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Motivation

Critical phenomena are ubiquituos in nature. Important cases:

I Behavior near the (conjectured) critical point of the (µ,T )
phase diagram in QCD

I Criticality in the Ising model

I Quantum criticality in connection to high temperature
superconductors

Criticality in the gauge/gravity duality – various approaches . . .

I I will study a simple example of criticality (nonconformal),
where many things can be solved analytically

I This example has connections to QCD and to spin models

2/13



Critical solutions in Einstein-dilaton gravity

S ∝
∫

d5x
√
− det g

[
R − 4

3
(∂φ)2 + V (φ)

]
Study a class of potentials with V (φ) ∼ eαφ as φ→∞ (which will
be the IR limit)

I A critical value αc = 4/3 arises

I For α > αc (α < αc) confinement (deconfinement)
[Gürsoy, Kiritsis 0707.1324; Gürsoy, Kiritsis, Nitti 0707.1349]

I Dynamics similar to the Yang-Mills theory is obtained for

V (φ) ∼ eαcφ
√
φ (Improved holographic QCD)

I At α = αc higher order phase transitions also possible
[Gürsoy 1007.0500]

I Connection to spin models at criticality (the XY model)
[Gürsoy 1007.4854]
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Critical solutions in Einstein-dilaton gravity

S ∝
∫

d5x
√
− det g

[
R − 4

3
(∂φ)2 + V (φ)

]
Simplest case: take exactly exponential V (φ) = eαφ

I Geometry can be solved exactly (also at finite T , i.e., black
holes)

I Most of the fluctuations can be solved in the critical limit
α→ αc

[Betzios, Gürsoy, MJ, Policastro 1807.01718; 1708.02252]

Remarks to which I will return later:

I The results can be generalized to RG flows (e.g. from AdS5 in
the UV) ending to this geometry in the IR quite easily

I The same story works for charged backgrounds
(Einstein-Maxwell-dilaton)
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Connection to large d

S ∝
∫

d5x
√
− det g

[
R − 4

3
(∂φ)2 + eαφ

]
A simple way to understand the analytic solutions: generalized
dimensional reduction [Goutéraux, Smolic, Smolic, Skenderis, Taylor 1110.2320]

I For generic α (with α < αc) the geometry is a dimensional
reduction of a d + 1 -dimensional AdS black hole

I Explicit relation:
d =

4− α2/α2
c

1− α2/α2
c

I The critical limit α→ αc maps to the large d limit d →∞
I For α = αc the solution is the linear dilaton background – the

case d =∞
I As d →∞, the horizon regime of the black hole becomes

thin, width ∼ 1/d – membrane picture
[E.g. Emparan, Suzuki, Tanabe 1302.6382]

I Fluctuations can be solved by combining the (analytic)
solutions near the horizon and elsewhere 5/13



Solutions

In the charged case
[Gürsoy, MJ, Policastro, Zinnato 2112.04296]

S ∝
∫

d5x
√
− det g

[
R − 4

3
(∂φ)2 + V0e

αφ +
1

4
e−αφF 2

]
The geometry is the dimensional reduction of a d + 1 -dimensional
Reissner-Nordström black hole

ds2 = r−
2
3

(d−1)
[
f (r)−1dr2 − f (r)dt2 + δijdx

idx j
]

f (r) = 1−
(

r

rh

)d

+
dQ2

d − 2

[(
r

rh

)2d−2

−
(

r

rh

)d
]

φ =
1

2

α

αc
(d − 1) log r

Near the horizon, this reduces to the well studied charged 2D linear
dilaton black hole (times R3)

[Mandal, Sengupta, Wadia; Elitzur, Forge, Rabinovici; Witten; . . . ]
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Solving the fluctuations

0

AdS

2D BH

∼ 1/d

rh r

1. Far away from the horizon: empty AdS modes – Bessel
functions

2. Near the horizon: known results for the 2D linear dilaton
black hole [Elitzur, Giveon, Kutasov, Rabinovici hep-th/0204189 ]

I Fluctuations given in terms of hypergeometric functions
I Result characterized in terms of the reflection amplitude for

ingoing waves

R = −
(
1− Q2

)−i S̃
Γ
(

1 + i S̃
)

Γ
(

1
2

(
1− i$ − i S̃

))
Γ
(

1
2

(
1− 1+Q2

1−Q2 i$ − i S̃
))

Γ
(

1− i S̃
)

Γ
(

1
2

(
1− i$ + i S̃

))
Γ
(

1
2

(
1− 1+Q2

1−Q2 i$ + i S̃
))

where S̃ =
√
$2 − q2 − 1 , $ = ω/(2πT ) , q = k/(2πT )

At large d , the two descriptions overlap!
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Solving the fluctuations

Putting together the results we obtain, e.g.

〈T⊥⊥($, q)T⊥⊥(0)〉 =

2π dd r−dh

Γ
(
d
2

)
Γ
(
1 + d

2

) (($2 − q2
)

16

) d
2

i +

(
1 + i S̃

1− i S̃

) d
2 e−idS̃

R

−1

I Valid up to corrections suppressed by 1/d

I Depends on T only through r−dh and the rescaling of ω and k

I Charge dependence only in the reflection amplitude

I Captures all nonhydrodynamic quasi normal modes (QNMs)
of the gravity sector

I In the presence of hydrodynamic modes and for
current-current correlators R not known analytically

I Hydrodynamic modes can of course be analyzed at small ω
and k using standard fluid/gravity techniques
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Classes of QNMs
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Q = 0.8 d ≈ 27 Q = 0.95 d ≈ 27

1. Hydrodynamic modes – not captured – localized near the
horizon

2. Imaginary modes of the 2D black hole also localized near the
horizon – only present at finite charge in the full result

(2*. Additional imaginary modes of the 2D black hole, always
present, not physical, arise due to a technical issue at certain
ω) [Bertoldi, Hoyos 0903.3431]

3. Complex modes sensitive to both regions of the geometry
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Approach to extremality/criticality

In the extremal limit Q → 1, the imaginary modes become dense
I Breaking of hydrodynamics in this case has been studied in

the literature [E.g., Arean, Davison, Goutéraux, Suzuki 2011.12301;

see also talk of Jesús Cruz Rojas]
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In the critical limit α→ αc or d →∞ the complex modes become
dense and approach the real axis but remain gapped
I Lifetimes of modes τ ∼ d ⇒ slow thermalization!
I Complex modes slower than the hydro modes for q & 1/

√
d

I Correlators singular as d →∞, branch cut formation unclear
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Complete RG flows

Consider RG flow from AdS5 to the large-d “CR” geometry
Black hole solutions have the structure (with `′ ∼ d `)

0 ∼ ℓ ∼ ℓ′

AdS5

Linear
dilaton

(Full)
CR

r
rh

Simplest approximation: glue the CR geometry directly to AdS5 ⇒

0 rc ∼ ℓ′

AdS5

Linear
dilaton

(Full)
CR

r
rh

I Analytic correlators still found (but messy)

I Main results unchanged

I Nontrivial (mild) temperature
dependence of the QNMs

I An additional “near boundary”
set of QNMs appears

I Regularizes the large d limit
of the correlators
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Correlators at d =∞

〈T⊥⊥($, q)T⊥⊥(0)〉 at

rh/rc = 20 rh →∞
Discrete modes Branch cut

I The branch cut is replaced by a discrete set of modes, but is
recovered in the limit of small black hole
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Summary

We studied the QNMs of a critical non-conformal
plasma

I Analytic results for the nonhydrodynamic modes

I A setting where nonconformal behavior
drastically affects the dynamics

I Infinitely many gapped long lived modes in the
critical limit, forming a branch cut

I Time dependence described approximately in
terms of hydrodynamics + branch cuts
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Thank you!
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I Idea: explore effects due to nonconformality in quark-gluon
plasma via holography

I Several studies using various approaches recently
[Janik, Plewa, Soltanpanahi, Spalinski, Buchel, Heller, Myers, Ishii, Kiritsis,
Rosen, Attems, Casalderrey-Solana, Mateos, Papadimitriou, Santos-Olivan,

Sopuerta, Triana, Zilho, . . . ]

I Our approach: A simple way to deviate from conformality –
holographic dual of Einstein-Dilaton gravity with exponential
potential (+modifications)

[Chamblin, Reall]

I Much of the analytic control of the AdS5 solution remains in
this case, but still nontrivial!
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Thermalization of quark-gluon plasma

I AdS/CFT predicts that the thermalization time τ ∼ 1/T

I In QCD, an additional energy scale ΛQCD ⇒ what happens to
thermalization time?

I I will discuss examples where dynamics is drastically modified
with respect to the conformal plasma
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Connection to large D

I The same critical value as in improved holographic QCD (but
approaching from the “wrong” side: no confinement)

I At critical value, higher order transition can be obtained
[Gürsoy 1007.0500]

I At exactly critical value, the solution is the linear dilaton
background

I Connection to spin models at criticality
[Gürsoy 1007.4854]

I Corresponds to the D →∞ limit of dimensional reduction
⇒ drastic simplifications expected

Instead of α we parametrize the solutions using

d =
4− α2/α2

c

1− α2/α2
c

which diverges in the critical limit

19/13



Backgrounds at criticality

Take a (sufficiently regular) dilaton potential with

1. A minimum at some φ = φ0

2. Asymptotics V (φ) ∼ eαφ with 0 < αc − α� 1

admitting a flow from φ = φ0 (UV, AdS5) to
φ =∞ (IR, Chamblin-Reall background)

In conformal coordinates

ds2 = e2A(r)
(
f (r)−1dr2 − f (r)dt2 − dx2

)
the structure of the BH geometry is as follows:

0 ∼ ℓ ∼ ℓ′

AdS5

Linear
dilaton

(Full)
CR

r
rh

I Here `′ ∼ d`→∞ as α→ αc and rh ∼ d` also

I Improved holographic QCD models have similar structure!
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Fluctuations

Let us neglect the UV structure for a moment

0 ∼ ℓ ∼ ℓ′

AdS5

Linear
dilaton

(Full)
CR

r
rh

and just use V (φ) = V0e
αφ. Solution (Chamblin-Reall, CR):

ds2 = e2A0 r̂−
2
3

(d−1)
[
−2`′dr̂dv − f (r̂)dv2 + δijdx

idx j
]

f (r̂) = 1−
(

r̂

r̂h

)d

, φ =
1

2

α

αc
(d − 1) log r̂ , r̂ = 1 +

r

`′

I QNMs at low enough T and |ω| unaffected
I As d grows fluctuations can be solved in two parts

1. At finite r far from the horizon at any d (Bessel functions)
2. Near the horizon, at fixed (r̂/r̂h)d , (hypergeometric functions)

[Dijkgraaf,Verlinde2]

I Solutions overlap at large d and small (r̂/r̂h)d ! Full analytic
control over (a subset of) fluctuations

I Without UV completion, the critical limit d →∞ is singular
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Correlators

We can solve (up to corrections ∼ 1/d)

1. All correlators at zero momentum (all of them identical)
2. Correlators of T⊥⊥ and the scalar at any momentum

that is, we obtain (only) nonhydrodynamic QNMs

In terms of rescaled frequency and momentum

$ =
ω

2πT
, q =

k

2πT
, S̃ =

√
$2 − q2 − 1

we find
〈T⊥⊥($, q)T⊥⊥(0)〉 =

2π dd r̂−dh

Γ
(
d
2

)
Γ
(
1 + d

2

) (($2 − q2
)

16

) d
2

i +

(
1 + i S̃

1− i S̃

) d
2 e−idS̃

R

−1

+ · · ·

where the reflection amplitude is

R($, q) = −
Γ
(

1 + i S̃
)

Γ
(

1
2

(
1− i$ − i S̃

))2

Γ
(

1− i S̃
)

Γ
(

1
2

(
1− i$ + i S̃

))2
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Comparison to numerics

Check of correlators (log of absolute value) at d ' 17, q = 0

Numerical result Analytic result

Note: result only depends on T through $ = ω/2πT (and trivial
normalization factor)
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Quasi Normal Modes

Evolution of nonhydro modes All modes for d ' 17
from d = 4 (conformal) to d =∞ as a function of q
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I Nonhydro QNMs accumulate on the real axis, $ >
√

1 + q2

I A branch cut on the real axis?
I Connection to kinetic theory?

I Nonhydro modes dominate late time behavior for q & 1/
√
d

I Early breakdown of hydro?
I Infinitely many modes but gapped, |$| > 1
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Gluing

Putting back the UV structure. . .

0 ∼ ℓ ∼ ℓ′

AdS5

Linear
dilaton

(Full)
CR

r
rh

Simplest approximation: glue the CR geometry directly to AdS5 ⇒

0 rc ∼ ℓ′

AdS5

Linear
dilaton

(Full)
CR

r
rh

I Fluctuations can still be treated analytically if blackening
factor negligible at the joint: rh � rc

I Results expected to be qualitatively similar to a generic
background

What do we gain?

I Analytic T dependence of QNMs

I Critical limit d →∞ now regular

25/13



Results after gluing

Nonhydro QNM evolution with T extracted from the analytic (but
messy) correlator for d ' 27 and q = 0
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I As T decreases, QNMs move closer to real line
(units: T of linear dilaton bg)

I Evolution stops at the locations determined by the CR
geometry
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Critical limit – branch cut

Two sets of modes:

I “AdS modes”, roughly
independent of T

I “CR modes”, T dependent

Limit d →∞ regular after UV
completion

Taking also rh →∞,

〈T⊥⊥($, q)T⊥⊥(0)〉 = −81iπµ̂4

512r4
c

µ̂H
(1)
1

(
3µ̂
2

)
− (i S̃ + 1)H

(1)
2

(
3µ̂
2

)
µ̂J1

(
3µ̂
2

)
− (i S̃ + 1)J2

(
3µ̂
2

)
with µ̂ =

√
$2 − q2, S̃ =

√
$2 − q2 − 1

I Branch cut due to S̃ running from $ =
√

1 + q2 to $ =∞
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Limit of small black holes:

〈T⊥⊥($, q)T⊥⊥(0)〉 at

rh/rc = 20 rh →∞
Discrete modes Branch cut
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Conclusions – Part II

We studied the QNMs of a non-conformal plasma (mostly
analytically)

I “Large” deviation from CFT near a critical point

I Our results should be contrasted with other studies where
broken scale dependence has mild effects on the QNMs

[e.g. Janik et al; Mateos et al,. . . ]

I Infinitely many gapped long lived modes in the critical limit,
forming a branch cut – relations to/applications in
I Weak coupling physics, kinetic theory?
I Continuous phase transition with divergent correlation length?

Relevant in quark-gluon plasma?
[Gürsoy]

I How does the (gapped) branch cut affect hydrodynamics?
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