

Searching for the Chiral Magnetic Effect with ALICE

A. Dobrin for the ALICE Collaboration (Institute of Space Science)

HOLOGRAPHIC PERSPECTIVES ON CHIRAL TRANSPORT

Chiral Magnetic Effect (CME)

http://www.physics.adelaide.edu.au/theory/ staff/leinweber/VisualQCD/Nobel/

- Heavy-ion collisions: strong magnetic field (B~10¹⁵ T)
- Theory: QCD domains with P and CP symmetries locally broken
- CME: electric current along magnetic field
 - Charge separation perpendicular to the reaction plane
- Interpretation of the results complicated by background contributions 03/11/23 A. Dobrin - Chiral workshop

D. Kharzeev, PLB 633, 260 (2006)
D. Kharzeev et al., NPA 797, 67 (2007)
D. Kharzeev et al., PRD 83, 085007 (2011)
D. Kharzeev et al, PPNP 88, 1 (2016)

Observables

$$\frac{\mathrm{d}N}{\mathrm{d}\Delta\varphi_{\alpha}} \sim 1 + 2v_{1,\alpha}\cos(\Delta\varphi_{\alpha}) + 2a_{1,\alpha}\sin(\Delta\varphi_{\alpha}) + 2v_{2,\alpha}\cos(2\Delta\varphi_{\alpha}) + \dots,$$

2-particle correlator $\delta_m = \langle \cos[m(\varphi_a - \varphi_b)] \rangle$

STAR, PRC 81, 054908 (2009)

$$\begin{aligned} &\langle \cos(\varphi_a - \varphi_b) \rangle = \langle \cos[(\varphi_a - \Psi_{\rm RP}) - (\varphi_b - \Psi_{\rm RP})] \rangle \\ &= \langle \cos(\Delta \varphi_a - \Delta \varphi_b) \rangle = \langle v_{1,a} v_{1,b} \rangle + \langle a_{1,a} a_{1,b} \rangle + B_{\rm in} + B_{\rm out} \end{aligned}$$

Observables

 $\frac{\mathrm{d}N}{\mathrm{d}\Delta\varphi_{\alpha}} \sim 1 + 2v_{1,\alpha}\cos(\Delta\varphi_{\alpha}) + 2a_{1,\alpha}\sin(\Delta\varphi_{\alpha}) + 2v_{2,\alpha}\cos(2\Delta\varphi_{\alpha}) + \dots,$

2-particle correlator $\delta_m = \langle \cos[m(\varphi_a - \varphi_b)] \rangle$

STAR, PRC 81, 054908 (2009)

$$\langle \cos(\varphi_a - \varphi_b) \rangle = \langle \cos[(\varphi_a - \Psi_{\rm RP}) - (\varphi_b - \Psi_{\rm RP})] \rangle$$

= $\langle \cos(\Delta \varphi_a - \Delta \varphi_b) \rangle = \langle v_{1,a} v_{1,b} \rangle + \langle a_{1,a} a_{1,b} \rangle + B_{\rm in} + B_{\rm out} \rangle$

3-particle correlator $\gamma_{m,n} = \langle \cos(m \varphi_a + n \varphi_b - (m + n) \Psi_{|m+n|}) \rangle$

$$\langle \cos(\varphi_a + \varphi_b - 2\Psi_{\rm RP}) \rangle = \langle \cos[(\varphi_a - \Psi_{\rm RP}) + (\varphi_b - \Psi_{\rm RP})] \rangle \\ = \langle \cos(\Delta \varphi_a - \Delta \varphi_b) \rangle = \langle v_{1,a} v_{1,b} \rangle - \langle a_{1,a} a_{1,b} \rangle + B_{\rm in} - B_{\rm out}$$

03/11/23

Observables

 $\frac{\mathrm{d}N}{\mathrm{d}\Delta\varphi_{\alpha}} \sim 1 + 2v_{1,\alpha}\cos(\Delta\varphi_{\alpha}) + 2a_{1,\alpha}\sin(\Delta\varphi_{\alpha}) + 2v_{2,\alpha}\cos(2\Delta\varphi_{\alpha}) + \dots,$

2-particle correlator $\delta_m = \langle \cos[m(\varphi_a - \varphi_b)] \rangle$

STAR, PRC 81, 054908 (2009)

$$\langle \cos(\varphi_a - \varphi_b) \rangle = \langle \cos[(\varphi_a - \Psi_{\rm RP}) - (\varphi_b - \Psi_{\rm RP})] \rangle$$

= $\langle \cos(\Delta \varphi_a - \Delta \varphi_b) \rangle = \langle v_{1,a} v_{1,b} \rangle + \langle a_{1,a} a_{1,b} \rangle + B_{\rm in} + B_{\rm out} \rangle$

3-particle correlator $\gamma_{m,n} = \langle \cos(m \varphi_a + n \varphi_b - (m+n) \Psi_{|m+n|}) \rangle$

$$\langle \cos(\varphi_a + \varphi_b - 2\Psi_{\rm RP}) \rangle = \langle \cos[(\varphi_a - \Psi_{\rm RP}) + (\varphi_b - \Psi_{\rm RP})] \rangle \\ = \langle \cos(\Delta \varphi_a - \Delta \varphi_b) \rangle = \langle v_{1,a} v_{1,b} \rangle - \langle a_{1,a} a_{1,b} \rangle + B_{\rm in} - B_{\rm out}$$

 $\begin{array}{l} \mathsf{B}_{\mathrm{in}} \, \mathrm{and} \, \mathsf{B}_{\mathrm{out}} \, \mathrm{background} \, \mathrm{contributions} \, \mathrm{projected} \, \mathrm{onto} \, \Psi_{\mathrm{RP}} \, \mathrm{and} \, \mathrm{perpendicular} \, \mathrm{to} \, \mathrm{it} \\ B_{\mathrm{in}} - B_{\mathrm{out}} \! \propto \! v_{2,\mathrm{cluster}} \langle \cos (\, \varphi_a \! + \! \varphi_b \! - \! 2 \, \varphi_{\mathrm{cluster}}) \rangle \end{array}$

CME @ LHC

- Strong centrality dependence consistent with naive expectations from CME
- Similar magnitude between RHIC and LHC
 - Different dilution effects (3x larger $dN_{ch}/d\eta$ at LHC than at RHIC)
 - Different magnitude of the magnetic field
- Large contribution from background → local charge conservation (LCC) coupled with anisotropic flow
 S. Schlichting and S. Pratt, PRC 83, 014913 (2011)
 - Various approaches used to disentangle signal from background
 - Vary the background $(v_2) \rightarrow$ event shape engineering
 - "Killing" the signal (B) \rightarrow higher harmonics
 - Vary the signal (B) \rightarrow different collision systems

A Large Ion Collider Experiment

- Inner Tracking System (ITS)
 - Tracking, triggering, vertexing
- Time Projection Chamber (TPC)
 - Tracking, vertexing, Ψ_n
- V0 detector
 - Triggering, centrality, Ψ_n
- Track selection
 - $0.2 < p_{T} < 5 \text{ GeV}/c, |\eta| < 0.8$
 - Pb–Pb at √s_{NN} = 2.76 TeV
 ~12.5M events
 - Pb–Pb at √s_{NN} = 5.02 TeV
 ~60M events
 - Xe–Xe at $\sqrt{s_{NN}}$ = 5.44 TeV - ~1M events

Varying the background using event shape engineering ALICE, PLB 777, 151 (2018)

• Select events with similar centralities and different shapes based on the event-by-event flow/eccentricity fluctuations

- q_2^{VOC} used to select events with 25% larger or 20% smaller v_2 than the average
- v_2 is measured with event plane method to be consistent with CME measurements
 - Non-flow is greatly suppressed by the large separation in rapidity between the TPC and the V0A ($|\Delta \eta|$ >2.0)

CME with ESE (I)

- Correlators contain potential CME signal as well as background effects
 - Background contributions in $\gamma_{\rm ab}$ are suppressed at the level of $v_{\rm 2}$
- γ_{ab} depends weakly on the event shape selection in a given centrality bin
- δ_{ab} shows similar values for ESE and unbiased in a given centrality bin \rightarrow large non-flow contribution

CME with ESE (II)

- γ_{ab} (opp-same) can be used to study the CME
 - Difference is positive for all centrality classes and decreases with centrality and v_2 (in a given centrality bin)

CME with ESE (II)

- γ_{ab} (opp-same) can be used to study the CME
 - Difference is positive for all centrality classes and decreases with centrality and v_2 (in a given centrality bin)
 - Difference approximately scales with v_2 and multiplicity \rightarrow mostly background contribution

Does magnetic field depend on v_2 in initial state models?

 $eB_s^{\pm}(\tau,\eta,\boldsymbol{x}_{\perp}) = \pm Z\alpha_{EM}\sinh(Y_0 \mp \eta) \int d^2\boldsymbol{x}_{\perp}'\rho_{\pm}(\boldsymbol{x}_{\perp}')[1-\theta_{\mp}(\boldsymbol{x}_{\perp}')]$ $imes rac{(oldsymbol{x}'_ot - oldsymbol{x}_ot) imes oldsymbol{e}_z}{\left[(oldsymbol{x}'_ot - oldsymbol{x}_ot)^2 + au^2 \sinh(Y_0 \mp \eta)^2
ight]^{3/2}}$

D. Kharzeev et al, NPA 803, 227 (2008)

ALT-DER-117083

- Perform a MC Glauber simulation to evaluate the dependence of the CME signal on v_{3}
 - Parameters are tuned to ALICE results
 - Calculate magnetic field at origin using spectators with the proper time $\tau=0.1$ fm
 - $|A|^{2}\cos(2(\Psi_{B}-\Psi_{2})))$, the expected contribution of the CME to γ_{ab} , shows a strong dependence on v_{2}

Relating data and models

Fit γ_{ab} (opp-same) and <|B|²cos(2(Ψ_B-Ψ₂))> with a linear function to disentangle the potential CME signal from background

$$P_1(v_2) = p_0(1 + p_1(v_2 - \langle v_2 \rangle) / \langle v_2 \rangle)$$

03/11/23

Slopes of data and model fits

• Extract the CME fraction, f_{CME} relating the slopes of data and model fits according to

$$f_{\rm CME} * p_{1,MC} + (1 - f_{\rm CME}) * 1 = p_{1,data}$$

• Assumption: background contribution scales linearly with v_2 and the corresponding slope is unity

03/11/23

CME fraction

- CME fraction in 0-10% and 50-60% is currently statistically limited
- Combining the points from 10-50% gives
 - − f_{CME} (Glauber) = 0.10 ± 0.13 → 33% at 95% C.L.
 - $f_{\rm CME}$ (KLN) = 0.08 ± 0.10 → 26% at 95% C.L.

 f_{CME}

- f_{CME} (EKRT) = 0.08 ± 0.11 → 29% at 95% C.L.

LICE

"Killing" the signal using higher harmonics ALICE, JHEP 09, 160 (2020)

2-particle correlators

- Weak charge dependence, except δ_1
 - Dominated by background effects \rightarrow constrain background in $\gamma_{1,1}$
- δ₁ qualitatively consistent with balance function results

3-particle correlators

20

- $\gamma_{1,1}$ and $\gamma_{1,\text{-3}}$ sensitive to CME
- $\gamma_{1,2}$ and $\gamma_{2,2}$ probe only the background
- Significant charge dependence, except $\gamma_{2,2}$
 - Increases from central to peripheral collisions
- $\gamma_{1,1}$ and $\gamma_{1,2}$ used to estimate the background contribution to $\gamma_{1,1}$

$$\Delta \gamma_{1,1} \approx \kappa_2 v_2 \Delta \delta_1$$

$$\Delta \gamma_{1,2} \approx \kappa_3 v_3 \Delta \delta_1 \longrightarrow \Delta \gamma_{1,1}^{\text{Bkg}} \approx \Delta \gamma_{1,2} \times \frac{v_2}{v_3} \frac{\kappa_2}{\kappa_3}$$

$$\Delta \gamma_{2,2} \approx \kappa_4 v_4 \Delta \delta_2$$

Model comparisons

- Blast-Wave + Local Charge Conservation (LCC)
 - Tune the parameters in each centrality class to reproduce v_2 and p_T spectra of π , K, p
 - Tune the number of sources emitting balancing pairs
 - Underestimates $\Delta \gamma_{1,1}$ by up to $\approx 40\%$
 - Disagreement increases from central to peripheral collisions
- Anomalous Viscous Fluid Dynamics (AVFD)
 - EbyE IC + E/M fields (field lifetime as input)
 - Tune the parameters in each centrality class to reproduce *v*₂ and multiplicity P. Christakoglou et al., EPJC 81, 717 (2021)
 - Good agreement with data points
 - Non-zero values for signal

S. Shi et al., AP 394, 50 (2018) Y. Jiang et al., CPC 42, 011001 (2018)

- Consistent with 0 for 0-40% and then becomes negative
- Combining the points from 0-40%
 - $f_{CME}^{2.76 \text{ TeV}}$ = -0.021 ± 0.045 → 18% at 95% C.L.
 - $f_{\rm CME}^{\rm 5.02 \ TeV}$ = 0.003 ± 0.029 \rightarrow 15% at 95% C.L.

A. Dobrin - Chiral workshop

 $f_{\rm CME} = 1 - \frac{\Delta \gamma_{1,1}^{\rm Bkg}}{\Delta \gamma_{1,1}}$

Assumption: $\kappa_2 \approx \kappa_3$

Varying the signal using different collision systems: Xe–Xe vs Pb–Pb collisions ALICE, arXiv: 2210.15383

CME in Xe–Xe collisions

- γ_{ab} : consistent with charge separation
- δ_{ab} : background dominates

Model comparisons

- Blast-Wave + Local Charge Conservation (LCC)
 - Tune the parameters in each centrality class to reproduce v₂ and p_T spectra of π, K, p
 - Tune the number of sources emitting balancing pairs
 - Describes fairly well the measured data points
 - Background dominates measurements
 - Not observed in Pb-Pb collisions
- Anomalous Viscous Fluid Dynamics (AVFD)
 - EbyE IC + E/M fields (field lifetime as input)
 - Tune the parameters in each centrality class to reproduce
 *v*₂ and multiplicity
 P. Christakoglou et al., EPJC 81, 717 (2021)
 - Good agreement with data points
 - Signal consistent with zero

S. Shi et al., AP 394, 50 (2018) Y. Jiang et al., CPC 42, 011001 (2018)

CME in Xe–Xe and Pb–Pb collisions

- Strong dependence on the charge
- Qualitatively similar centrality dependence
 - Larger magnitude in Xe–Xe than in Pb–Pb collisions
 - Dilution effects arising from different number of particles (CME \sim 1/M)
- Similar values in Xe–Xe and Pb–Pb collisions within uncertainties (vs dN_{ch}/dη)

iss CME fraction in Xe–Xe and Pb–Pb collisions

- γ_{ab} (opp-same) can be used to study CME
 - Similar values in Xe–Xe and Pb–Pb collisions (vs $dN_{ch}/d\eta$) \rightarrow large background contribution

CME fraction in Xe–Xe and Pb–Pb collisions

- - Similar values in Xe–Xe and Pb–Pb collisions (vs $dN_{ch}/d\eta$) \rightarrow large background contribution

A. Dobrin - Chiral workshop

- CME fraction extracted using a two-component approach
 - Assumption: both signal and background scale with $dN_{ch}/d\eta$

03/11/23

- $dN_{ch}/d\eta$ used to compensate for dilution
- $\langle B|^2 \cos(2(\Psi_{\rm B} \Psi_2)) \rangle$ from MC simulations

 $(dN_{cb}/d\eta)^{Pb}\Delta \gamma_{ab}^{Pb} = sB^{Pb} + bv_2^{Pb}$

 $(dN_{ch}/d\eta)^{Xe} \Delta \gamma_{ab}^{Xe} = s B^{Xe} + b v_2^{Xe}$

iss CME fraction in Xe–Xe and Pb–Pb collisions

- Consistent with 0 for 0-30% and then becomes positive
- Combining the points from 0-70%
 - $f_{\text{CME}}^{\text{Xe}}$ = -0.003 ± 0.010 \rightarrow 2% at 95% C.L.
 - $f_{\text{CME}^{\text{Pb}}}$ = 0.147 ± 0.061 → 25% at 95% C.L.

 $f_{CME} = \frac{sB}{sB + bv_2}$

Summary

- CME searches performed in different collision systems
 - Background dominates the measurements
 - Different approaches used to separate the signal from background

ISS 2- and 3-particle correlators: differential results

03/11/23

A. Dobrin - Chiral workshop

3-particle correlator: differential results in Xe–Xe and Pb–Pb collisions

03/11/23

03/11/23