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Understand new phases of matter. Fractons appear to be elusive new 
excitations that exhibit mobility restrictions

Elucidate kinematically constrained systems that have been studied 
for a long time in statistical physics

Shed light on dynamics dislocations and disclinations that appear in 
elasticity and whose macroscopic description is rather crude from a 
modern effective field theory perspective

Set a foundation for a new paradigm of field theories, in which low-
energy physics is coupled to high-energy physics

Motivation



When weakly-interacting bosons condense they form a superfluid, 
spontaneously breaking global internal U(1)-symmetry. The resulting 

Goldstone mode is the zero-sound mode of the superfluid, and it is a single 
free massless mode described by a scalar field. The partition function for the  

relativistic zero-sound mode is
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cph is the phase velocity of the superfluid condensate

Phase is in fact a compact variable originating from and a change by 
2π brings it back to its original value. Such windings of the phase 
variable correspond to vortices.

Vortices in superfluids



 To incorporate the vortices, we must treat the phase, having both smooth 
and singular contributions

'(x) = 'smooth(x) + 'sing(x).
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where @S is the contour of integration that encloses the singularity, and N is
the winding number of the quantized vorticity.

For a vortex of winding number N we have by Stokes' theorem
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We have defined the vortex current.



To see how vortices interact in the superfluid, we perform the duality 
operation, which is in fact a Legendre transformation to the relativistic 
canonical momentum associated with the field-theoretic velocity field
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Now we can go from a Lagrangian in terms of the velocity to a 
Hamiltonian density in terms of the momentum

H = �i⇠µ@µ'+ L =
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⇠2µ.

We can formally obtain a Lagrangian, but keep the momentum as the 
principal field

Ldual = H+ i⇠µ@µ' =
g

2
⇠2µ + i⇠µ@µ'.



Now comes the important step in the duality construction. We again 
separate the phase field in smooth and singular parts
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On the smooth part, one is allowed to perform integration by parts

⇠µ@µ'smooth ! �(@µ⇠µ)'smooth

 then integrate out the smooth part in the path integral as a Lagrange 
multiplier field, producing the constraint

@µ⇠µ = 0.

We obtain the conserved current of the superfluid. The constraint can be 
enforced explicitly by expressing it as the curl of another vector field

⇠µ(x) = ✏µ⌫�@⌫b�(x).
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We substitute the condition to obtain the final form of the dual Lagrangian

We introduced a gauge redundancy since the Lagrangian is invariant under 
the addition of the gradient of any smooth scalar field

b�(x) ! b�(x) + @�↵(x).

Particle-vortex duality



XY- sine-Gordon duality
The phenomenon of different systems exhibiting the same critical 
behavior is called the universality, and its explanation requires the 
renormalization group framework. 
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Now various technical steps follow based on mathematical identities and 
approximations

We use Hubbard-Stratonovich transformation
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T



ZsG =

Z 1

�1

Y

i

d�i exp

0

@� 1

2K

X

i,µ

(�µ�i)
2 � 2y

X

i

cos(2�i)

1

A

In this representation integrals factorize and we get a constraint
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We pass to the continuous variables, apply Poisson formula and 
introduce a chemical potential

Now we cheat a bit and expand in a small chemical potential, arguing 
that the mistake should not be large. The result is up to O(y2)



Renormalisation and flow equations
The critical behavior of the continuum sine-Gordon theory may be 
understood by using renormalization group framework applying 
momentum-shell transformations
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where as usual �<(x) contains only the Fourier components with k < ⇤/b, and
�>(x) only with ⇤/b < k < b.
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dŷ

d ln(b)
=

⇣
2�

⇡

T

⌘
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Berezinskii-Kosterlitz-Thouless 
transition



Fractons in plaquette models
A natural question to ask is what are the macroscopic signatures of 
fractons. One recent suggestion is that fractons are realised in close-
packed tilings models. This is motivated by previous works on dimer 
models where constraints on the dimers can be interpreted as the Gauss 
law.

Close-packed tilings of the 
cubic lattice. Each site is either 
part of a plaquette (red) in the 
x-y plane or a z-dimer (green). 

You, Moessner

h is a discrete integer-valued field living on the dual lattice at the center of each
cube which characterizes the local fluctuation of the dimer-plaquette pattern.
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How to do RG for fractons

Momentum shells for ordinary EFTs Momentum shells for fraction EFTs

UV CFT IR CFT

Deformation

Modified dilatation operator and the corresponding dimensional analysis
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For the simple cosine term we have
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where p = (p, q, k) is the momentum vector in three dimensions. Let us pass to
dimensionless variables by defining
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In this way, the Brillouin zone in the pq-plane is translated into the square
|p̃|, |q̃|  1. The expression of the integral actually remains the same, just with
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After the integration, which again requires a smooth cut-o↵
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Since ⇤̃ ⌧ 1, ↵0 decays very quickly under the RG flow towards the infrared.
Thus, around the fractonic fixed point, this operator is irrelevant. This operator
does not destabilize the fractonic phase.

For the deformation by the cosine gradient term ↵x cos(2⇡ax@xh) we have
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This leads to the following RG equation
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and a critical value for . In other words, this operator does destabilize the
fractonic phase when  > c. This is precisely the process of dipole proliferation
and a fractonic analog of the BKT transition.



Fractonic Berezinskii-Kosterlitz-
Thouless transition



Conclusions

Dualities are a convenient tool to study fracton 
theories

New universally class and fractonic phase 
transition

Fractons require a new approach to RG

Playground for numerical methods in dimer 
models as we now have quantitative predictions

Thank you!


