

The static force from the lattice with gradient flow

The Gradient Flow in QCD and other Strongly Coupled Field Theories Julian Frederic Mayer-Steudte

In collaboration with Nora Brambilla (TUM) Viljami Leino (HIM) Antonio Vairo (TUM)

1 Motivation

2 Setup

3 Lattice results

4 Conclusion

Motivation: Static Energy E(r)

Interested in the QCD static energy of a quark-antiquark pair *E*(*r*)
 Given by the Wilson loop

$$E(r) = -\lim_{T \to \infty} \frac{\ln \langle \operatorname{Tr}(W_{r \times T}) \rangle}{T}, \qquad \qquad W_{r \times T} = P\left\{ \exp\left(i \oint_{r \times T} dz_{\mu} g A_{\mu}\right) \right\}$$

Can be described by perturbation theory and measured on the lattice For $r\Lambda_{\rm QCD}\ll 1$ both descriptions should agree

can be used for precise $\alpha_S\text{-}\mathrm{running}$ extraction by comparing PT and lattice

Motivation: Issues with E(r)

Perturbative form of E(r):

$$E(r) = \Lambda_S - \frac{C_F \alpha_S}{r} \left(1 + \# \alpha_S + \# \alpha_S^2 + \# \alpha_S^3 + \# \alpha_S^3 \ln \alpha_S + \dots \right)$$

- E(r) is known up to N³LL
- The perturbative expansion affected by a renormalon ambiguity of order Λ in PT side
- On lattice: Linear UV divergence
- All interesting physics is in the slope

take a derivative of E(r) for the force $F(r) = \partial_r E(r)$

Outline

1 Motivation

2 Setup

3 Lattice results

4 Conclusion

Setup: Alternative definition of F(r)

Direct measurement of F(r):

(A. Vairo Mod. Phys. Lett. A 31 (2016) & EPJ Web Conf. 126 (2016), Brambilla et.al.PRD63 (2001))

$$\begin{aligned} F(r) &= -\lim_{T \to \infty} \frac{i}{\langle \operatorname{Tr}(W_{r \times T}) \rangle} \left\langle \operatorname{Tr} \left(P\left\{ \exp\left(i \oint_{r \times T} dz_{\mu} g A_{\mu}\right) \hat{\mathbf{r}} \cdot g \mathbf{E}(\mathbf{r}, t^{*}) \right\} \right) \right\rangle \\ &= \frac{\langle \operatorname{Tr}\{PW_{r \times T} g E_{j}(r, t^{*})\} \rangle}{\langle \operatorname{Tr}\{PW_{r \times T}\} \rangle} \end{aligned}$$

- Chromoelectric field E inserted into Wilson loop
- The insertion location t^* is arbitrary \rightarrow reduce boundary terms and choose $t^* = T/2$
- Can be used to extract α_S without the usual renormalon issues and for scale setting

• On the lattice: modifying Wilson loop with a discretized *E*-field insertion

Setup: Discretiziation of the *E*-field insertion

Clover discretization of E:

$$E_{i} = \frac{1}{2iga^{2}} \left(\Pi_{i0} - \Pi_{i0}^{\dagger} \right) \qquad \qquad \Pi_{\mu\nu} = \frac{1}{4} \left(P_{\mu,\nu} + P_{\nu,-\mu} + P_{-\mu,-\nu} + P_{-\nu,\mu} \right)$$

E has finite size on the lattice

The self energy contribution of E converges slowly to continuum (See e.g. Lepage et.al.PRD48 (1993), G. Bali Phys. Rept. 343 (2001), and many others...) \rightarrow need renormalization Z_E

We use **Gradient flow** for targeting the renormalization and the signal to noise ratio problems, new scale: flowtime τ_F , flowradius $\sqrt{8\tau_F}$, flowtime ratio τ_F/r^2

Setup: Gradient flow on the lattice

- Gradient flow is originated in lattice, acts as smearing with flowradius $\sqrt{8\tau_F}$
- Renormalizes lattice field strength components by reducing the self-energy contributions
- Gradient flow equation: (Martin Lüscher JHEP 08 (2010))

$$\dot{V}_{\tau_F}(x,\mu) = -g_0^2 \{\partial_{x,\mu} S_{W/S}(V_{\tau_F})\} V_{\tau_F}(x,\mu)$$

$$V_{\tau_F}(x,\mu)|_{\tau_F=0} = U_{\mu}(x)$$

Measuring flowed operators on the lattice:

$$\langle O(\tau_F) \rangle = \frac{1}{Z} \int \mathcal{D}[U] e^{-S_E} O(V_{\tau_F})$$

 \blacktriangleright Obtain $\lim_{\tau_F \to 0} \langle O(\tau_F) \rangle$ for the physical quantity

Setup: Specific extra motivations

- The statice force is complementary to the static energy extraction from Wilson loops
- We measured the force directly with the *E*-field insertion in Wilson loops and Polyakov loops first, with multilevel so far

(Brambilla et. al. Phys.Rev.D 105 (2022))

which introduces an additional factor Z_E

- One to one comparison to $\partial_r E(r)$ is possible
- Here we address first time the force measurement with gradient flow
- This study is a preparation for similar objects with field insertions needed it NREFTs

Setup: Continuum results

- One-loop calculation of the flowed force is known: (Hee Sok Chung et. al. JHEP01(2022)184 (2022)), Xiangpeng Wang's talk
- Relevant scale: $\mu_b = \frac{1}{\sqrt{r^2 + 8b\tau_F}}, \ \mu_0 = 1/r, \ \mu_1 = \frac{1}{\sqrt{r^2 + 8\tau_F}}$
- We focus on the $n_f = 0$ result
- Small τ_F exansion:

$$r^{2}F(r;\tau_{F}) \approx r^{2}F(r;\tau_{F}=0) + \frac{\alpha_{S}^{2}C_{F}}{4\pi} \underbrace{\left[-12\beta_{0} - 6C_{A}c_{L}\right]}_{8n_{f}} \frac{\tau_{F}}{r^{2}} \qquad c_{L} = -\frac{22}{3}$$

At small flowtime the force is constant in pure gauge $(n_f = 0)$

Outline

1 Motivation

2 Setup

3 Lattice results

4 Conclusion

Lattice results: setup and parameters

Parameters:

N_S	N_T	eta	a [fm]	$N_{\rm conf}$	Label
20	40	6.284	0.060	6000	L20
26	52	6.481	0.046	6000	L26
30	60	6.594	0.040	6000	L30
40	80	6.816	0.030	2700	L40

Pure gauge configuration produced with overrelaxation and heatbath

Scale setting with $(r_0 = 0.5 \text{ fm})$ $\ln(a/r_0) = -1.6804 - 1.7331(\beta - 6) + 0.7849(\beta - 6)^2 - 0.4428(\beta - 6)^3$ (1S. Necco & R. Sommer. Nucl. Phys. B622 (2002))

Gradient flow with fixed and adaptive solver, with Symanzik action (Bazavov and Chuna 2101.05320 (2021)

Lattice results: Discretization effects

Nonperturbative determination of Z_E :

$$Z_E(r) = \frac{\partial_r E(r)}{F(r)}$$

- Z_E has low r-dependence (Brambilla et. al. Phys.Rev.D 105 (2022))
- Examine the flowed Z_E

$$Z_E \rightarrow 1$$
 for flowradius $\sqrt{8\tau_F} > a$

Gradient flow reduces discretization effects of field insertions for $\sqrt{8\tau_F} > a$

Lattice results: r_0 scale

Sommer scale $r_0(\tau_F)$ defined as:

$$r^2 F(r, \tau_F)|_{r=r_0(\tau_F)} = 1.65$$

- \blacksquare $r_0(\tau_F)$ has strong τ_F -dependence
- Approaches Necco & Sommer scale setting for $\tau_F/r^2 \approx 0.02$
- Plateau extraction within a suitable flowtime range could be use to extract r₀

Direct force measurement with gradient flow can be used to set the scale

Figure 1 Lattice L20

Lattice results: Continuum limit

Tree level improvement:

$$F_{\text{Latt}}^{\text{Impr}}(r,\tau_F) = \frac{F_{\text{Cont}}^{\text{Tree}}}{F_{\text{Latt}}^{\text{Tree}}} \cdot F_{\text{Latt}}^{\text{Meas}}$$

- Continuum limit at fixed r and fixed τ_F
- Akaike average of linear and quadratic in a² limit

restrict to $\chi^2/dof < 3.6$

Direct force measurement with gradient flow leads to reliable continuum limits

Lattice results: Continuum results at large r

Constant zero flowtime limits for r > 0.137 fm

Lattice results: Continuum results at large r

- Close to force from Necco & Sommer
- Cornell fit $r^2 F(r) = A + \sigma r^2$
- $\sigma = 5.25(3) \text{ fm}^{-2}$, literature: 5.5 fm⁻²
- A = 0.277(3)
 Koma & Koma: A = 0.2808(5)
 - Direct force measurement with gradient flow gives reliable large *r* results

Lattice results: Continuum results at small r

- Perturbative results are valid at small r
- Perturbative force known up to N³LL at zero flow time, at NLO at finite flow time
- We combine the perturbative knowledge at zero flow time with 1-loop flow time behavior:

$$r^{2}F^{\text{order}}(r,\tau_{F}) \equiv r^{2}F^{\text{order}}(r,\tau_{F}=0) + f^{1-\text{loop}}(r,\tau_{F})$$
$$f^{1-\text{loop}}(r,\tau_{F}) \equiv r^{2}F^{1-\text{loop}}(r,\tau_{F}) - r^{2}F^{1-\text{loop}}(r,\tau_{F}=0)$$

- The perturbative result depends on $\Lambda_0 \equiv \Lambda_{\overline{MS}}^{n_f=0}$ which is a flow time independent quantity and defines the physics at zero flow time
- Extracting Λ_0 gives the zero flow time limit
- Compare two ways:
 - \Box at fixed r and fit along flow time
 - \Box at fixed au_F and fit along r

Lattice results: Continuum results at small r, fixed r

- Select valid points ($Z_E \approx 1$, $\chi^2/dof < 3.6$))
- Various scale options will catch the flow time in different shapes
- Fit parameter for pure 1-loop:
 - $\Lambda_0=0.300...0.360 \text{GeV}$

Julian Frederic Mayer-Steudte | Static force with gradient flow | 22/03/2023

Lattice results: Continuum results at small r, fixed r

- Select valid points ($Z_E \approx 1$, $\chi^2/dof < 3.6$))
- Different choices for the scale catch the flow time shape different well
- Fit parameter for pure 1-loop:
 - $\Lambda_0=0.300...0.360\text{GeV}$
- Fit parameter for 3-loop + u.s.:
 - $\Lambda_0=0.24...0.27\text{GeV}$

F3ILus, r = 0.1254 fm

Lattice results: Continuum results at small r, fixed τ_F

- Select valid points ($Z_E \approx 1$, $\chi^2/dof < 3.6$))
- Perform Aikaike averaging for different r fit windows
- Vertical lines corresponds to the effective lower and upper fit bounds
- Multiple values for Λ_0 at different flowtimes

0.37 -

- $\Lambda_0(\tau_F)$ is constant within the errors
- The value depends on the scale choice

Lattice results: Continuum results at small r, fixed τ_F

0.275 - FLAG * b = 1

Lattice results: Continuum results at small r, fixed τ_F

Fixed τ_F fit for Λ_0 gives good result

- \blacksquare $\Lambda_0(\tau_F)$ is constant within the errors
- The value depends on the scale choice
- For combined 3-loop + u.s., all values are within the FLAG error

at smallest *r* F3ILus

Lattice results: Constant zero flow time limit at small r

- □ 1-loop: 0.336(2) GeV
- □ 2-loop: 0.273(2) GeV
- □ 2-loop+u.s.: 0.286(2) GeV

Perform constant zero flow time limit

- □ 3-loop: 0.253(2) GeV
- □ 3-loop+u.s.: 0.260(2) GeV
- **FLAG:** 0.262(15) GeV

0.15

0.16

r in fm

0.17

0.18

Constant zero flow time limit at small r can be used to compare with perturbative results

0.14

Lattice results: Fixed τ_F and constant zero flow time limit at small r comparison

Outline

1 Motivation

2 Setup

3 Lattice results

4 Conclusion

Conclusion

- Summary ond observations:
 - Gradient flow reduces effectively discretization effects
 - Gradient flow improves qualitatively the signal to noise ratio
 - Direct force measurement with gradient flow can be used for scale setting
 - Good preparation for future applications in NREFTs
 - For the future:
 - \Box Get better scale dependence for Λ extraction
 - Go to finer lattices
 - Other operators with field insertions
 - Extend to dynamical fermions

Thank you for your attention!

ТШ

b	1	0	-0.3	-1.5	b_{fitted}	
		-0.65(10)				
$\Lambda_0^{ m fit}$ in GeV	0.284(2)	0.302(2)	0.313(1)	0.384(6)	0.326(5)	
χ^2/dof	1.76	0.60	0.28	5.6	0.13	
	F2I -1.00(10)					
$\Lambda_0^{ m fit}$ in GeV	0.229(2)	0.240(2)	0.245(1)	0.288(2)	0.262(4)	
χ^2/dof	1.8	0.92	0.62	1.4	0.14	
	F3lLus -1.03(10)					
$\Lambda_0^{ m fit}$ in GeV	0.226(2)	0.237(2)	0.241(1)	0.276(2)	0.257(3)	
$\chi^2/{ m dof}$	1.8	0.94	0.64	1.2	0.1	

Table 1 The fit results at fixed r = 0.102 fm for three different order choices.

ТШ

b	1	0	-0.3	-1.5	b_{fitted}	
	F1I				-1.31(10)	
$\Lambda_0^{ m fit}$ in GeV	0.304(3)	0.317(2)	0.323(2)	0.358(1)	0.351(4)	
χ^2/dof	1.93	1.04	0.75	0.12	0.07	
	F2I -1.61(12					
$\Lambda_0^{ m fit}$ in GeV	0.247(2)	0.255(2)	0.258(1)	0.277(1)	0.279(3)	
χ^2/dof	1.46	0.91	0.73	0.07	0.07	
	F3lLus -1.65(12)					
$\Lambda_0^{ m fit}$ in GeV	0.242(2)	0.249(2)	0.251(2)	0.268(1)	0.271(3)	
$\chi^2/{ m dof}$	1.42	0.90	0.73	0.07	0.07	

Table 2 The fit results at fixed r = 0.1254 fm for three different order choices.

fixed r

b	1	0	-0.3	-1.5	b_{fitted}
	F1I				-1.18(16)
$\Lambda_0^{ m fit}$ in GeV	0.321(1)	0.331(1)	0.334(1)	0.353(1)	0.347(3)
χ^2/dof	1.56	0.75	0.52	0.23	0.16
	F2I -1.61(23)				
$\Lambda_0^{ m fit}$ in GeV	0.265(1)	0.270(1)	0.272(1)	0.281(1)	0.282(2)
χ^2/dof	0.89	0.54	0.44	0.14	0.15
	F3lLus -1.74(25)				
$\Lambda_0^{ m fit}$ in GeV	0.252(1)	0.255(1)	0.257(1)	0.263(1)	0.264(2)
$\chi^2/{ m dof}$	0.80	0.51	0.42	0.15	0.15

Table 3 The fit results at fixed r = 0.1819 fm for three different order choices.

Fixed τ_F

Fixed τ_F , small constant r zero flow time limit

Julian Frederic Mayer-Steudte | Static force with gradient flow | 22/03/2023

Effective distance

Solve for $r_{\rm Eff}$:

$$r^{2}F(r, \tau_{F}, \mu = 1/r)$$
$$=r_{\rm Eff}^{2}F(r_{\rm Eff}, 0, \mu = 1/r_{\rm Eff})$$

