Hydro+

M. Stephanov

What is hydrodynamics?

Coarse-grained finite T QFT.

Physics: evolution towards equilibrium.

Time-scale hierarchy:

- 1) local thermodynamic equilibration fast;
- 2) achieving uniformity slow.

Hydrodynamics – the description of that slower process.

What is hydrodynamics?

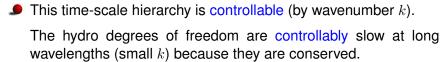
Coarse-grained finite T QFT.

Physics: evolution towards equilibrium.

Time-scale hierarchy:

- local thermodynamic equilibration fast;
- 2) achieving uniformity slow.

Hydrodynamics – the description of that slower process.



Let us focus on this scale hierarchy and see what happens when it breaks, controllably.

Parametrically slow local relaxation processes

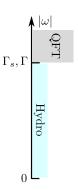
What if there is a local process (or processes), whose relaxation rate Γ_s is *finite* but *parametrically*, i.e., controllably, small compared to typical local rate Γ ?

$$\Gamma_s \ll \Gamma$$

Examples:

- slow chemical processes
- slow e/w processes in QGP
- approximately conserved charge (axial, isospin, etc.)
- would-be Goldstone field of spontanesouly broken approximate symmetry
- spin-orbit interaction for nonrelativistic spin
- equilibration at the critical point

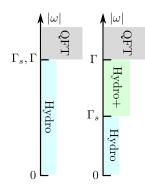
■ Hydrodynamic regime: $ω \ll Γ_s, Γ$. Breaks down when $ω \sim Γ_s$.



- Hydrodynamic regime: $ω \ll Γ_s, Γ$. Breaks down when $ω \sim Γ_s$.
- **●** Hierarchy $\Gamma_s \ll \Gamma$ creates another regime

$$\Gamma_{\rm s} \ll \omega \ll \Gamma$$

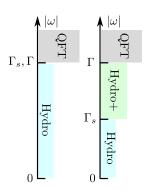
for an effective theory with additional degree(s) of freedom, a.k.a. Hydro+ (Hydro+ description is also valid in hydrodynamic regime, of course.)



- Hydrodynamic regime: $ω \ll Γ_s, Γ$. Breaks down when $ω \sim Γ_s$.
- **●** Hierarchy $\Gamma_s \ll \Gamma$ creates another regime

$$\Gamma_s \ll \omega \ll \Gamma$$

for an effective theory with additional degree(s) of freedom, a.k.a. Hydro+ (Hydro+ description is also valid in hydrodynamic regime, of course.)



- Unlike hydro variables these additional d.o.f. are not diffusive, i.e., they relax locally. But very slowly.
 - **●** E.g., Israel-Stewart hydrodynamics is *not* a Hydro+ theory unless the rate $1/\tau_{\Pi}$ is *parametrically/controllably* small.

- **ullet** Let us introduce generic notation ϕ for such local field.
- **೨** On fast time scales $\omega \gg \Gamma_s$: driven by entropy $s_{(+)}(\varepsilon, \phi)$.

$$ds_{(+)} = \beta d\varepsilon - \pi d\phi$$
 , π – thermodynamic "force".

$$\pi=0$$
 in equilibrium and $s_{(+)}(\varepsilon,\phi)|_{\pi=0}=s(\varepsilon).$

- **ullet** Let us introduce generic notation ϕ for such local field.
- **೨** On fast time scales $\omega \gg \Gamma_s$: driven by entropy $s_{(+)}(\varepsilon, \phi)$.

$$ds_{(+)} = \beta d\varepsilon - \pi d\phi$$
, π – thermodynamic "force".

$$\pi=0 \text{ in equilibrium and } s_{(+)}(\varepsilon,\phi)|_{\pi=0}=s(\varepsilon).$$

● New equation of motion (Second Law dictates $\gamma_s \ge 0$):

$$(u \cdot \partial)\phi = -\gamma_s \pi + \text{gradients}$$

i.e. ϕ relaxes to equilibrium ($\pi=0$) at rate $\Gamma_s=\gamma_s/\chi_s$,

where $\chi_s = (\partial \phi/\partial \pi)_{\varepsilon}$ is susceptibility.

Bulk viscosity

. However, the equilibrium value of ϕ could depend on ε , which evolves:

$$(u \cdot \partial)\varepsilon = -w(\partial \cdot u).$$

As a result bulk mode (expansion $\partial \cdot u$) and ϕ mix:

$$(u \cdot \partial)\pi = -\Gamma_s \pi - \frac{\beta p_\pi}{\chi_s} (\partial \cdot u)$$

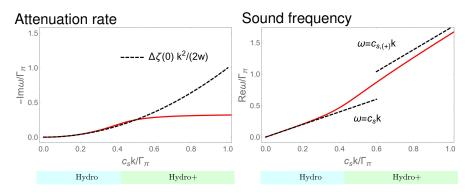
where $p_\pi \equiv (\partial p_{(+)}/\partial \pi)_\varepsilon = -Tw(\partial \phi/\partial \varepsilon)_\pi$ (Maxwell relation).

Therefore, pressure is kept away from equilibrium:

$$p_{(+)} = p + p_{\pi}\pi = p - \frac{\beta p_{\pi}^2}{\chi_s} \frac{1}{\Gamma_s - i\omega} \underbrace{(\partial \cdot u)}_{\text{expansion rate}}$$

M. Stephanov Hydro+ Trento 2022

Sound attenuation and sound speed



When sound frequency and attenuation rate are both $\sim \Gamma_s$, hydrodynamics breaks down. Crossover to Hydro+ regime.

Attenuation rate $\Delta \zeta(\omega) k^2$ saturates, since $\Delta \zeta(\omega) \sim 1/\omega^2$.

Equation of state "stiffens":
$$c_{s,(+)}^2 = c_s^2 + \Delta c_s^2 > c_s^2$$
.

M. Stephanov Hydro+ Trento 2022

Fluctuations and Hydro+

- Fluctuations at wavenumber q equilibrate at rate $\Gamma_s(q) \sim q^2$. They act as Hydro+ variables. Continuous spectrum of them.
- Each q contributes to $\Delta \zeta$ and the total contribution is non-analytic in ω due to small-q fluctuations:

$$\Delta\zeta(\omega) \sim \int\! d^3q\, \frac{\Gamma_s(q)}{\Gamma_s(q)^2 + \omega^2} \sim \underbrace{\Delta\zeta(0)}_{\xi^3 \text{ near C.P.}} - \underbrace{\mathcal{O}\left(\omega^{1/2}\right)}_{\text{long-time tail}}$$

- Hydrodynamics with fluctuations ("hydrokinetics") is a Hydro+ theory which accounts for these effects.
- Note: these non-analytic contributions to dissipation are of order $\Delta \zeta k^2 \sim \omega^{1/2} k^2 \sim k^{3/2} \gg k^2$.

I.e., fluctuation effects are larger than 2nd order gradients.

Real-time bulk response: hydro vs hydro+

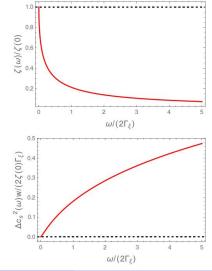
Characteristic Hydro-to-Hydro+ crossover rate $\Gamma_{\xi} = D\xi^{-2} \sim \xi^{-3}$.

Dissipation is overestimated in hydro (---):

Only modes with $\omega \ll \Gamma_{\xi}$ experience large $\zeta.$

Stiffness of eos (sound speed) is underestimated (---):

Only modes with $\omega \ll \Gamma_{\xi}$ are critically soft $(c_s \to 0$ at CP).



Approximately conserved axial charge

Constitutive equations:

MS, Yin, <u>1712.10305</u>

$$\partial_t n_V = \underbrace{\mathcal{O}(\nabla^2)}_{\text{diffusion}}; \qquad \partial_t n_A = \underbrace{-\gamma_A \mu_A}_{\text{local relaxation}} + \mathcal{O}(\nabla^2)$$

 $p_{\pi}=0$ by parity, i.e., no $\Delta\zeta$ or $\Delta c_{s}^{2}.$

Approximately conserved axial charge

Constitutive equations:

MS, Yin, <u>1712.10305</u>

$$\begin{split} \partial_t n_V &= \underbrace{\mathcal{O}(\nabla^2)}_{\text{diffusion}}; \qquad \partial_t n_A = \underbrace{-\gamma_A \mu_A}_{\text{local relaxation}} + \mathcal{O}(\nabla^2) \\ p_\pi &= 0 \text{ by parity, i.e., no } \Delta \zeta \text{ or } \Delta c_s^2. \end{split}$$

But consider magnetic field B

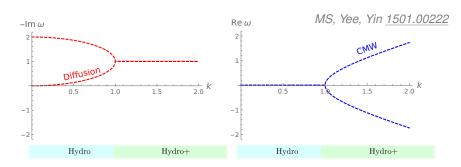
$$\partial_t n_V = -\nabla (C\mu_A \boldsymbol{B}); \quad \partial_t n_A = -\gamma_A \mu_A - \nabla (C\mu_V \boldsymbol{B});$$

Now n_A mixes with n_V . Well-known CMW phenomenon.

• The slow non-hydro rate is $\Gamma_s \equiv \Gamma_A = \gamma_A/\chi_A$.

When
$$v_{\rm CMW}k_{\parallel}\gg\Gamma_s$$
: $\omega_{\rm CMW}=\pm v_{\rm CMW}k_{\parallel}-i\Gamma_s/2$.

M. Stephanov Hydro+ Trento 2022 10/15



 $ightharpoonup \omega \ll \Gamma_s$ – hydrodynamic regime (proper).

Diffusion:
$$\omega_V=-i\underbrace{\frac{v_{\rm CMW}^2}{\Gamma_s}}_{\Lambda D}\,k^2$$
, and non-hydro mode $\omega_A=-i\Gamma_s$.

M. Stephanov Hydro+ Trento 2022 11/15

Spin hydrodynamics

ullet σ^i – spin density. EOM: $\partial_t \sigma^i = \epsilon^{ijk} \Theta^{[jk]}$.

Stress tensor has antisymmetric part:

$$\Theta^{ij} = p\delta^{ij} - \ldots - \underbrace{\eta_s}_{\text{rotational viscosity}} (\underbrace{\partial^{[i}v^{j]}}_{\text{vorticity}} - \underbrace{\mu^{ij}}_{\text{spin chem. potential}})$$

 $\partial \mu^{ij}/\partial \sigma^k = \epsilon^{ijk}/\chi_s$ – where χ_s is spin susceptibility.

- **9** Spin relaxation rate: $\Gamma_s = 2\eta_s/\chi_s$.
 - For heavy quarks: $\Gamma_s \sim g^4 \log(1/g) T^3/M^2 \sim (T/M)^2 \Gamma \ll \Gamma$,

so there is Hydro+ regime Hongo et al, <u>2201.12390</u>

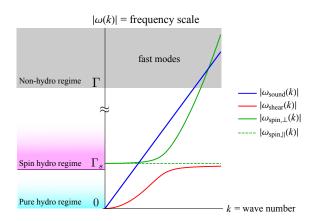
Linearised e.o.m.:

$$(\partial_t + \Gamma_s)\boldsymbol{\sigma} = \eta_s \boldsymbol{\nabla} \times \boldsymbol{v}_\perp,$$
 Spin $(\boldsymbol{\sigma})$ and $(\partial_t + \frac{\eta + \eta_s/2}{v} \boldsymbol{\nabla}^2) \boldsymbol{\pi}_\perp = \eta_s \boldsymbol{\nabla} \times \boldsymbol{\mu},$ modes mix.

Spin (σ) and shear (π_{\perp}) modes mix.

Linear response spectrum

Hongo et al, 2107.14231



Mixing is maximal when rates of shear diffusion and spin relaxation are similar, i.e., on the boundary of Hydro regime.

Hydro regime of spin hydrodynamics

- Unlike previous examples, no $1/\Gamma_s$ corrections to η , the limit of $\Gamma_s \to 0$ is smooth. (Mixing $\sim \eta_s \sim \Gamma_s$.)
- In Hydro regime spin d.o.f. can be removed by pseudo-gauge transformation. Stress tensor becomes symmetric.
- Certain 2nd order coefficients in constituitive relations must also change. For example:

$$\Delta T^{ij} = a_0 \delta^{ij} (\boldsymbol{\nabla} \times \boldsymbol{v})^2 + a_1 \nabla^{[i} v^{k]} \nabla^{[k} v^{j]}$$

These coefficients are nondissipative.

Li et al, 2011.12318

M. Stephanov Hydro+ Trento 2022 14/15

Summary

- ullet Hydrodynamics is a low-frequency effective theory and its validity is limited by the local relaxation rate $\omega \ll \Gamma$.
- **●** If controllably slow local relaxation degrees of freedom exist, one can extend hydrodynamics into Hydro+ regime $\Gamma_s \ll \omega \ll \Gamma$.
- Examples: (generic) bulk mode, fluctuations and long-time tails, approximate chiral symmetry, heavy quark spin.
- In the hydro regime ($\omega \ll \Gamma_s$) the presence of slow modes is manifested in contributions to transport coefficients $\Delta \zeta$, $\Delta \lambda$, etc. Typically singular (as $1/\Gamma_s$). But not always (see spin hydro).
 - Depends on how hydro modes mix with the slow hydro+ mode.

M. Stephanov Hydro+ Trento 2022 15/15