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Outline

Let's explore some connections between gradient flow and RG.
@ GF-RG transformation by analogy with spin blocking

> Ratio formulas
»> Numerical results

@ Relation to Wilson's “Exact RG” from 1973

> Stochastic RG
> Perturbative WFFP

© Summary and Future possibilities...
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Gradient flow vs. blocking

Consider the free gradient flow of a scalar field theory:

2
Ordr(x) = 8%¢(x) has solution ¢¢(x) = W /ddy ei%@(}/)

and compare with a traditional blocking transforrmation
bA1
P(x) =~ Y p(x+e), xb=x/b
€

and a’ = ba. Similar under the identification b; x /t.

But the GF solution does not have a rescaling factor of bA1. Thus we can try augmenting
the GF solution and define

®¢(xe) 1= b e (x)

where Aj is not necessarily known beforehand, and x; are sites on a fictitious blocked
lattice.

Here we'll explore the consequences... but first some review.
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RG fixed points: review

Iterated blocking transformations generate a sequence of actions in “theory space.” A fixed
point is characterized by S, — S, under the blocking.

Perturbations near the FP transform like

Se + Z uaRs — S + Z b2 u,R,
a a

The R, are called scaling operators. The relative importance of these operators near a FP
is determined by the “RG eigenvalues” y,, e.g. relevant, marginal, or irrelevant.

Scaling ops are typically linear combinations m?
of familiar operators:

Ra(9) = 2, ai0i(@), {0} ={¢%,0",60%¢, ..}

Near a FP, correlations of the scaling ops are
related as

(Ra(2/b)Ra(0))s, ~ b*22(Ra(2)Ra(0))s, (large 2)

where A; =d — ya. fx

Figure: Adapted from Kopietz [1].
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GF ratio formulas
The MCRG equivalence for blocking lets one calculate observables in the blocked theory:
(O(@))s, = (O(¢p))s, = (O(®))s, = (O(b 1)) s,
The ratio formula then reads (near a FP)
(Ra(®¢r; 2)Ra(Pr; 0))s, ~ (bt’/bt)gAa<Ra(¢t; Z)Ra(®+;0))s,

where ®; = btA1¢t, ze = z/bt.

Scaling operators are not known a priori. However, since

0i(6) = 3 ciRa(9),

the operators with smallest A, dominate correlations of arbitrary operators:

<Oi(¢t/?z)oj(¢t’;0)>50 -~ , 28, —(nj+nj)A
(016 2)05(0:0)) 5y~ P2/

The LHS can be measured on the lattice!

From any pair of operators i, j, we expect to extract an estimate for

(S,'j = 2Aa - (n,- =+ nj)Al
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Testbed: ¢* theory

We performed a lattice simulation with action

Sp) =Y, [f BY oxpxin + 02+ M2 — 1)2]
I

X
tuned close to criticality (we want the RG flow to skim the critical surface closely)
3d: =11, Bc~0.3750966 (Hasenbusch, 1999 [2])

2d: A=10, Bc~0.6806048 (Kaupuzs, 2016 [3])

Criticality was checked by analyzing the Binder cumulant.

We hope to measure

A d=2 d=3
A; 0.125 0.51790(20)
A, 1 1.41169(76)
A; 2125  ~25
A, 2 3.845(11)

Figure: Leading scaling dims for 2d, 3d Ising universality class. (3d values from Hasenbusch '99 and
Rychkov 2015 [4] (for A3)).
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Correlators

Operators in ¢* theory are either even or odd under Z; reflection ¢ — —¢.

We measured mixed point-to-point correlators in each set

odd : {¢,4},

d=3, =P, Ny=48

even : {¢°,¢"}

So close to criticality, the correlators are power-law-like, C(z) = A/z?2, where A is in the
ballpark of the leading scaling dim of that subspace:
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Correlator ratios

We considered ratios of correlators at pairs of flowtimes t, t 4 €, with € = 0.05.

The ratio formula predicts a plateau at large z:

(Oi(dt+e; 2)Oj(dt+e:0)) s,
(Oi(¢t; 2)O0j(41: 0)) 5,

where be(t) ~ y/1+ ¢/t at large t.

(The ¢¢ ratio is independent of t, consistent with the formula above.)

%ij(Z; t) — ~ be(t)ZAaf(nH»nj)Al
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Extracting scaling dimensions
The ratio formula is expected to be valid for t > 0 and z > V/2dt.
Ideally, the following should have a finite limit as t — oo:

log Zjj(z; t)
log be(t)

but large smearing radii intrude; one can’t use too-large flow times.

— 0jj + subleading in t

Assuming b ~ /t, we fit ratios to the ansatz

F(t) = (1+¢/t) 00279/

d=3, B=Pc, Nx=48, Z=17 o8 6y fits : Aty =20, d=3, B=PB, Nx=64
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Infinite volume extrapolations

We assumed a corrections-to-scaling-like ansatz for extrapolating to infinite volume:
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Tabulated results for §;; 1= 2A, — (nj + nj)Ax

H (l,]) §¢j(table‘2.2b ‘ 5,‘j w a xz/dof H
(1,3) -1.03580(40) | -1.0283(65) 1.667(80) 59(14) 0.16
(3,3) -2.07160(80) | -2.055(18) 1.73(11)  154(51) 0.30
(2,2) 0.7518(17) 0.743(17) 1‘17(18) 7.2(3.5) 0.17
(2,4) -0.2840(19) -0.308(38) 0.96(20) 5.8(2.9) 0.11
(4,4) -1.3198(22) -1.310(29) 1.56(16) 84(38) 0.20

Figure: Infinite volume extrapolations of the §;; in d = 3 dimensions.

This analysis was repeated in two dimensions:

(%,7) 6¢j(table‘2.20 6ij w a xz/dof ‘
(1,3) -0.25 -0.2616(14) 2.48(21) 127(83) 0.21
(3,3) -0.50 -0.5279(28) 2.35(18) 161(91) 0.55
(2,2) 1.50 1.538(20) 1.92(35) 90(93) 0.35
(2,4) 1.25 1.299(31)  1.79(31) 103(93) 0.30
(4,4) 1.00 1.061(60) 1.62(25) 129(93) 0.39

Figure: Infinite volume extrapolations of the §;; in d = 2 dimensions.

GF-RG was also applied to a 12-flavor SU(3) gauge theory in 4d: arXiv:1806.01385 [5]
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GF effective action and Wilson's exact RG
For a blocking transformation, one can define an effective (blocked) action via

e 5h(?) .= / 5(¢p — pp) e ) where pp(xp) = b1 2 p(x +¢€)
® €

Can this be done for the GF-RG transformation?

x Integrating against 6(¢ — ¢+) where ¢ = frp does not yield a satisfactory effective
action:

Se(#) = Ne + So(f )
(where f(t) is the heat kernel).

Enter ‘“exact RG”: W.ilson-Kogut 1973,
Wegner-Houghton 1973.

not terribly /"almosc
f integrated / completely
integrated [/ integrated
]
.
,

k = k
° ko
(a) (b)
Adapted from Wilson & Kogut (1973)

Wilson & Kogut defined a low-mode Boltz-

unintegrated
mann factor by

o2 O

pe(@) = [ Pu(@i) pole)
@
where P; is a “constraint functional”:

o 1 [ 2w, (6p—Fi(p)ep)?
Pi(¢i ) =N exp [—§/p Ko(p)  1—1f2(p) ]
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Exact RG and Stochastic RG

Wilson & Kogut's constraint functional satisfies

1 52P; 6P
0P, == K 2
tPe(¢) 2/p( 0(p)5¢>p5¢— + wp¢p5¢>
where Ko(p) is a smooth cutoff function (e.g. Ko = e*PZ).

This is a functional Fokker-Planck equation! P:(¢, ) = P:(#, t; ¢,0) is a transition function;
= perhaps exact RG can be viewed as a diffusion in field space.

The stochastic process which generates this distribution is

Otdt(p) = —wpdt(p) + ne(p)

where n:(p) is gaussian noise with variance Ko(p): Looks like a stochastic GF equation.

MCRG: observables of the effective theory p:(¢p) = e~5t(%) are related to the bare theory by

(0())s, = (Eq [O(¢tle: m])])sy

The effective low-mode action S:(¢) can be written in terms of bare-theory connected
(time-dependent) Green functions

Si(¢) = Fe + = (¢,Af¢) W B fg]

Andrea Carosso (GW) Gradient Flow and Exact Renormalization Group March 20, 2023 13/16



Wilson-Fisher FP and relation to GF

When the field is rescaled as
d
() = NP Ced(p/Ar), b =No/Ae = V1+2t

the effective action S; for ® has an interacting fixed point at first order in perturbation
theory ([8]: arxiv:1904.13057; see also arxiv:2006.07481).

Gradient flow:

It can be demonstrated that effective theory correlations reduce to the GF correlations at
large distances:

((x)p(¥))s, = Ar(x,y) + (frp(x)fre(y)) sy

since A; decays fast with x — y. Similar formulae hold for higher composite operators.
(= Wilson-Kogut '73 [6], Sonoda-Suzuki 2019 [7], Carosso 2019 [8])

So
(®(x/be)d(y/br))5, ~ b; (Frp(x) Fep(y))s,

which suggests the relation we found from the spin-blocking analogy, ®: = btAl feep.
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Summary and Future

We have seen that the block-spin analogy implies that GF can be used to extract leading
(and perhaps subleading) scaling dimensions.

We have also seen a possibility for properly defining an effective action associated with the
GFRG transformation, which implies that GFRG is closely related to Wilson's “exact RG."”

Future directions:

@ Can we apply GF-RG scaling laws in the case of local expectation values? Perhaps a
continuous Swendsen equation?

@ What is the effect of interacting flows? Wilson & Bell '74 suggested that nonlinear
RG’s may have some advantages over linear RG's.

Thank you for listening!
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