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Introduction

One of the most intriguing unsolved problems in particle physics is the strong CP problem. QCD allows for
a CP-violating term Sy, called the 8 term, in the action,

S =50+ 5o

In Euclidean space-time it reads
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where 0 is the bare vacuum angle

A finite value of 6 would result in an electric dipole moment d,, o< 6 of the neutron.

To date the
most sensitive measurements of d, are compatible with zero.

The current upper bound is |d,| <
1.8 x 10 e fm, indicating that € is anomalously small. Why should a parameter not forbidden by

symmetry be essentially zero? This puzzle is referred to as the strong CP problem



The electric dipole moment d,, is a measure of (permanent)
separation of positive and negative charge in the neutron.
According to the upper bound on d,,, the separation would
have to be less than 1072 fm. If a finite value for d,,
is finally found, it would be hard to believe that it can be
attributed to QCD, and to the topological properties of the
theory in particular

A popular view is that the solution of the strong CP problem lies beyond QCD and the Standard Model.
Indeed, the first instinct in such a situation is to propose a new symmetry that suppresses CP-violating
terms in the strong interactions. Peccei and Quinn concocted such a symmetry in 1977, at the expense
of introducing a hitherto undetected particle, the axion. It is widely believed that the Peccei-Quinn axion
leaves the designated properties of QCD, such as confinement, chiral symmetry breaking and the chiral
anomaly, unscathed. This is, however, not the case —

In view of the topological nature of the problem, it is obvious to look for a solution within the QCD. A solution
within QCD would mean that QCD does not exist as a viable physical theory unless & = 0 [mod 27], or
that QCD has an infrared (IR) fixed point at which the vacuum angle renormalizes to 6 = 0, or both. As
a guideline it is helpful to have some model understanding how the QCD vacuum reacts to the 0 term



Repercussions of the Peccei-Quinn axion on QCD

Generic action

s |1 2 P 1
S = d x 5(8u¢) + ’L? P + Lint(alugb, \Ij) —I— SQCD 3 P = @ E,quO'Tr [F,uVFpO']
Writing
/DqS/DA /dqb/ Do [DA,, ¢ = 1Z¢
t 5(5 ) SR
and integrating out ¢, taking into account that P = 9, Q(O Q(O) = 0, QSV), -+, we are left with the
path integral restricted to trivial topology Jackiw: Laursen, GS, Wiese

/’D¢ DA exp { /d4£E |:% (8M¢)2 + Lint (0,9, \I’)} — SQCD}

on finite and infinite volumes, and patch-wise

We conclude that the Peccei-Quinn model is not compatible with QCD Leutwyler, Smilga



One source of information are field theories that share the main characteristics of QCD, but lend themselves

to (semi-)analytic investigations

1. A prominent example is the C P! model in two
dimensions at large IN, which reflects the fundamental
features of the quantum Hall effect. The Hall conductivity
05y has a precise parallel in the vacuum angle 6, 6 /27 ~
Ozy, While the linear conductivity is represented by the
inverse coupling, N/g ~ ;. The flow to quantization,
0 = 0, appears to be a generic feature of the instanton
vacuum as well

2. 't Hooft has argued that the degrees of freedom
responsible for confinement are color-magnetic monopoles.
This is unfolded by fixing to the maximally abelian gauge
that leaves the Cartan subgroup U(1) x U(1) C SU(3)
unbroken. Monopoles arise from singularities of the gauge
condition. Quarks and gluons have color-electric charges
with respect to the U(1) subgroups. For O different
from zero the monopoles acquire a color-electric charge
q=0/2x Witten
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Due to the joint presence of gluons and monopoles a rich phase structure is expected to emerge as a
function of 8. For & > 0 it is expected that the color fields of quarks and gluons are screened by forming
bound states with the monopoles. The Debye screening length of a particle of charge g immersed in the

conducting vacuum is given by A\p = / Er/p q?> (Er: Fermi energy, p: monopole density) which leads
to Ap = \/47T2EF/p 02. This suggests that 0 is restricted to zero in the confining phase of the theory

3. It is known from the case of the massive Schwinger model as well that a 8 term may change the phase
of the system. Callan, Dashen and Gross have claimed that a similar phenomenon will occur in QCD. Their
statement is that the color fields produced by quarks and gluons will be screened by instantons for |8 > 0

This is a multi-scale problem, which involves the passage from the short-distance weakly coupled regime
to the long-distance strongly coupled confinement regime. The framework for dealing with physical
problems involving different energy scales is the multi-scale renormalization group (RG) flow. Exact RG
transformations are very difficult to implement numerically. The gradient flow provides a powerful alternative
for scale setting, with no need for costly ensemble matching. It can be regarded as a particular, infinitesimal
realization of the coarse-graining step of momentum space RG transformations a la Wilson, Polchinski and

Wetterich, which leaves the long-distance physics unchanged )
Liischer

Makino, Morikawa, Suzuki

Carosso, Hasenfratz, Neil



Gradient Flow

The gradient flow evolves the gauge field along the gradient of the action. The flow of SU(3) gauge fields
is defined by

0:B,(t,x) = D,G,.(t,x), Gu =0,B,—0,B,+ [B,, B,
where D, is the covariant derivative and B,(t = 0,x) = A,(x) is the lattice gauge field. The

renormalization scale is set by u = 1/+4/8t, where v/8t is the smoothing range over which B, is
averaged. The expectation value (FE/(t)) of the energy density

1
E(t,z) = 1 G, (t,x)G, (t,x)

defines a renormalized coupling

167 27
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in the gradient flow scheme | ischer: Harlander



For a start we may restrict our investigations to the Yang-Mills (YM) theory. If the strong CP problem is
resolved in the YM theory, then it is expected to be resolved in QCD as well. We use the plaquette action
to generate representative ensembles of fundamental gauge fields on three different volumes
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Constant physics?

Topological susceptibility
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Running Coupling and Confinement

Confinement is intimately connected with the IR behavior (1 — 0) Pure YM theory is of particular

of the running coupling aegr () interest in this respect
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To make contact with phenomenology, it is desirable to transform the GF coupling aegr to a common
scheme. A preferred scheme in the YM theory is the V' scheme: V (q) = —4nCray (1) /q

ZE\—C;F - {_/QGF BGF(oz) +/

IR behavior universal

The linear growth of ay (u) with 1/
infrared slavery.  The static quark-antiquark potential can be
described by the exchange of a single dressed gluon

1 3
Vi(r) = —(27T)3/dqe

2

where o = gA%/, giving the string tension v/o = 445(19) MeV

Bv(a)

is commonly dubbed

» 4 av(q)
3 q? + 10 r> 1/AV

Bv(av) L Tae —2ay(p)
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Vo Axrs = 0.217(7)

Literature:
Vto Az = 0.220(3)

arXiv:1905.05147



It is interesting to compare the nonperturbative GF beta function with the perturbative beta function known
up to twenty loops
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As was to be expected, the perturbative beta function gradually approaches the nonperturbative beta
function with increasing order



Adding the 6

Term

With increasing flow time the initial gauge field ensemble splits into effectively disconnected topological
sectors of charge @Q, at ever smaller flow time as (3 is increased
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Running coupling

If the general expectation is correct and the color fields are screened for |@] > 0, we should, in the first
place, find that the running coupling constant is screened in the infrared

From (E(Q, t)) we obtain ay (Q, ) in the individual topological sectors |Q| from bottom to top
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Interestingly, ay (Q, ) vanishes in the infrared for Q@ = 0, while the ensemble average v/ (u) is

represented by |Q] ~ 1/2(Q2) /7




The transformation of ary (Q, ) from the ‘Q) vacua’ to the @ vacuum is achieved by the discrete Fourier
transform

ay(0, 1) = —— Ze”QP@)av(Q py, ZO)=> e’?PQ)
Q

Z(Q)
weighted by the charge density P(Q), i.e. the probability of finding a configuration with charge @

A few remarks are in order

e Here the parameter 6 is the bare vacuum angle that labels the superselection sectors. It is the parameter
that appears in the (lattice) action and determines the topological properties of the vacuum

e P(Q) is determined by the real part of the action, Sqcp, which increases proportionally to |Q| and
suppresses configurations which hold a large number of (anti-)instantons. It thus becomes increasingly
difficult to determine P(Q) precisely for large values of |Q|. This circumstance is completely
independent of whether we simulate at & = 0 or any other value |@]| > 0. This is to say, the situation
would not improve if we could simulate the complex action

e As we shall see, we need to know the Fourier sum for small values of |6| only, which is rather insensitive
to fluctuations at large values of |Q|
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At a first glance

e The color charge gets totally screened for |@| > 0O in the infrared limit, while it becomes gradually
independent of @ as we approach the perturbative regime

e The flow to confinement is constricted to the inner part of the envelope of the curves, that is to stay

within QCD



Analytically

ay (0, pn) = av(p)[l — ay(p)(D/X)6]
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Low-pass filter gives practically the same result



From the analytic expression of vy (60, ) we derive coupled RG equations, which for larger values of ¢
decouple and take the form

o/« s 00
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Polyakov loop

The Polyakov loop P describes the propagation of a single static quark travelling around the periodic lattice
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The transformation of the Polyakov loop expectation values to the 6 vacuum is again achieved by the
discrete Fourier transform

1 : The connected part of (|P|?)g is described by the
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The Polyakov loop gets totally screened for |6| = 0. The normalized Polyakov loop susceptibility is
independent of flow time ¢ (even for 6 # 0!)



Mass gap
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Conclusions

% The gradient flow proved a powerful tool for tracing the gauge field over successive length scales and
showed its potential for extracting low-energy quantities. As far as we can see it leaves the long-distance
physics unchanged and qualifies for a RG transformation

% A key point is that the path integral splits into disconnected topological sectors for ¢ = 0, which is
expected to occur at ever smaller flow times with decreasing lattice spacing. Comparing results on different
volumes enabled us to control the accuracy of the calculation

% The novel result is that within QCD the 6 angle gets renormalized and flows to & = 0 in the infrared
limit. Thus CP is conserved by the strong interactions

% In an external field though with, or equivalent to, |@| > 0, the color charge is screened, leading perhaps
to the ‘oblique’ phases advocated by 't Hooft



