Holographic CME with dynamical axial charge

Holographic Perspectives on chiral transport Sergio Morales Tejera March 2023

Outline

- Introduction
- Holographic model: $U(1)_V \times U(1)_A$ + Stueckelberg \longrightarrow Real-time simulations
- Non-expanding plasma:
 - LHC/RHIC-like simulations.
- Expanding plasma.

• Physical system and setup :

• Physical system and setup :

• Physical system and setup :

t

• Physical system and setup :

- Physical system and setup :
 - Off-centered collision -> Almond shape
 - Strongly coupled plasma -> Good for holography
 - Short-lived magnetic field $\tau_B^{RHIC} \simeq 0.6 fm/c$

 $\tau_B^{LHC}\simeq 0.02\,fm/c$

• Focus on non-conservation of axial charge

• Holographic dictionary

QFT	AdS	
Energy momentum tensor $T^{\mu u}$	Metric $g_{\mu u}$	
Conserved current J^{μ}	Gauge field A_{μ}	
Scalar operator $ {\cal O} $	Scalar field ϕ	
Temperature T	Black hole	

$$S = \frac{1}{2\kappa^2} \int_{\mathcal{M}} d^5 x \sqrt{-g} \left[R + \frac{12}{L^2} + \frac{1}{4} F^2 - \frac{1}{4} F_{(5)}^2 - \frac{m^2}{2} (A_\mu - \partial_\mu \theta) (A^\mu - \partial^\mu \theta) + \frac{\alpha}{3} \epsilon^{\mu\nu\rho\sigma\tau} (A_\mu - \partial_\mu \theta) (3F_{\nu\rho}F_{\sigma\tau} + F_{\nu\rho}^{(5)}F_{\sigma\tau}^{(5)}) \right] + S_{GHY} + S_{ct}$$

• Gauge invariance
$$A_{\mu} \to A_{\mu} + \partial_{\mu}\lambda$$
; $\theta \to \theta + \lambda$.

- θ dual field to $Tr{G\tilde{G}}$
- The number of counterterms diverges as $\Delta \to 1$ and is minimum for $\Delta < \frac{1}{3}$ \longrightarrow Focus on $\Delta \in (0, 1/3)$

"Anomalous Magneto Response and the Stüeckelberg Axion in Holography" arXiv:1407.8162v1 [A. Jimenez-Alba, K. Landsteiner, L. Melgar]

 $F_{(5)} = dA$ F = dV $[J_5] = 3 + \Delta$ $\Delta = -1 + \sqrt{1 + m^2}$

$$S = \frac{1}{2\kappa^{2}} \int_{\mathcal{M}} d^{5}x \sqrt{-g} \left[R + \frac{12}{L^{2}} - \frac{1}{4}F^{2} - \frac{1}{4}F^{2}_{(5)} - \frac{m^{2}}{2} (A_{\mu} - \partial_{\mu}\theta)(A^{\mu} - \partial^{\mu}\theta) + \frac{\alpha}{3} \epsilon^{\mu\nu\rho\sigma\tau} (A_{\mu} - \partial_{\mu}\theta) (3F_{\nu\rho}F_{\sigma\tau} + F_{\nu\rho}^{(5)}F_{\sigma\tau}^{(5)}) \right] + S_{GHY} + S_{ct}$$

• Gauge invariance
$$A_{\mu} \to A_{\mu} + \partial_{\mu}\lambda$$
; $\theta \to \theta + \lambda$.

- θ dual field to $Tr{G\tilde{G}}$
- The number of counterterms diverges as $\Delta \to 1$ and is minimum for $\Delta < \frac{1}{3}$ \longrightarrow Focus on $\Delta \in (0, 1/3)$

"Anomalous Magneto Response and the Stüeckelberg Axion in Holography" arXiv:1407.8162v1 [A. Jimenez-Alba, K. Landsteiner, L. Melgar]

 $F_{(5)} = dA$ F = dV $[J_5] = 3 + \Delta$ $\Delta = -1 + \sqrt{1 + m^2}$

 $F_{(5)} = dA$ F = dV

 $[J_5] = 3 + \Delta$ $\Delta = -1 + \sqrt{1 + m^2}$

$$S = \frac{1}{2\kappa^2} \int_{\mathcal{M}} d^5 x \sqrt{-g} \left[R + \frac{12}{L^2} - \frac{1}{4} F^2 - \frac{1}{4} F_{(5)}^2 - \frac{m^2}{2} (A_{\mu} - \partial_{\mu}\theta) (A^{\mu} - \partial^{\mu}\theta) + \frac{\alpha}{3} \epsilon^{\mu\nu\rho\sigma\tau} (A_{\mu} - \partial_{\mu}\theta) (3F_{\nu\rho}F_{\sigma\tau} + F_{\nu\rho}^{(5)}F_{\sigma\tau}^{(5)}) \right] + S_{GHY} + S_{ct}$$

• Gauge invariance
$$A_{\mu} \to A_{\mu} + \partial_{\mu}\lambda$$
; $\theta \to \theta + \lambda$.

- θ dual field to $Tr{G\tilde{G}}$
- The number of counterterms diverges as $\Delta \to 1$ and is minimum for $\Delta < \frac{1}{3}$ \longrightarrow Focus on $\Delta \in (0, 1/3)$

"Anomalous Magneto Response and the Stüeckelberg Axion in Holography" arXiv:1407.8162v1 [A. Jimenez-Alba, K. Landsteiner, L. Melgar]

$$S = \frac{1}{2\kappa^2} \int_{\mathcal{M}} d^5 x \sqrt{-g} \left[R + \frac{12}{L^2} - \frac{1}{4} F^2 - \frac{1}{4} F_{(5)}^2 - \frac{m^2}{2} (A_{\mu} - \partial_{\mu}\theta) (A^{\mu} - \partial^{\mu}\theta) + \frac{\alpha}{3} \epsilon^{\mu\nu\rho\sigma\tau} (A_{\mu} - \partial_{\mu}\theta) (3F_{\nu\rho}F_{\sigma\tau} + F_{\nu\rho}^{(5)}F_{\sigma\tau}^{(5)}) \right] + S_{GHY} + S_{ct}$$

• Gauge invariance
$$A_{\mu} \to A_{\mu} + \partial_{\mu}\lambda$$
; $\theta \to \theta + \lambda$.

- θ dual field to $Tr{G\tilde{G}}$
- The number of counterterms diverges as $\Delta \to 1$ and is minimum for $\Delta < \frac{1}{3}$ \longrightarrow Focus on $\Delta \in (0, 1/3)$

"Anomalous Magneto Response and the Stüeckelberg Axion in Holography" arXiv:1407.8162v1 [A. Jimenez-Alba, K. Landsteiner, L. Melgar]

 $F_{(5)} = dA$ F = dV $[J_5] = 3 + \Delta$ $\Delta = -1 + \sqrt{1 + m^2}$

$$S = \frac{1}{2\kappa^2} \int_{\mathscr{M}} d^5 x \sqrt{-g} \left[R + \frac{12}{L^2} - \frac{1}{4} F^2 - \frac{1}{4} F_{(5)}^2 - \frac{m^2}{2} (A_\mu - \partial_\mu \theta) (A^\mu - \partial^\mu \theta) + \frac{\alpha}{3} \epsilon^{\mu\nu\rho\sigma\tau} (A_\mu - \partial_\mu \theta) (3F_{\nu\rho}F_{\sigma\tau} + F_{\nu\rho}^{(5)}F_{\sigma\tau}^{(5)}) \right] + S_{GHY} + S_{ct}$$

$$F_{(5)} = dA$$

$$F = dV$$

$$[J_5] = 3 + \Delta$$

$$\Delta = -1 + \sqrt{1 + m^2}$$

7 4

- We study CME and Axial Charge in:
 - Non-expanding plasma \longrightarrow Explore parameter space (α, Δ) Explore different states $(B, T, n_5(0), \dot{n}_5(0))$ Simulations for RHIC and LHC
 - Expanding plasma Simulations for RHIC

 $F_{(5)} = dA$

 $[J_5] = 3 + \Delta$ $\Delta = -1 + \sqrt{1 + m^2}$

F = dV

$$\begin{split} S &= \frac{1}{2\kappa^2} \int_{\mathcal{M}} d^5 x \sqrt{-g} \left[R + \frac{12}{L^2} - \frac{1}{4} F^2 - \frac{1}{4} F_{(5)}^2 - \frac{m^2}{2} (A_{\mu} - \partial_{\mu}\theta) (A^{\mu} - \partial^{\mu}\theta) \right. \\ &\left. + \frac{\alpha}{3} \epsilon^{\mu\nu\rho\sigma\tau} (A_{\mu} - \partial_{\mu}\theta) \Big(3F_{\nu\rho} F_{\sigma\tau} + F_{\nu\rho}^{(5)} F_{\sigma\tau}^{(5)} \Big) \Big] + S_{GHY} + S_{ct} \end{split}$$

- We study CME and Axial Charge in:
 - Non-expanding plasma → Explore parameter space (α, Δ) Explore different states (B, T, n₅(0), ṅ₅(0))
 Simulations for RHIC and LHC Simulations for RHIC
 Focus of the talk

$$S = \frac{1}{2\kappa^2} \int_{\mathcal{M}} d^5 x \sqrt{-g} \left[R + \frac{12}{L^2} - \frac{1}{4} F^2 - \frac{1}{4} F_{(5)}^2 - \frac{m^2}{2} (A_{\mu} - \partial_{\mu}\theta) (A^{\mu} - \partial^{\mu}\theta) + \frac{\alpha}{3} \epsilon^{\mu\nu\rho\sigma\tau} (A_{\mu} - \partial_{\mu}\theta) (3F_{\nu\rho}F_{\sigma\tau} + F_{\nu\rho}^{(5)}F_{\sigma\tau}^{(5)}) \right] + S_{GHY} + S_{ct}$$

• Ansatz:

$$ds^{2} = -\int dv^{2} - \frac{2L^{2}}{u^{2}} du \, dv + \sum \left(e^{\xi} (dx^{2} + dy^{2}) + e^{-2\xi} dz^{2} \right)$$
$$A = -A_{t} dv$$
$$V = \frac{B}{2} (xdy - ydx) + V_{z} dz$$
$$\theta = \theta$$

$$F_{(5)} = dA$$

$$F = dV$$

$$[J_5] = 3 + \Delta$$

$$\Delta = -1 + \sqrt{1 + m^2}$$

• Ansatz:

$$ds^{2} = -f dv^{2} - \frac{2L^{2}}{u^{2}} du \, dv + \sum \left(e^{\xi} (dx^{2} + dy^{2}) + e^{-2\xi} dz^{2} \right) \longrightarrow \lim_{u \to 0} \sum \frac{1}{u} \lim_{u \to 0} \sum \frac{$$

• Ansatz:

$$ds^{2} = -f dv^{2} - \frac{2L^{2}}{u^{2}} du \, dv + \sum \left(e^{\xi} (dx^{2} + dy^{2}) + e^{-2\xi} dz^{2} \right) \longrightarrow \lim_{u \to 0} \sum \frac{1}{u} \lim_{u \to 0} \sum \frac{$$

• Ansatz: $ds^{2} = -f dv^{2} - \frac{2L^{2}}{u^{2}} du dv + \sum \left(e^{\xi} (dx^{2} + dy^{2}) + e^{-2\xi} dz^{2} \right) \longrightarrow$ $A = -A_{t} dv \qquad V = \frac{B}{2} (x dy - y dx) + V_{z} dz \qquad \theta = \theta$ $\lim_{u \to 0} \Sigma = \frac{L}{u} \qquad \lim_{u \to 0} \xi = 0$ Asymptotically $\lim_{u\to 0} f = \frac{L^2}{u^2}$ AdS • Asymptotic solution: $\theta \simeq \theta_0(v) + \dots$ $V \simeq u^2 V_2(v) + \dots$ $\Sigma \simeq \frac{1}{u} + \dots$ $\xi \simeq u^4 \left(\xi_4 - \frac{B^2}{12} \log u \right) + \dots$ $f \simeq \frac{1}{u^2} + u^2 \left(f_2 + \frac{B^2}{6} \log u \right) + \dots$ $A_t \simeq \theta_0(v) + u^{\Delta} \left(q_5(v)u^2 + \frac{2+\Delta}{3+\Lambda} \dot{q}_5(v)u^3 + \dots \right)$

Static Background

Quasinormal modes

Quasinormal modes

RHIC and LHC simulations

Centrality bin	10-20%	20-30%	30-40%	40 - 50%
$(n_5/s)_0$	0.065	0.078	0.095	0.119
$T_0({ m GeV})$	0.341	0.329	0.312	0.294
$eB_{max}(m_{\pi}^2)$	2.34	3.1	3.62	4.01
$T_{sim}({ m GeV})$	0.429	0.414	0.393	0.370
$eB_{sim}(m_{\pi}^2)$	1.87	2.48	2.90	3.20

Centrality bin	10 - 20%	20-30%	30 - 40%	40-50%
$(n_5/s)_0$	0.039	0.045	0.059	0.075
$T_0({ m GeV})$	0.48	0.47	0.43	0.40
$eB_{max}(m_{\pi}^2)$	59.2	78.5	91.7	101.6
$\overline{T_{sim}({ m GeV})}$	0.87	0.85	0.78	0.73
$eB_{sim}(m_{\pi}^2)$	2.28	3.02	3.53	3.91

 \sim

$$B(\tau) = \frac{B_{max}}{1 + \tau^2 / \tau_B^2} \qquad T(\tau) = T_0 \left(\frac{\tau_0}{\tau}\right)^{1/3}$$

[S. Shi, Y. Jiang, E. Lilleeskov, J. Liao](2018)

RHIC and LHC simulations

 \sim

RHIC and LHC simulations

Expanding plasma

 $F_{(5)} = dA$

 $[J_5] = 3 + \Delta$ $\Delta = -1 + \sqrt{1 + m^2}$

F = dV

$$\begin{split} S &= \frac{1}{2\kappa^2} \int_{\mathscr{M}} d^5 x \sqrt{-g} \left[R + \frac{12}{L^2} - \frac{1}{4} F^2 - \frac{1}{4} F_{(5)}^2 - \frac{m^2}{2} (A_{\mu} - \partial_{\mu}\theta) (A^{\mu} - \partial^{\mu}\theta) \right. \\ &+ \frac{\alpha}{3} \epsilon^{\mu\nu\rho\sigma\tau} (A_{\mu} - \partial_{\mu}\theta) \Big(3F_{\nu\rho} F_{\sigma\tau} + F_{\nu\rho}^{(5)} F_{\sigma\tau}^{(5)} \Big) \Big] + S_{GHY} + S_{ct} \end{split}$$

• Ansatz:

$$ds^{2} = -\int dv^{2} - \frac{2L^{2}}{u^{2}} du \, dv + \sum \left(e^{-\xi_{1} - \xi_{2}} dx^{2} + e^{\xi_{1}} dy^{2} + e^{\xi_{2}} dz^{2} \right)$$

$$A = -A_t dv$$

$$V = \frac{B}{2}(xdy - ydx) + V_z dz$$

$$\theta = \theta$$

$$\lim_{u \to 0} ds^2 = \frac{1}{u^2 L^2}(-dv^2 + v^2 dx^2 + dy^2 + dz^2)$$

"Energy dependence of the CME in expanding holographic plasma" arXiv:2112.13857 [C.Cartwright, M. Kaminski, B. Schenke]

Summary & Outlook

- Axial charge dissipation weakens at $B^{\uparrow\uparrow}$ in the presence of the anomaly.
- For small values of Δ both initial states considered result into the same CME signal. For bigger values of Δ the CME signal may be up to 25% smaller.
- The CME signal obtained for RHIC and LHC are of the same order. The threshold between higher signal at RHIC or LHC is at $n_5^{LHC}/n_5^{RHIC} \sim 3$.
- The different lifetimes of *B* in both simulations is key to arrive at these conclusions.
- Go beyond small charge limit, include time dependent *B*, include masses of quarks...