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Global thermodynamic equilibrium

Density operator

The vector 1s constant and the thermal vorticity w
1S a constant antisymmetric tensor.

The four-temperature B is a Killing vector

GOAL: calculate




The method

Factorization of the density operator

The generators of the Poincaré group appear in the density operator.
Analytic continuation to imaginary thermal vorticity: w—1¢
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Factorization of the density operator:
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by using known group theory relations



Calculation of the two-momentum function

Any thermal expectation value in a free quantum field theory is obtained from:
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Using Poincare transformation rules and (anti)commutation relations (particle
with spin S):
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D(W) is the “Wigner rotation” in the S-spin representation.



Solution by iteration

We find a solution by iteration:
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For vanishing vorticity (i.e. A=I):
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Wigner function

The Wigner for free fermions:

W (o) = = o [ty e G e — /24 /)

Wigner equation, a constraint:

Solution (to be continued analytically):
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Currents

Currents (vector, axial, stress-energy tensor) can be expressed as k integrals of W(x,k)
for instance:
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They can be decomposed onto a suitable basis:
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Decomposition of the stress-energy tensor:

TH (z) = putu’ —p AP + W whw” + Aara” +GHFIY +G (1Fu” +1"ut) + A (o*u” +a” ut)

+G* (Fa” +1"a") + W (whu” +w”ut) + AY (' w” + o’ wh )+ GV (IFw” + 1" w") .



Analytic continuation and distillation

Analytic results can be obtained in the m=0 case, but an analytic continuation is necessary

Example (scalar field) _ " N ¢
872 Z sinh‘g(-n,qi}/ 2)

n=1

The series cannot be resummed for the physical thermal vorticity -10; it is not an analytic
function in zero. Does this mean that analytic continuation fails?

It can be shown that the solution obtained by iteration may contain unwanted
non-analytic terms (which solve the associated homogenous equation):




Analytic distillation

Goal: to define and extract the analytic part of a function at some point

Definition. Let f(2) be a function on a domain D of the complex plane and zo € D a
point where the function may not be analytic. Suppose that asymptotic® power series of
f(2) in z — zg exist in subsets D; C D such that U;D; = D:

[(2)~ D 0 (z = z)"

where n can take integer negative values. If the series formed with the common coefficients
in the various subsets restricted to n > 0 has a positive radius of convergence, the analytic
function defined by this power series is called analytic distillate of f(z) in zo and it is

denoted by dist,, f(2).
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An example

Suitable theorem for series:

D. Zagier, The Mellin transform and related analytic techniques, in Quantum Field Theory I:
Basics in Mathematics and Physics. A Bridge Between Mathematicians and Physicists,
Springer (2006), pp. 305-323

just write down the Laurent series of f(z) and remove negative powers

There 1s another way, showing Zagier’s theorem basic idea: expand the exponential
and invert the summations:
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Continue analytically to the Riemann { and resum:
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This 1s the mean value of the massless field squared for constant acceleration obtained by solving
Klein-Gordon equation in Rindler coordinates.It vanishes at T=A/27, that is at the Unruh temperature.



Results — Stress energy tensor

THY (x) = pulu’ —p AP + W whw” + Aara” + G P +G (1Fu” +1"u) + A (ot u” +ao” u?)
+G* (IFa” +1" o)+ W (wHu” +w"u )+ A" (o w” + " wh )+ GY (Fw” +1"w") .

Full exact expression of the stress-energy tensor at global equilibrium for massless fermions
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For the pure acceleration case (w=0), the stress-energy tensor vanishes for finite T=A/27



Axial current

These results are in agreement with exact solutions obtained solving Dirac equation
in cylindrical and Rindler coordinates, for the special case of rotation and pure acceleration (A#0,m = 0)

A. Vilenkin, Phys. Rev. D 21 (1980) 2260 [AXIAL CURRENT].

V.E. Ambrus and E. Winstanley, Phys. Lett. B 734 (2014) 296.

V.E. Ambrus and E. Winstanley, arXiv:arXiv:1908.10244.

V.E. Ambrus, Dirac fermions on rotating space-times, Ph.D. Thesis, Sheffield University,
Sheffield, U.K. (2014).

G.Y. Prokhorov, O.V. Teryaev and V.I. Zakharov, JHEP 03 (2020) 137.
G.Y. Prokhorov, O.V. Teryaev and V.I. Zakharov, Phys. Rev. D 99 (2019) 071901.

G.Y. Prokhorov, O.V. Teryaev and V.I. Zakharov, Particles 3 (2020) 1 [ALL OF THEM PERTURBATIVE TO 4th ORDER].

This method does not require to solve field equations in special coordinates and it shows that solutions
in different equilibria and geometries are deeply linked. New terms involving y . qp)



Entropy current

Entropy current can be derived from first principles of quantum statistical mechanics and
has a unique expression at global equilibrium (F.B., D. Rindori, Phys.Rev.D 99 (2019) 12, 125011)

S =logZ g+ L dE,u {:{'T’W>LEI51..- - {}’uhﬁ}:

" oo o a - g -
¢ = / dA[((T*) &(4) — (0]7%]0)),
J1

= (")) = (0[7#(0))].

PLE(A) = Zin A_-jﬂ-‘ip [— - /T dZ, (T*p, - ¢j")
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If we apply it to our last obtained expression we find an interesting expression:
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Conclusions

A method to obtain exact expressions of currents (and more) at global thermodynamic
equilibrium with rotation and acceleration for free fields

Analytic continuation requires the definition of an analytic part of a function and a
method to extract it: analytic distillation

The stress-energy tensor features corrections to the familiar form which are of quantum
origin (proportional to A*T*, ®’T>, A*, ®")

Unruh temperature as an outcome
Entropy current shows a non-longitudinal component (along the Killing vector)

even at global equilibrium

This method can be extended to include the axial chemical potential
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