
(4)
4

F 4L4
s

[
−0.55835794046(n + 1)

]

− g
(5)
4

F 4L4
s

[0.55771822866 − 1.11639602502n] + O
(

1
F 6L6

s

)]
. (6.20)

The scales M2 and M3 are related to the corresponding scales Λ1, Λ2 in dimensional regulariza-
tion (cf. Eq. (2.19)). However, to get this relation, and the values of the coefficients g

(4)
4 and g

(5)
4

5 In Ref. [2] only the n = 4 result is given but it is straightforward to restore the general n dependence.
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in four-dimensional Euclidean space-time. The effective Lagrangian is expressed in the four-
component vector fields !S, where !S2(x) = 1. We will start from the effective Lagrangian in the
p-expansion (MLs ! 1)

Leff = L
(2) +L

(4) + . . . , (2.2)

where

L
(2) =

F2

2
∂µ!S(x)∂µ!S(x)−F2M2S0(x) ,

L
(4) = −"1

(

∂µ!S(x)∂µ!S(x)
)2

− "2
(

∂µ!S(x)∂ν!S(x)
)2

+ symmetry breaking terms .
(2.3)

The symmetry breaking terms in L (4) will enter only beyond NNL order in the δ -expansion and
can therefore be neglected.

Chiral perturbation series are obtained by expanding the effective action around the classical
limit !S= 1. However, in the delta regime, this expansion becomes meaningless due to the presence
of very low energy modes.

Since the Compton wavelength is much larger than the spatial extent of the box, collective
behaviour sets in. Thus, we can introduce a "global" mode for each time slice, since on a given
time slice the field variables are strongly correlated and point almost in the same direction (in the
internal space). Due to the fact that the time extent is much larger than the spatial extent, the global
mode performs a slow rotation in the internal four-dimensional space. The fluctuations (fast modes)
around the direction of the global mode (slow modes) can then be treated by perturbation theory.

We have to incorporate this non-perturbative behaviour of the slow modes in the partition
function by introducing a collective variable [10, 11]. The effective action is then expressed in
terms of the fast modes and the slow modes. We expand the effective action in the fast modes
and integrate them out in the partition function. We are applying dimensional regularisation. By
considering only contributions up to NNL order, the partition function reduces to

Z ∝
∫

[D!e]exp
(

−

∫

dt
Θ
2
!̇e(t)!̇e(t)−ηe0(t)

)

, !e2(t) = 1 . (2.4)

After renormalisation the moment of inertia gets corrections at NL [10] and NNL order [11]
and reads1

Θ= F2L3s

[

1−
2Ḡ∗

F2L2s
+

1
F4L4s

[

0.088431628

+∂0∂0Ḡ∗
1
3π2

(1
4
log(Λ1Ls)2+ log(Λ2Ls)2

)]

]

.

(2.5)

The constants Ḡ∗ and ∂0∂0Ḡ∗ are related to the finite volume Green’s function D∗(0), respectively
∂0∂0D∗(0) which enter in perturbation theory for the fast modes

Ḡ∗ = 0.2257849591 , ∂0∂0Ḡ∗ = 0.8375369106 . (2.6)

1The NNL corrections to the moment of inertia have been calculated recently by Niedermayer and Weiermann [12]
in lattice regularised ChPT. In order to compare the two results, the matching between the two different regularisation
schemes is needed.
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Λ1 andΛ2 are the intrinsic scales related to the low-energy constants !1 and !2 [3]. η which controls
the strength of the symmetry breaking:

η = F2L3sM
2
[

1−
3Ḡ∗

F2L2s

]

. (2.7)

3. The energy gap

The partition function (2.4) can be interpreted as an O(4) quantum mechanical rotator in an
external symmetry breaking potential. The corresponding Hamilton operator reads

H=
1
Θ

(L2

2
− (Θη)e0

)

, (3.1)

where L is the angular momentum operator in the internal four-dimensional space and Θ and η are
given by Eqs. (2.5), (2.7) respectively.

In the chiral limit (η = 0) the energy spectrum of the rotator is given by Eq. (1.2), where F2Vs
has to be replaced simply by Θ. Since Θη = r2(1+ . . .) is small, we can calculate the symmetry
breaking corrections to the energy spectrum by applying perturbation theory. Considering correc-
tions up to O(δ 4) we have to calculate the corrections to the rotator energy (1.2) up to fourth order
in perturbation theory.

The energy gap of the system is defined by the energy difference of the first excited state j= 1
and the ground state j= 0. Due to the presence of the symmetry breaking potential the first excited
state splits up into a singlet and a triplet energy state, whereas the triplet provides the lower energy
difference. Thus, the energy gap which includes symmetry breaking corrections up to O

(

(Θη)4
)

reads

ELs =
3
2Θ

[

1+
(Θη)2

15
−
193
120

(Θη)4

152

]

. (3.2)

We recognise the leading symmetry breaking correction F8L12s M4/15 to the energy gap which has
already been given in [9].

4. What are the constraints on Ls and M?

The moment of inertia (2.5) is an expansion in the dimensionless parameter 1/(FLs)2. In order
to have a reliable expansion, 1/(FLs)2 should be small. Hence, we can estimate that the spatial
extent of the box should be about 2.5 fm or larger

Ls ! 2.5fm . (4.1)

Since in the delta regime MLs # 1, we obtain an estimate for the upper bound on M for a given
box size Ls. From Eq. (4.1) we deduce that M should be at least smaller than roughly 80 MeV.

We have assumed that the two dimensionless expansion parameters are of the same order
(r4 ∼ δ 2). This assumption leads to an even smaller upper bound for M for a given box size Ls,
in the domain where 1/(FLs)2 is small. For Ls = 2.5 fm the corresponding upper bound on M is
about 63 MeV, see also Tab. 1.
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known results in rotator geometry



some concluding remarks:


YM theory is under reasonable control  at weak and strong coupling   

(undiscovered hidden problems?)


new analysis of YM based on the extended data set in the works


QCD with three massless fermions     control at weak coupling


harder at strong coupling    (is frozen topology the only ~ 1/V effect on hypercube?)


balanced use of hypercubic and rotator geometry?
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