Pseudo-spontaneous symmetry breaking in hydrodynamics and holography

Martin Ammon

March 16th 2023

Friedrich Schiller Universität Jena

seit 1558

Based on work with

Daniel Areán, Matteo Baggioli, Seán Gray and Sebastian Grieninger

Pseudo-spontaneous U(1) Symmetry Breaking in Hydrodynamics and Holography

JHEP 03 (2022) 015, arXiv: 2111.10305

What is hydrodynamics?

- EFT of long-lived, long-wavelength excitations
- Equations of motion are conservation laws

 $\partial_{\mu} \left\langle T^{\mu\nu} \right\rangle = 0$

- Recent interest in weakly broken symmetries:
 - pseudo-spontaneous breaking of spatial translations

see e.g. [Amoretti, Areán, Goutéraux, Musso, '16], [Ammon, Baggioli, Jiménez-Alba, '19], [Baggioli and Grieninger, '19], [Donos, Martin, Pantelidou, Ziogas '19]

potentially interesting for physics of strange metals and their charge-density fluctuations [Delacretaz, Gouteraux, Hartnoll, Karlsson, '16], [Amoretti, Arean, Gouteraux, Musso, '18]

– pseudo-spontaneous breaking of U(1) superfluid In this talk!

[MA, Areán, Baggioli, Gray, Grieninger, '21], see also [Donos, Kailidis, Pantelidou, '21] [Delacretaz, Gouteraux, Ziogas, '21], [Armas, Jain, Lier, '21]

Why is holography useful?

- Holography geometrises the hydrodynamic (derivative) expansion
 Fluid/Gravity correspondence
- Thermodynamic and hydrodynamic (transport) coefficients can be determined

Are those non-zero?

• Universal relations may be detected

If you are lucky

Find a field-theoretic argument ...

PART I

Hydrodynamics for U(1) pseudospontaneous symmetry breaking

Hydrodynamics for a U(1) superfluid

for simplicity: "probe limit"

• Goldstone boson φ with gauge invariant combination:

$$\xi_{\mu} \equiv \partial_{\mu}\varphi - A_{\mu}$$

- Equations: $\partial_{\mu} \left< J^{\mu} \right> = 0$ and $u^{\mu} \xi_{\mu} = -\mu$
- Constitutive and Josephson relation to first order in derivatives:

$$\langle J^{\mu} \rangle = \rho_t u^{\mu} + \rho_s n^{\mu} - \sigma_0 T \Delta^{\mu\nu} \partial_{\nu} \left(\frac{\mu}{T}\right) + \mathcal{O}(\partial^2)$$
$$u^{\mu} \partial_{\mu} \left(\Delta^{\rho}_{\nu} \xi_{\rho}\right) = \Delta^{\rho}_{\nu} \left[-\partial_{\rho} \mu + \zeta_3 \partial_{\rho} \partial_{\mu} \rho_s n^{\mu}\right] + \mathcal{O}(\partial^2)$$

with superfluid bulk viscosity

$$\zeta_3 = \lim_{\omega \to 0} \omega \operatorname{Im} G^{\mathrm{R}}_{\varphi \varphi}(\omega, 0)$$

and superfluid velocity defined by $\mu n^{\mu} \equiv \Delta^{\mu\nu} \xi_{\nu} \qquad \Delta_{\mu\nu} = u_{\mu} u_{\nu} + \eta_{\mu\nu}$

Hydrodynamics for a U(1) superfluid (II)

• Dispersion relation (of fourth sound)

$$\omega(k) = \pm v_s \, k - \frac{i}{2} \, \Gamma_s \, k^2 + \dots$$

where

$$v_s^2 = \frac{\rho_s}{\mu(\partial \rho_t/\partial \mu)}$$
 $\Gamma_s = \frac{\sigma_0}{(\partial \rho_t/\partial \mu)} + \zeta_3 \frac{\rho_s}{\mu}$

Pseudo-spontaneous hydrodynamics

for simplicity: "probe limit"

- Goldstone boson acquires a mass, shift symmetry is broken
- Conservation law: $\partial_{\mu}\left\langle J^{\mu}\right\rangle =\Gamma\,u_{\mu}\left\langle J^{\mu}\right\rangle +m\,\varphi$

with charge relaxation rate Γ and m related to mass of pseudo-Goldstone boson Assumption: Γ and m are tiny

• Modified Josephson relation to first order in derivatives:

$$(u^{\mu}\partial_{\mu} + \Omega) \ (\Delta^{\rho}_{\nu}\xi_{\rho}) = \Delta^{\rho}_{\nu} \left[-\partial_{\rho}\mu + \zeta_{3} \partial_{\rho}\partial_{\mu}\rho_{s}n^{\mu} \right] + \mathcal{O}(\partial^{2})$$

with phase relaxation rate $\,\Omega\,$

Pseudo-spontaneous hydrodynamics (II)

for simplicity: "probe limit"

• Dispersion relation $\omega(k) = \alpha_{\pm} - iD_{\pm}k^2 + \dots$

where
$$\alpha_{\pm} = -\frac{i}{2}(\Gamma + \Omega) \pm \sqrt{\omega_0^2 - \frac{(\Gamma - \Omega)^2}{4}}$$
 $\omega_0^2 \equiv \frac{m}{(\partial \rho_t / \partial \mu)}$

$$D_{\pm} = \frac{1}{2} \frac{\sigma_0}{(\partial \rho_t / \partial \mu)} + \zeta_3 \frac{\rho_s}{\mu} \pm \frac{i}{2} \frac{\zeta_3 \rho_s (\partial \rho_t / \partial \mu) (\Gamma - \Omega) + 2\rho_s - \sigma_0 \mu (\Gamma - \Omega)}{\mu \sqrt{4m(\partial \rho_t / \partial \mu) - (\partial \rho_t / \partial \mu)^2 (\Gamma - \Omega)^2}}$$

• 'sum relation' $D_+ + D_- = \Gamma_s$

also holds when taking temperature and fluid velocity fluctuations into account.

Pseudo-spontaneous hydrodynamics (III)

for simplicity: "probe limit", $\Gamma = 0$

• Static Correlators:

$$G_{\varphi\varphi}(0,k) = \frac{\chi_{\xi\xi}}{k^2 + \mathfrak{m}^2} \qquad \mathfrak{m}^2 = \chi_{\xi\xi} m \,, \qquad \chi_{\xi\xi} = \frac{\mu}{\rho_s}$$

'Gell-Mann-Oakes-Renner' relation

- Kubo-Formulae for Ω and ζ_3

$$\Omega = \lim_{\omega \to 0} \frac{m}{\omega \chi_{\rho\rho}^2} \operatorname{Im} G_{J^t J^t}^{\mathrm{R}}(\omega, 0)$$
$$\lim_{\omega \to 0} \frac{1}{\omega} \lim_{k \to 0} \frac{\partial^2}{\partial k^2} \operatorname{Im} G_{J^t J^t}^{\mathrm{R}}(\omega, k) = -2 \frac{\chi_{\rho\rho}^2}{m^2 \mu} \left(\zeta_3 m \rho_s - \rho_s \Omega - \mu \sigma_0 \Omega^2 \right)$$

• AC-conductivity

$$\sigma(\omega) = \lim_{k \to 0} \frac{i}{\omega} \left[G_{J^x J^x}^{\mathrm{R}}(\omega, k) - G_{J^x J^x}^{\mathrm{R}}(0, k) \right] = \sigma_0.$$

PART II

Holographic models for pseudospontaneous symmetry breaking

[Hartnoll, Herzog, Horowitz, '08]

Action

$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - |D\psi|^2 - M^2 |\psi|^2 \right]$$

with background metric

$$ds^{2} = \frac{1}{z^{2}} \left[-u(z) dt^{2} - 2 dt dz + dx^{2} + dy^{2} \right] \qquad u(z) = 1 - z^{3}$$

and $M^2 = -2$. Hence

$$\psi(z) = \psi^{(l)} z + \psi^{(s)} z^2 + \mathcal{O}(z^3)$$

• **Model I:** tiny source for the scalar field $\psi^{(l)} = \lambda$

Identification of parameter: $m = q \lambda \left< \mathcal{O} \right>_{eq} \qquad \Gamma = 0$

• Results:

Values for λ/T : blue $5 \cdot 10^{-10}$, purple 10^{-9} , light brown 10^{-7} , green 10^{-6} , dark brown 10^{-5} magenta 10^{-4} , orange 10^{-3} , red 10^{-2} .

• Results:

 $T/\mu=0.0575$

Values for λ/T : blue $5 \cdot 10^{-10}$, purple 10^{-9} , light brown 10^{-7} , green 10^{-6} , dark brown 10^{-5} magenta 10^{-4} , orange 10^{-3} , red 10^{-2} .

• Results: Quasi-normal Modes at zero momentum

$$\omega(k=0) = -\frac{i}{2}(\Gamma + \Omega) \pm \sqrt{\frac{m}{(\partial \rho_t / \partial \mu)} - \frac{(\Gamma - \Omega)^2}{4}}$$

Values:
$$\lambda/T \in [10^{-16}, 0.1]$$

 $T/\mu = 0.0582$

Conclusion:
$$\Omega \neq 0$$
 but $\Gamma = 0$

• Results:

Values for λ/T : blue $5 \cdot 10^{-10}$, purple 10^{-9} , light brown 10^{-7} , green 10^{-6} , dark brown 10^{-5} magenta 10^{-4} , orange 10^{-3} , red 10^{-2} .

• Electrical conductivity:

finite DC conductivity despite no Drude-like behaviour

• Interpretation of results:

pseudo-Goldstone bosons *as well as* (induced) effective phase relaxation

- We considered a second model based on massive gauge fields
 - induces effectively charge relaxation
 - breaks U(1) symmetry *but not* shift symmetry

Summary & Outlook

- 'Hydrodynamics' for pseudo-spontaneous breaking of U(1) symmetry
 - \rightarrow 'sum relation'
- Two holographic models with distinct symmetry breaking behaviour
 → 'universal relation'

- Outlook: how general is the 'universal relation'?
 - type II (pseudo-)Goldstone modes?
 - light dilatons arising from the pseudo-spontaneous breaking of scale invariance

Thank you very much for your attention!

seit 1558

www.uni-jena.de