The butterfly effect in a holographic chiral system

Navid Abbasi

Lanzhou University

Holographic perspectives on chiral transport ECT, March 13

Motivation

- Quantum chaos is associated with energy dynamics (holographic system)
- In chiral systems, energy transport through the CME

Motivation

- Quantum chaos is associated with energy dynamics (holographic system)

- In chiral systems, energy transport through the CME

Motivation

- Quantum chaos is associated with energy dynamics (holographic system)

- In chiral systems, energy transport through the CME
\rightarrow Any connection between"Quantum chaos" and "CME" ?

Quantum chaos

- One important aspect of thermal systems:

$$
\text { Atypicality } \rightarrow \text { evolution } \rightarrow \text { typicality }
$$

Quantum chaos

- One important aspect of thermal systems:

$$
\text { Atypicality } \rightarrow \text { evolution } \rightarrow \text { typicality }
$$

- There is sensitive dependence on initial conditions:
initially similar (but orthogonal) states \rightarrow evolve \rightarrow to be quite different:

Quantum chaos

- One important aspect of thermal systems:

$$
\text { Atypicality } \rightarrow \text { evolution } \rightarrow \text { typicality }
$$

- There is sensitive dependence on initial conditions:
initially similar (but orthogonal) states \rightarrow evolve \rightarrow to be quite different:
"Butterfly effect"

Quantum chaos

- One important aspect of thermal systems:

$$
\text { Atypicality } \rightarrow \text { evolution } \rightarrow \text { typicality }
$$

- There is sensitive dependence on initial conditions: initially similar (but orthogonal) states \rightarrow evolve \rightarrow to be quite different: "Butterfly effect"
- This chaotic behavior is referred to as Scrambling

Scrambling time is conjectured as $t \sim \beta \log S$

Quantum chaos

- One important aspect of thermal systems:

$$
\text { Atypicality } \rightarrow \text { evolution } \rightarrow \text { typicality }
$$

- There is sensitive dependence on initial conditions: initially similar (but orthogonal) states \rightarrow evolve \rightarrow to be quite different: "Butterfly effect"
- This chaotic behavior is referred to as Scrambling Scrambling time is conjectured as $t \sim \beta \log S \stackrel{N \sim 1}{\gg} \beta$

Quantum chaos

- One important aspect of thermal systems:

$$
\text { Atypicality } \rightarrow \text { evolution } \rightarrow \text { typicality }
$$

- There is sensitive dependence on initial conditions: initially similar (but orthogonal) states \rightarrow evolve \rightarrow to be quite different: "Butterfly effect"
- This chaotic behavior is referred to as Scrambling Scrambling time is conjectured as $t \sim \beta \log S \stackrel{N \gg 1}{\gg} \beta \sim t_{\text {diffusion }}$

Quantifying the butterfly effect

Exponential decrease of "Out-of-time-ordered correlators" (OTOC)
$\mathrm{OTOC}=F(t)=\langle\Psi| V_{L} W_{R}(t) V_{R} W_{L}(t)|\Psi\rangle$

Quantifying the butterfly effect

Exponential decrease of "Out-of-time-ordered correlators" (OTOC)
$\mathrm{OTOC}=F(t)=\langle\Psi| V_{L} W_{R}(t) V_{R} W_{L}(t)|\Psi\rangle$

- For large N holographic CFTs

$$
F(t)=f_{0}-\frac{f_{1}}{N^{2}} \exp \frac{2 \pi}{\beta} t+\mathcal{O}\left(N^{-4}\right)
$$

[Maldacena, Shenker, Stanford 1503.01406]

Quantifying the butterfly effect

Exponential decrease of "Out-of-time-ordered correlators" (OTOC)
$\mathrm{OTOC}=F(t)=\langle\Psi| V_{L} W_{R}(t) V_{R} W_{L}(t)|\Psi\rangle$

- For large N holographic CFTs

$$
F(t)=f_{0}-\frac{f_{1}}{N^{2}} \exp \frac{2 \pi}{\beta} t+\underset{\mathcal{O}\left(N^{-4}\right)}{\text { [Maldacer }}
$$

[Maldacena, Shenker, Stanford 1503.01406]
Lyapunov exponent

Butterfly velocity

- The squared commutator

$$
\begin{aligned}
C\left(t_{w},|x-y|\right) & =\operatorname{tr}\left\{\rho(\beta)\left[W_{x}\left(t_{w}\right), W_{y}\right]^{\dagger}\left[W_{x}\left(t_{w}\right), W_{y}\right]\right\} \\
& =2-2 \operatorname{Re}\langle T F D| W_{y} W_{x}\left(t_{w}\right) W_{y} W_{x}\left(t_{w}\right)|T F D\rangle
\end{aligned}
$$

Butterfly velocity

- The squared commutator

$$
\begin{aligned}
C\left(t_{w},|x-y|\right) & =\operatorname{tr}\left\{\rho(\beta)\left[W_{x}\left(t_{w}\right), W_{y}\right]^{\dagger}\left[W_{x}\left(t_{w}\right), W_{y}\right]\right\} \\
& =2-2 \operatorname{Re}\langle T F D| W_{y} W_{x}\left(t_{w}\right) W_{y} W_{x}\left(t_{w}\right)|T F D\rangle \\
& \sim \frac{1}{N^{2}} e^{\lambda\left(t-\frac{|x-y|}{v_{B}}\right)}
\end{aligned}
$$

Butterfly velocity

- The squared commutator

$$
\begin{aligned}
C\left(t_{w},|x-y|\right) & =\operatorname{tr}\left\{\rho(\beta)\left[W_{x}\left(t_{w}\right), W_{y}\right]^{\dagger}\left[W_{x}\left(t_{w}\right), W_{y}\right]\right\} \\
& =2-2 \operatorname{Re}\langle T F D| W_{y} W_{x}\left(t_{w}\right) W_{y} W_{x}\left(t_{w}\right)|T F D\rangle \\
& \sim \frac{1}{N^{2}} e^{\lambda\left(t-\frac{|x-y|}{v_{B}}\right)}
\end{aligned}
$$

Butterfly speed

[Roberts, Shenker, Stanford, 1409.8180]

Butterfly velocity

- The squared commutator

$$
C\left(t_{w},|x-y|\right)=\operatorname{tr}\left\{\rho(\beta)\left[W_{x}\left(t_{w}\right), W_{y}\right]^{\dagger}\left[W_{x}\left(t_{w}\right), W_{y}\right]\right\}
$$

$$
=2-2 \operatorname{Re}\langle T F D| W_{y} W_{x}\left(t_{w}\right) W_{y} W_{x}\left(t_{w}\right)|T F D\rangle
$$

$$
\sim \frac{1}{N^{2}} e^{\lambda\left(t-\frac{|x-y|}{v_{B}}\right)} \sim e^{\lambda\left(t-t^{*}-\frac{|x-y|}{v_{B}}\right)}
$$

Butterfly speed

$$
t^{*} \sim \frac{\beta}{2 \pi} \log N^{2}
$$

[Roberts, Shenker, Stanford, 1409.8180]

Butterfly velocity

- The squared commutator

$$
C\left(t_{w},|x-y|\right)=\operatorname{tr}\left\{\rho(\beta)\left[W_{x}\left(t_{w}\right), W_{y}\right]^{\dagger}\left[W_{x}\left(t_{w}\right), W_{y}\right]\right\}
$$

$$
=2-2 \operatorname{Re}\langle T F D| W_{y} W_{x}\left(t_{w}\right) W_{y} W_{x}\left(t_{w}\right)|T F D\rangle
$$

$$
\sim \frac{1}{N^{2}} e^{\lambda\left(t-\frac{|x-y|}{v_{B}}\right)} \sim e^{\lambda\left(t-t^{*}-\frac{|x-y|}{v_{B}}\right)}
$$

Butterfly speed
[Roberts, Shenker, Stanford, 1409.8180]
$t^{*} \sim \frac{\beta}{2 \pi} \log N^{2}$

OTOC and v_{B} from experiment

Ising spin chain on a nuclear magnetic resonance (NMR) quantum simulator

[Li, Fan Wang, Ye, Zeng, Zhai, Peng, Du 1609.01246]

Several other experiments:
(a)

[Garttner, Bohnet, Safavi, Wall, Bollinger, Rey 1608.08938]
[Cao, Zhu, Del Campo 2111.12475]

OTOC from eternal black hole

$\left\langle V_{L} W_{R}(t) V_{R} W_{L}(t)\right\rangle$

[Maldacena 0106112]
[Van Raamsdonk 1005.3035]
[Shenker, Stanford 1412.6987]

OTOC from eternal black hole

$\left\langle V_{L} W_{R}(t) V_{R} W_{L}(t)\right\rangle$

[Maldacena 0106112]
[Van Raamsdonk 1005.3035]
[Shenker, Stanford 1412.6987]

- More generally, we consider: $\left\langle V_{x_{1}}\left(t_{1}\right) W_{x_{2}}\left(t_{2}\right) V_{x_{3}}\left(t_{3}\right) W_{x_{4}}\left(t_{4}\right)\right\rangle$

OTOC from eternal black hole

$\left\langle V_{L} W_{R}(t) V_{R} W_{L}(t)\right\rangle$

[Maldacena 0106112]
[Van Raamsdonk 1005.3035]
[Shenker, Stanford 1412.6987]

- More generally, we consider: $\left\langle V_{x_{1}}\left(t_{1}\right) W_{x_{2}}\left(t_{2}\right) V_{x_{3}}\left(t_{3}\right) W_{x_{4}}\left(t_{4}\right)\right\rangle$
- Is equivalent to the overlap of $|\Psi\rangle=W\left(t_{2}\right)^{\dagger} V\left(t_{1}\right)^{\dagger}|T F D\rangle, \quad\left|\Psi^{\prime}\right\rangle=V\left(t_{3}\right) W\left(t_{4}\right)|T F D\rangle$

OTOC from eternal black hole

$\left\langle V_{L} W_{R}(t) V_{R} W_{L}(t)\right\rangle$

[Maldacena 0106112]
[Van Raamsdonk 1005.3035]
[Shenker, Stanford 1412.6987]

- More generally, we consider: $\left\langle V_{x_{1}}\left(t_{1}\right) W_{x_{2}}\left(t_{2}\right) V_{x_{3}}\left(t_{3}\right) W_{x_{4}}\left(t_{4}\right)\right\rangle$
- Is equivalent to the overlap of $|\Psi\rangle=W\left(t_{2}\right)^{\dagger} V\left(t_{1}\right)^{\dagger}|T F D\rangle, \quad\left|\Psi^{\prime}\right\rangle=V\left(t_{3}\right) W\left(t_{4}\right)|T F D\rangle$

OTOC from eternal black hole

$\left\langle V_{L} W_{R}(t) V_{R} W_{L}(t)\right\rangle$

[Maldacena 0106112]
[Van Raamsdonk 1005.3035]
[Shenker, Stanford 1412.6987]

- More generally, we consider: $\left\langle V_{x_{1}}\left(t_{1}\right) W_{x_{2}}\left(t_{2}\right) V_{x_{3}}\left(t_{3}\right) W_{x_{4}}\left(t_{4}\right)\right\rangle$
- Is equivalent to the overlap of $|\Psi\rangle=W\left(t_{2}\right)^{\dagger} V\left(t_{1}\right)^{\dagger}|T F D\rangle, \quad\left|\Psi^{\prime}\right\rangle=V\left(t_{3}\right) W\left(t_{4}\right)|T F D\rangle$

- In the Eikonal approximation, one should calculate "the phase shift".

OTOC from eternal black hole

[Maldacena 0106112]
[Van Raamsdonk 1005.3035]
[Shenker, Stanford 1412.6987]

$$
\left\langle V_{L} W_{R}(t) V_{R} W_{L}(t)\right\rangle
$$

- More generally, we consider: $\left\langle V_{x_{1}}\left(t_{1}\right) W_{x_{2}}\left(t_{2}\right) V_{x_{3}}\left(t_{3}\right) W_{x_{4}}\left(t_{4}\right)\right\rangle$
- Is equivalent to the overlap of $|\Psi\rangle=W\left(t_{2}\right)^{\dagger} V\left(t_{1}\right)^{\dagger}|T F D\rangle, \quad\left|\Psi^{\prime}\right\rangle=V\left(t_{3}\right) W\left(t_{4}\right)|T F D\rangle$

- In the Eikonal approximation, one should calculate "the phase shift".

$$
\left|p_{1}^{u}, x_{1} ; p_{2}^{v}, x_{2}\right\rangle_{o u t} \approx e^{i \delta(s, b)}\left|p_{1}^{u}, x_{1} ; p_{2}^{v}, x_{2}\right\rangle_{\text {in }}+|\chi\rangle
$$

Shock wave geometry in AdS

[Shenker, Stanford 1306.0622]
[Sfetsos 9408169]

- If a "small" quanta of energy E is thrown into the BH

Shock wave geometry in AdS

[Shenker, Stanford 1306.0622]
[Sfetsos 9408169]
[Aichelburg, Sexl 1971]

- If a "small" quanta of energy E is thrown into the BH

- The geometry eventually will be affected, because of blueshift

$$
T_{u u}=\frac{E}{\ell_{A d S}^{d+1}} e^{2 \pi t_{w} / \beta} \delta(u) a_{0}(x)
$$

Shock wave geometry in AdS

[Shenker, Stanford 1306.0622]

- If a "small" quanta of energy E is thrown into the BH

- The geometry eventually will be affected, because of blueshift

$$
T_{u u}=\frac{E}{\ell_{A d S}^{d+1}} e^{2 \pi t_{w} / \beta} \delta(u) a_{0}(x)
$$

Shock wave geometry in AdS

[Shenker, Stanford 1306.0622]

- If a "small" quanta of energy E is thrown into the BH

- The geometry eventually will be affected, because of blueshift

$$
T_{u u}=\frac{E}{\ell_{A d S}^{d+1}} e^{2 \pi t_{w} / \beta} \delta(u) a_{0}(x)
$$

Shock wave geometry in AdS

[Shenker, Stanford 1306.0622]
[Sfetsos 9408169]

- If a "small" quanta of energy E is thrown into the BH

- The geometry eventually will be affected, because of blueshift

$$
T_{u u}=\frac{E}{\ell_{A d S}^{d+1}} e^{2 \pi t_{w} / \beta} \delta(u) a_{0}(x)
$$

Shock wave geometry in AdS

[Shenker, Stanford 1306.0622]
[Sfetsos 9408169]

- If a "small" quanta of energy E is thrown into the BH

- The geometry eventually will be affected, because of blueshift

$$
T_{u u}=\frac{E}{\ell_{A d S}^{d+1}} e^{2 \pi t_{w} / \beta} \delta(u) a_{0}(x)
$$

Shock wave geometry in AdS

[Shenker, Stanford 1306.0622]

- If a "small" quanta of energy E is thrown into the BH

- The geometry eventually will be affected, because of blueshift

$$
T_{u u}=\frac{E}{\ell_{A d S}^{d+1}} e^{2 \pi t_{w} / \beta} \delta(u) a_{0}(x)
$$

- It is shown that [Kabat, Ortiz 9203082]

$$
\delta(s, b)=S_{c l}
$$

Shock wave geometry in AdS

[Shenker, Stanford 1306.0622]

- If a "small" quanta of energy E is thrown into the BH

- The geometry eventually will be affected, because of blueshift

$$
T_{u u}=\frac{E}{\ell_{A d S}^{d+1}} e^{2 \pi t_{w} / \beta} \delta(u) a_{0}(x)
$$

- It is shown that [kabat, Ortir 9203082]

$$
\delta(s, b)=S_{c l}=\frac{1}{2} \int d^{d+1} x \sqrt{-g} h_{u u} T^{u u}
$$

Shock wave geometry in AdS

[Shenker, Stanford 1306.0622]

- If a "small" quanta of energy E is thrown into the BH

- The geometry eventually will be affected, because of blueshift

$$
T_{u u}=\frac{E}{\ell_{A d S}^{d+1}} e^{2 \pi t_{w} / \beta} \delta(u) a_{0}(x)
$$

- It is shown that [kabat, Ortir 9203082]

$$
\delta(s, b)=S_{c l}=\frac{1}{2} \int d^{d+1} x \sqrt{-g} h_{u u} T^{u u} \sim \frac{4 \pi G_{N}}{r_{0}^{d-3}} E^{2} e^{\frac{2 \pi}{\beta} t_{w}} h_{u u}\left(x_{12}\right)
$$

Butterfly velocity from BH

[Shenker, Stanford 1306.0622]
[Shenker, Stanford 1412.6987]

- Putting $T_{u u}=\frac{E}{\ell_{\Delta u S}^{d+1}+} \tau^{2 \pi t_{u} / \beta} \delta \delta(u) a_{0}(x)$ on the RHS of Einstein equations
- Applying $v \rightarrow v+h(x) \delta(u)$

Butterfly velocity from BH

[Shenker, Stanford 1306.0622]
[Shenker, Stanford 1412.6987]

- Putting $T_{u u}=\frac{E}{\ell_{\Delta u S}^{d+1}+} \tau^{2 \pi t_{u} / \beta} \delta \delta(u) a_{0}(x)$ on the RHS of Einstein equations
- Applying $v \rightarrow v+h(x) \delta(u)$

One arrives at $\quad\left(-\partial_{2} \partial_{i}+\mu^{2}\right) h(x)=\frac{16 \pi G_{N}}{A(0) \ell_{A d S}^{N-1}} E e^{\frac{2 \pi}{t} t w_{0}} a_{0}(x)$

Butterfly velocity from BH

[Shenker, Stanford 1306.0622]
[Shenker, Stanford 1412.6987]

- Applying $v \rightarrow v+h(x) \delta(u)$

- Which for $|x| \gg 1 \quad$ has the solution

$$
h(x)=\frac{e^{\frac{2 \pi}{y}\left(t_{w}-t_{u}\right)-\mu|x|}}{|x|^{\frac{L_{2}^{2}}{2}}}
$$

Butterfly velocity from BH

[Shenker, Stanford 1306.0622]
[Shenker, Stanford 1412.6987]

- Applying $v \rightarrow v+h(x) \delta(u)$

One arrives at $\quad\left(-\partial_{2} \partial_{i}+\mu^{2}\right) h(x)=\frac{16 \pi G_{N}}{A(0) \ell_{A d S}^{N-1}} E e^{\frac{2 \pi}{t} t w_{0}} a_{0}(x)$

- Which for $|x| \gg 1 \quad$ has the solution

$$
h(x)=\frac{e^{\frac{2 \pi}{\bar{p}}\left(t_{0}-t_{t}\right)-\mu|x|}}{|x|^{\frac{d_{2}^{2}}{2}}}
$$

- Already know

$$
C(t)=2-2\langle W(t, \vec{x}) V(0) W(t, \vec{x}) V(0)\rangle_{\beta} \sim \frac{1}{N} e^{\lambda\left(t-\frac{x}{v_{B}}\right)}
$$

Butterfly velocity from BH

[Shenker, Stanford 1306.0622]
[Shenker, Stanford 1412.6987]

- Applying $v \rightarrow v+h(x) \delta(u)$

One arrives at $\quad\left(-\partial_{2} \partial_{i}+\mu^{2}\right) h(x)=\frac{16 \pi G_{N}}{A(0) \ell_{A d S}^{N-1}} E e^{\frac{2 \pi}{t} t w_{0}} a_{0}(x)$

- Which for $\quad|x| \gg 1$ has the solution $\quad h(x)=\frac{e^{\frac{2 \pi}{f}(t w-t .)-\mu|x|}}{|x|^{\frac{L_{2}-2}{2}}}$
- Already know

$$
C(t)=2-2\langle W(t, \vec{x}) V(0) W(t, \vec{x}) V(0)\rangle_{\beta} \sim \frac{1}{N} e^{\lambda\left(t-\frac{x}{v_{B}}\right)}
$$

By comparison:
> One finds

$$
\lambda=2 \pi T \quad v_{B}=\sqrt{\frac{D-1}{2(D-2)}}
$$

Our goal

We want to calculate vB

in a holographic chiral system in the presence of a B

Our goal

We want to calculate vB

in a holographic chiral system in the presence of a B

$$
S=\frac{1}{16 \pi G_{5}} \int_{\mathcal{M}} d^{5} x \sqrt{-g}\left(R+\frac{12}{L^{2}}-F^{M N} F_{M N}\right)
$$

[Erdmenger, Haack, Kaminski, Yarom 0809.2488]
[Banerjee, Bhattacharya, Bhattacharya, Dutta, Loganayagam, Surowka 0809.2596]

Our goal

We want to calculate vB

in a holographic chiral system in the presence of a B

$$
S=\frac{1}{16 \pi G_{5}} \int_{\mathcal{M}} d^{5} x \sqrt{-g}\left(R+\frac{12}{L^{2}}-F^{M N} F_{M N}+\frac{\kappa}{3} \epsilon^{\rho \mu \nu \alpha \beta} A_{\rho} F_{\mu \nu} F_{\alpha \beta}\right)
$$

[Erdmenger, Haack, Kaminski, Yarom 0809.2488]
[Banerjee, Bhattacharya, Bhattacharya, Dutta, Loganayagam, Surowka 0809.2596] [Son, Surowka 0906.5044]
[Gynther, Landsteiner, Pena-Benitez, Rebhan 1005.2587]
[Landsteiner, Megias, Pena-Benitez 1103.5006]
[Megias, Pena-Benitez 1304.5529]

$$
\partial_{\mu} J^{\mu}=0
$$

$$
\partial_{\mu} T^{\mu \nu}=0
$$

Our goal

We want to calculate vB

in a holographic chiral system in the presence of a B

$$
S=\frac{1}{16 \pi G_{5}} \int_{\mathcal{M}} d^{5} x \sqrt{-g}\left(R+\frac{12}{L^{2}}-F^{M N} F_{M N}+\frac{\kappa}{3} \epsilon^{\rho \mu \nu \alpha \beta} A_{\rho} F_{\mu \nu} F_{\alpha \beta}\right)
$$

[Erdmenger, Haack, Kaminski, Yarom 0809.2488]
[Banerjee, Bhattacharya, Bhattacharya, Dutta, Loganayagam, Surowka 0809.2596] [Son, Surowka 0906.5044]
[Gynther, Landsteiner, Pena-Benitez, Rebhan 1005.2587]
[Landsteiner, Megias, Pena-Benitez 1103.5006]
[Megias, Pena-Benitez 1304.5529]
[Witten 1909.08875]

$$
\partial_{\mu} J^{\mu}=0
$$

Anomaly inflow

$$
\partial_{\mu} T^{\mu \nu}=0
$$

Our goal

We want to calculate vB

in a holographic chiral system in the presence of a B

$$
S=\frac{1}{16 \pi G_{5}} \int_{\mathcal{M}} d^{5} x \sqrt{-g}\left(R+\frac{12}{L^{2}}-F^{M N} F_{M N}+\frac{\kappa}{3} \epsilon^{\rho \mu \nu \alpha \beta} A_{\rho} F_{\mu \nu} F_{\alpha \beta}\right)
$$

[Erdmenger, Haack, Kaminski, Yarom 0809.2488]
[Banerjee, Bhattacharya, Bhattacharya, Dutta, Loganayagam, Surowka 0809.2596] [Son, Surowka 0906.5044]
[Gynther, Landsteiner, Pena-Benitez, Rebhan 1005.2587]
[Landsteiner, Megias, Pena-Benitez 1103.5006]
[Megias, Pena-Benitez 1304.5529]
[Witten 1909.08875]

$$
\begin{aligned}
& \partial_{\mu} J^{\mu}=C E \cdot B \\
& \partial_{\mu} T^{\mu \nu}=0
\end{aligned}
$$

Our goal

We want to calculate vB

in a holographic chiral system in the presence of a B

$$
S=\frac{1}{16 \pi G_{5}} \int_{\mathcal{M}} d^{5} x \sqrt{-g}\left(R+\frac{12}{L^{2}}-F^{M N} F_{M N}+\frac{\kappa}{3} \epsilon^{\rho \mu \nu \alpha \beta} A_{\rho} F_{\mu \nu} F_{\alpha \beta}\right)
$$

Our goal

We want to calculate vB

in a holographic chiral system in the presence of a B

$$
S=\frac{1}{16 \pi G_{5}} \int_{\mathcal{M}} d^{5} x \sqrt{-g}\left(R+\frac{12}{L^{2}}-F^{M N} F_{M N}+\frac{\kappa}{3} \epsilon^{\rho \mu \nu \alpha \beta} A_{\rho} F_{\mu \nu} F_{\alpha \beta}\right)
$$

[Erdmenger, Haack, Kaminski, Yarom 0809.2488]
[Banerjee, Bhattacharya, Bhattacharya, Dutta, Loganayagam, Surowka 0809.2596] [Son, Surowka 0906.5044]
[Gynther, Landsteiner, Pena-Benitez, Rebhan 1005.2587]
[Landsteiner, Megias, Pena-Benitez 1103.5006]
[Megias, Pena-Benitez 1304.5529]
[Witten 1909.08875]

$$
\begin{aligned}
& \partial_{\mu} J^{\mu}=C E \cdot B \\
& \partial_{\mu} T^{\mu \nu}=0
\end{aligned}
$$

- What we need to find: the function $h(x)$ on this background

BH solution

EOM:

$$
\begin{aligned}
\nabla_{\nu} F^{\nu \mu}+\frac{\kappa}{4} \epsilon^{\mu \nu \rho \alpha \beta} F_{\nu \rho} F_{\alpha \beta} & =0 \\
R_{\mu \nu}+4 g_{\mu \nu}+\frac{1}{3} F^{\alpha \beta} F_{\alpha \beta} g_{\mu \nu}+2 F_{\mu \rho} F_{\nu}^{\rho} & =0
\end{aligned}
$$

Parametrizing the Solution: $\quad d s^{2}=\frac{d r^{2}}{f(r)}-f(r) d t^{2}+e^{2 W_{T}(r)}\left(d x_{1}^{2}+d x_{2}^{2}\right)+e^{2 W_{L}(r)}\left(d x_{3}+C(r) d t\right)^{2}$

$$
F=E(r) d r \wedge d t+B d x_{1} \wedge d x_{2}+P(r) d x_{3} \wedge d r
$$

[D'Hoker, Kraus 1909.08875]

BH solution

EOM:

$$
\begin{aligned}
\nabla_{\nu} F^{\nu \mu}+\frac{\kappa}{4} \epsilon^{\mu \mu^{\mu o \beta}} F_{F_{\nu}} F_{\alpha \beta} & =0 \\
R_{\mu \nu \nu}+4 g_{\mu \nu}+\frac{1}{3} F^{a \beta} F_{\alpha \beta} g_{\mu \nu}+2 F_{\mu \nu} F_{\nu}^{\beta} & =0
\end{aligned}
$$

Parametrizing the Solution: $d s^{2}=\frac{d r^{2}}{f(r)}-f(r) d t^{2}+e^{2 W_{x}(r)}\left(d x_{1}^{2}+d x_{2}^{2}\right)+e^{2 W_{L}(r)}\left(d x_{3}+C(r) d t\right)^{2}$

$$
F=E(r) d r \wedge d t+B d x_{1} \wedge d x_{2}+P(r) d x_{3} \wedge d r
$$

[D'Hoker, Kraus 1909.08875]

$$
\begin{aligned}
U & =U_{0}+B^{2} U_{2} & & E=E_{0}+B^{2} E_{2} \\
W & =W_{0}+B^{2} W_{2} & & C=C_{0}+B C_{1} \\
V & =V_{0}+B^{2} V_{2} & & P=P_{0}+B P_{1}
\end{aligned}
$$

BH solution

EOM:

$$
\begin{aligned}
\nabla_{\nu} F^{\nu \mu}+\frac{\kappa}{4} \epsilon^{\mu \nu \rho \alpha \beta} F_{\nu \rho} F_{\alpha \beta} & =0 \\
R_{\mu \nu}+4 g_{\mu \nu}+\frac{1}{3} F^{\alpha \beta} F_{\alpha \beta} g_{\mu \nu}+2 F_{\mu \rho} F_{\nu}^{\rho} & =0
\end{aligned}
$$

Parametrizing the Solution: $\quad d s^{2}=\frac{d r^{2}}{f(r)}-f(r) d t^{2}+e^{2 W_{T}(r)}\left(d x_{1}^{2}+d x_{2}^{2}\right)+e^{2 W_{L}(r)}\left(d x_{3}+C(r) d t\right)^{2}$

$$
F=E(r) d r \wedge d t+B d x_{1} \wedge d x_{2}+P(r) d x_{3} \wedge d r
$$

[D'Hoker, Kraus 1909.08875]

$$
\begin{array}{rlr}
U & =U_{0}+B^{2} U_{2} \\
W & =W_{0}+B^{2} W_{2} & \\
V=E_{0}+B^{2} E_{2} \\
=V_{0}+B^{2} V_{2} & C=C_{0}+B C_{1} \\
& P=P_{0}+B P_{1}
\end{array} \quad \square \quad \begin{aligned}
& C_{1}(r)=-k Q^{2} \frac{U_{0}(r)}{r^{2}} \int_{\infty}^{r} \frac{d r^{\prime}}{r^{\prime} U_{0}^{2}\left(r^{\prime}\right)}\left(\frac{1}{r^{\prime 2}}-\frac{1}{r_{+}^{2}}\right)^{2}, \\
& P_{1}(r)=\frac{\rho}{r U_{0}(r)}\left(C_{1}(r)+\frac{k}{r^{2}}-\frac{k}{r_{+}^{2}}\right)
\end{aligned}
$$

BH solution

EOM:

$$
\begin{aligned}
\nabla_{\nu} F^{\nu \mu}+\frac{\kappa}{4} \epsilon^{\mu \nu \rho \alpha \beta} F_{\nu \rho} F_{\alpha \beta} & =0 \\
R_{\mu \nu}+4 g_{\mu \nu}+\frac{1}{3} F^{\alpha \beta} F_{\alpha \beta} g_{\mu \nu}+2 F_{\mu \rho} F_{\nu}^{\rho} & =0
\end{aligned}
$$

Parametrizing the Solution: $\quad d s^{2}=\frac{d r^{2}}{f(r)}-f(r) d t^{2}+e^{2 W_{T}(r)}\left(d x_{1}^{2}+d x_{2}^{2}\right)+e^{2 W_{L}(r)}\left(d x_{3}+C(r) d t\right)^{2}$

$$
F=E(r) d r \wedge d t+B d x_{1} \wedge d x_{2}+P(r) d x_{3} \wedge d r
$$

[D'Hoker, Kraus 1909.08875]

$$
\begin{array}{cll}
U=U_{0}+B^{2} U_{2} & E=E_{0}+B^{2} E_{2} \\
W=W_{0}+B^{2} W_{2} \\
V & =V_{0}+B^{2} V_{2} & C=C_{0}+B C_{1} \\
P=P_{0}+B P_{1}
\end{array} \quad, \quad \begin{aligned}
& C_{1}(r)=-k Q^{2} \frac{U_{0}(r)}{r^{2}} \int_{\infty}^{r} \frac{d r^{\prime}}{r^{\prime} U_{0}^{2}\left(r^{\prime}\right)}\left(\frac{1}{r^{\prime 2}}-\frac{1}{r_{+}^{2}}\right)^{2} \\
& P_{1}(r)=\frac{\rho}{r U_{0}(r)}\left(C_{1}(r)+\frac{k}{r^{2}}-\frac{k}{r_{+}^{2}}\right)
\end{aligned}
$$

$S_{2}(r)=2 \int_{\infty}^{r} d r^{\prime}\left(\frac{1}{r}-\frac{1}{r^{\prime}}\right) P_{1}\left(r^{\prime}\right)^{2}$,
$E_{2}(r)=-\frac{Q}{r^{3}} S_{2}(r)-P_{1}(r) C_{1}(r)-\frac{2 k}{r^{3}} \int_{\infty}^{r} d r^{\prime} P_{1}\left(r^{\prime}\right)$,
$U_{2}(r)=\int_{\infty}^{r} \frac{d r^{\prime \prime}}{r^{\prime \prime 3}} \int_{r_{+}}^{r^{\prime \prime}} d r^{\prime} X\left(r^{\prime}\right)-\frac{a_{3}}{2 r^{2}}$,
$T_{2}(r)=\int_{\infty}^{r} d r^{\prime \prime} \frac{1}{r^{\prime \prime 3} U_{0}\left(r^{\prime \prime}\right)} \int_{r_{+}}^{r^{\prime \prime}} d r^{\prime}\left(\frac{1}{2} r^{\prime 5}\left(\frac{d C_{1}\left(r^{\prime}\right)}{d r^{\prime}}\right)^{2}+2 r^{\prime} U_{0}\left(r^{\prime}\right)\left(P_{1}\left(r^{\prime}\right)\right)^{2}-\frac{2}{r^{\prime}}\right)$,

BH solution

EOM:

$$
\begin{aligned}
\nabla_{\nu} F^{\nu \mu}+\frac{\kappa}{4} \epsilon^{\mu \nu \rho \alpha \beta} F_{\nu \rho} F_{\alpha \beta} & =0 \\
R_{\mu \nu}+4 g_{\mu \nu}+\frac{1}{3} F^{\alpha \beta} F_{\alpha \beta} g_{\mu \nu}+2 F_{\mu \rho} F_{\nu}^{\rho} & =0
\end{aligned}
$$

Parametrizing the Solution: $\quad d s^{2}=\frac{d r^{2}}{f(r)}-f(r) d t^{2}+e^{2 W_{T}(r)}\left(d x_{1}^{2}+d x_{2}^{2}\right)+e^{2 W_{L}(r)}\left(d x_{3}+C(r) d t\right)^{2}$

$$
F=E(r) d r \wedge d t+B d x_{1} \wedge d x_{2}+P(r) d x_{3} \wedge d r
$$

[D'Hoker, Kraus 1909.08875]

$$
\begin{array}{rlrl}
U & =U_{0}+B^{2} U_{2} \\
W & =W_{0}+B^{2} W_{2} \\
V & =V_{0}+B^{2} V_{2} & & E=E_{0}+B^{2} E_{2} \\
& C=C_{0}+B C_{1} \\
P=P_{0}+B P_{1}
\end{array} \quad \square \quad \begin{aligned}
& C_{1}(r)=-k Q^{2} \frac{U_{0}(r)}{r^{2}} \int_{\infty}^{r} \frac{d r^{\prime}}{r^{\prime} U_{0}^{2}\left(r^{\prime}\right)}\left(\frac{1}{r^{\prime 2}}-\frac{1}{r_{+}^{2}}\right)^{2}, \\
& P_{1}(r)=\frac{\rho}{r U_{0}(r)}\left(C_{1}(r)+\frac{k}{r^{2}}-\frac{k}{r_{+}^{2}}\right),
\end{aligned}
$$

$S_{2}(r)=2 \int_{\infty}^{r} d r^{\prime}\left(\frac{1}{r}-\frac{1}{r^{\prime}}\right) P_{1}\left(r^{\prime}\right)^{2}$,
$E_{2}(r)=-\frac{Q}{r^{3}} S_{2}(r)-P_{1}(r) C_{1}(r)-\frac{2 k}{r^{3}} \int_{\infty}^{r} d r^{\prime} P_{1}\left(r^{\prime}\right)$,
$U_{2}(r)=\int_{\infty}^{r} \frac{d r^{\prime \prime}}{r^{\prime \prime 3}} \int_{r_{+}}^{r^{\prime \prime}} d r^{\prime} X\left(r^{\prime}\right)-\frac{a_{3}}{2 r^{2}}, \quad \quad V_{2}(r)=\frac{S_{2}(r)+T_{2}(r)}{3}, \quad W_{2}(r)=\frac{S_{2}(r)-2 T_{2}(r)}{3}$
$T_{2}(r)=\int_{\infty}^{r} d r^{\prime \prime} \frac{1}{r^{\prime \prime 3} U_{0}\left(r^{\prime \prime}\right)} \int_{r_{+}}^{r^{\prime \prime}} d r^{\prime}\left(\frac{1}{2} r^{\prime 5}\left(\frac{d C_{1}\left(r^{\prime}\right)}{d r^{\prime}}\right)^{2}+2 r^{\prime} U_{0}\left(r^{\prime}\right)\left(P_{1}\left(r^{\prime}\right)\right)^{2}-\frac{2}{r^{\prime}}\right)$,

What we are going to do:

- In [NA, Ghazi, Taghinavaz, Tavakol, 1812.11310],
in addition to perturbation over $b=\frac{B}{(\pi T)^{2}}$
we consider a $2^{\text {nd }}$ expansion over $\nu=\frac{\mu}{\pi T}$

What we are going to do:

- In [NA, Ghazi, Taghinavaz, Tavakol, 1812.11310],
in addition to perturbation over $b=\frac{B}{(\pi T)^{2}}$ we consider a $2^{\text {nd }}$ expansion over $\nu=\frac{\mu}{\pi T}$
$d s^{2}=\frac{d r^{2}}{f(r)}-f(r) d t^{2}+e^{2 W_{T}(r)}\left(d x_{1}^{2}+d x_{2}^{2}\right)+e^{2 W_{L}(r)}\left(d x_{3}+C(r) d t\right)^{2}$
$F=E(r) d r \wedge d t+B d x_{1} \wedge d x_{2}+P(r) d x_{3} \wedge d r$

What we are going to do:

- In [NA, Ghazi, Taghinavaz, Tavakol, 1812.11310], in addition to perturbation over $b=\frac{B}{(\pi T)^{2}}$ we consider a $2^{\text {nd }}$ expansion over $\nu=\frac{\mu}{\pi T}$

$$
\left.d s^{2}=\frac{d r^{2}}{f(r)}-f(r) d t^{2}+e^{e W_{r}(t)\left(d x_{1}^{2}+d x_{2}^{2}\right)}\right)+e^{2 W_{1}(r)\left(d d_{3}+C(r) d t\right)^{2}}
$$

$F=E(r) d r \wedge d t+B d x_{1} \wedge d x_{2}+P(r) d x_{3} \wedge d r$

- For example, near the horizon, $f(r)$ is given by

$$
\begin{gathered}
4 \pi T\left(r-r_{h}\right) \\
+\frac{1}{2}\left(-4+\frac{56 \nu^{2}}{3}+b^{2}\left(\frac{8}{9} \nu^{2}\left(42 \kappa^{2}(\log (2)-1)-17\right)+\frac{10}{3}\right)\right)\left(r-r_{h}\right)^{2} \\
+\frac{1}{6}\left(\frac{24}{\pi T}-\frac{144 \nu^{2}}{\pi T}+b^{2}\left(\frac{8 \nu^{2}\left(\kappa^{2}(363-324 \log (2))+155\right)}{9 \pi T}-\frac{64}{3 \pi T}\right)\right)\left(r-r_{h}\right)^{3}
\end{gathered}
$$

What we are going to do:

- In [NA, Ghazi, Taghinavaz, Tavakol, 1812.11310], in addition to perturbation over $\quad b=\frac{B}{(\pi T)^{2}}$ we consider a $2^{\text {nd }}$ expansion over $\nu=\frac{\mu}{\pi T}$

$$
\left.d s^{2}=\frac{d r^{2}}{f(r)}-f(r) d t^{2}+e^{W W_{r}(t)\left(d x_{1}^{2}+d x_{2}^{2}\right)}\right)+e^{2 W_{1}(t)\left(d x_{3}+C(r) d t\right)^{2}}
$$

$F=E(r) d r \wedge d t+B d x_{1} \wedge d x_{2}+P(r) d x_{3} \wedge d r$

- For example, near the horizon, $f(r)$ is given by

$$
\begin{gathered}
4 \pi T\left(r-r_{h}\right) \\
+\frac{1}{2}\left(-4+\frac{56 \nu^{2}}{3}+b^{2}\left(\frac{8}{9} \nu^{2}\left(42 \kappa^{2}(\log (2)-1)-17\right)+\frac{10}{3}\right)\right)\left(r-r_{h}\right)^{2} \\
+\frac{1}{6}\left(\frac{24}{\pi T}-\frac{144 \nu^{2}}{\pi T}+b^{2}\left(\frac{8 \nu^{2}\left(\kappa^{2}(363-324 \log (2))+155\right)}{9 \pi T}-\frac{64}{3 \pi T}\right)\right)\left(r-r_{h}\right)^{3}
\end{gathered}
$$

We perform calculations fully analytically
in a double expansion over ν and b.

Shockwave geometry

Applying $\quad V \rightarrow V+h(x) \delta(U)$

$$
\begin{aligned}
d s_{\text {future }}^{2} & =d s_{\text {past }}^{2}-A(U V) h(x) \delta(U) d U^{2}-\frac{D(U V)}{V} h(x) \delta(U) d U d x_{3} \\
F_{\text {future }} & =F_{\text {past }}-\frac{H(U V)}{V} h(x) \delta(U) d x_{3} \wedge d U
\end{aligned}
$$

Shockwave geometry

Applying $\quad V \rightarrow V+h(x) \delta(U)$

$$
\begin{aligned}
d s_{\text {future }}^{2} & =d s_{\text {past }}^{2}-A(U V) h(x) \delta(U) d U^{2}-\frac{D(U V)}{V} h(x) \delta(U) d U d x_{3} \\
F_{\text {future }} & =F_{\text {past }}-\frac{H(U V)}{V} h(x) \delta(U) d x_{3} \wedge d U
\end{aligned}
$$

- Einstein equations then give

$$
\begin{gathered}
\left(\partial_{\|}^{2}+\mathfrak{q}^{2} \partial_{\perp}^{2}+2 \mathfrak{p} \vec{b} \cdot \vec{\partial}-m_{0}^{2}\right) h(x) \sim \frac{2 B_{L}(0)}{A(0)} E e^{\frac{1}{2} \tilde{f}^{\prime}\left(r_{h}\right) t_{w}} \delta^{3}(\vec{x}) \\
\mathfrak{p}=(\pi T) \kappa(\log (4)-1) \nu^{2} \\
m_{0}^{2}=(\pi T)^{2}\left[6+36 \nu^{2}-\left(\frac{\pi^{2}}{6}-1\right) b^{2}-\left(\pi^{2}+\frac{92}{9}+56 \kappa^{2}(\log (2)-1)\right) \nu^{2} b^{2}\right]
\end{gathered}
$$

Shockwave geometry

Applying $V \rightarrow V+h(x) \delta(U)$

$$
\begin{aligned}
d s_{\text {future }}^{2} & =d s_{\text {past }}^{2}-A(U V) h(x) \delta(U) d U^{2}-\frac{D(U V)}{V} h(x) \delta(U) d U d x_{3} \\
F_{\text {future }} & =F_{\text {past }}-\frac{H(U V)}{V} h(x) \delta(U) d x_{3} \wedge d U .
\end{aligned}
$$

- Einstein equations then give

$$
\begin{gathered}
\left(\partial_{\|}^{2}+\mathfrak{q}^{2} \partial_{\perp}^{2}+2 \mathfrak{p} \vec{b} \cdot \vec{\partial}-m_{0}^{2}\right) h(x) \sim \frac{2 B_{L}(0)}{A(0)} E e^{\frac{1}{2} \tilde{f}^{\prime}\left(r_{h}\right) t_{w}} \delta^{3}(\vec{x}) \\
\mathfrak{p}=(\pi T) \kappa(\log (4)-1) \nu^{2} \\
m_{0}^{2}=(\pi T)^{2}\left[6+36 \nu^{2}-\left(\frac{\pi^{2}}{6}-1\right) b^{2}-\left(\pi^{2}+\frac{92}{9}+56 \kappa^{2}(\log (2)-1)\right) \nu^{2} b^{2}\right]
\end{gathered}
$$

- Compare it with $\mathrm{b}=\mathrm{nu}=0$

$$
\left(-\partial_{i} \partial_{i}+m_{0}^{2}\right) h(x)=\frac{16 \pi G_{N}}{A(0) \ell_{A d S}^{d-1}} E e^{\frac{2 \pi}{\beta} t_{w}} a_{0}(x)
$$

Shockwave geometry

Applying $V \rightarrow V+h(x) \delta(U)$

$$
\begin{aligned}
d s_{\text {future }}^{2} & =d s_{\text {past }}^{2}-A(U V) h(x) \delta(U) d U^{2}-\frac{D(U V)}{V} h(x) \delta(U) d U d x_{3} \\
F_{\text {future }} & =F_{\text {past }}-\frac{H(U V)}{V} h(x) \delta(U) d x_{3} \wedge d U .
\end{aligned}
$$

- Einstein equations then give

$$
\begin{gathered}
\left(\partial_{\|}^{2}+\mathfrak{q}^{2} \partial_{\perp}^{2}+2 \mathfrak{p} \vec{b} \cdot \vec{\partial}-m_{0}^{2}\right) h(x) \sim \frac{2 B_{L}(0)}{A(0)} E e^{\frac{1}{2} \tilde{f}^{\prime}\left(r_{h}\right) t_{w}} \delta^{3}(\vec{x}) \\
\mathfrak{p}=(\pi T) \kappa(\log (4)-1) \nu^{2} \\
m_{0}^{2}=(\pi T)^{2}\left[6+36 \nu^{2}-\left(\frac{\pi^{2}}{6}-1\right) b^{2}-\left(\pi^{2}+\frac{92}{9}+56 \kappa^{2}(\log (2)-1)\right) \nu^{2} b^{2}\right]
\end{gathered}
$$

- Compare it with $\mathrm{b}=\mathrm{nu}=0$

$$
\left(-\partial_{i} \partial_{i}+m_{0}^{2}\right) h(x)=\frac{16 \pi G_{N}}{A(0) \ell_{A d S}^{d-1}} E e^{\frac{2 \pi}{\beta} t_{w}} a_{0}(x) \quad\left\{\begin{array}{l}
h(x)=\int d^{3} k \tilde{h} e^{i \mathbf{k} \cdot \mathbf{x}}
\end{array}\right.
$$

Shockwave geometry

Applying $\quad V \rightarrow V+h(x) \delta(U)$

$$
\begin{aligned}
d s_{\text {future }}^{2} & =d s_{\text {past }}^{2}-A(U V) h(x) \delta(U) d U^{2}-\frac{D(U V)}{V} h(x) \delta(U) d U d x_{3} \\
F_{\text {future }} & =F_{\text {past }}-\frac{H(U V)}{V} h(x) \delta(U) d x_{3} \wedge d U .
\end{aligned}
$$

- Einstein equations then give

$$
\begin{gathered}
\left(\partial_{\|}^{2}+\mathfrak{q}^{2} \partial_{\perp}^{2}+2 \mathfrak{p} \vec{b} \cdot \vec{\partial}-m_{0}^{2}\right) h(x) \sim \frac{2 B_{L}(0)}{A(0)} E e^{\frac{1}{2} \tilde{f}^{\prime}\left(r_{h}\right) t_{w}} \delta^{3}(\vec{x}) \\
\mathfrak{p}=(\pi T) \kappa(\log (4)-1) \nu^{2} \\
m_{0}^{2}=(\pi T)^{2}\left[6+36 \nu^{2}-\left(\frac{\pi^{2}}{6}-1\right) b^{2}-\left(\pi^{2}+\frac{92}{9}+56 \kappa^{2}(\log (2)-1)\right) \nu^{2} b^{2}\right]
\end{gathered}
$$

- Compare it with $\mathrm{b}=\mathrm{nu}=0$

$$
\left(-\partial_{i} \partial_{i}+m_{0}^{2}\right) h(x)=\frac{16 \pi G_{N}}{A(0) \ell_{A d S}^{d-1}} E e^{\frac{2 \pi}{\beta} t_{w}} a_{0}(x)
$$

$$
\xrightarrow{\substack{h(x)=\int d^{3} k \tilde{h} e^{i \mathbf{k} \cdot \mathbf{x}} \\ h\left(x_{3}\right)=\int d k \tilde{h} e^{i k x_{3}}}}
$$

Shockwave geometry

Applying $\quad V \rightarrow V+h(x) \delta(U)$

$$
\begin{aligned}
d s_{\text {future }}^{2} & =d s_{\text {past }}^{2}-A(U V) h(x) \delta(U) d U^{2}-\frac{D(U V)}{V} h(x) \delta(U) d U d x_{3} \\
F_{\text {future }} & =F_{\text {past }}-\frac{H(U V)}{V} h(x) \delta(U) d x_{3} \wedge d U .
\end{aligned}
$$

- Einstein equations then give

$$
\begin{gathered}
\left(\partial_{\|}^{2}+\mathfrak{q}^{2} \partial_{\perp}^{2}+2 \mathfrak{p} \vec{b} \cdot \vec{\partial}-m_{0}^{2}\right) h(x) \sim \frac{2 B_{L}(0)}{A(0)} E e^{\frac{1}{2} \tilde{f}^{\prime}\left(r_{h}\right) t_{w}} \delta^{3}(\vec{x}) \\
\mathfrak{p}=(\pi T) \kappa(\log (4)-1) \nu^{2} \\
m_{0}^{2}=(\pi T)^{2}\left[6+36 \nu^{2}-\left(\frac{\pi^{2}}{6}-1\right) b^{2}-\left(\pi^{2}+\frac{92}{9}+56 \kappa^{2}(\log (2)-1)\right) \nu^{2} b^{2}\right]
\end{gathered}
$$

- Compare it with $\mathrm{b}=\mathrm{nu}=0$

$$
\left(-\partial_{i} \partial_{i}+m_{0}^{2}\right) h(x)=\frac{16 \pi G_{N}}{A(0) \ell_{A d S}^{d-1}} E e^{\frac{2 \pi}{\beta} t_{w}} a_{0}(x)
$$

Shockwave geometry

Applying $\quad V \rightarrow V+h(x) \delta(U)$

$$
\begin{aligned}
d s_{\text {future }}^{2} & =d s_{\text {past }}^{2}-A(U V) h(x) \delta(U) d U^{2}-\frac{D(U V)}{V} h(x) \delta(U) d U d x_{3} \\
F_{\text {future }} & =F_{\text {past }}-\frac{H(U V)}{V} h(x) \delta(U) d x_{3} \wedge d U .
\end{aligned}
$$

- Einstein equations then give

$$
\begin{gathered}
\left(\partial_{\|}^{2}+\mathfrak{q}^{2} \partial_{\perp}^{2}+2 \mathfrak{p} \vec{b} \cdot \vec{\partial}-m_{0}^{2}\right) h(x) \sim \frac{2 B_{L}(0)}{A(0)} E e^{\frac{1}{2} \tilde{f}^{\prime}\left(r_{h}\right) t_{w}} \delta^{3}(\vec{x}) \\
\mathfrak{p}=(\pi T) \kappa(\log (4)-1) \nu^{2} \\
m_{0}^{2}=(\pi T)^{2}\left[6+36 \nu^{2}-\left(\frac{\pi^{2}}{6}-1\right) b^{2}-\left(\pi^{2}+\frac{92}{9}+56 \kappa^{2}(\log (2)-1)\right) \nu^{2} b^{2}\right]
\end{gathered}
$$

- Compare it with $\mathrm{b}=\mathrm{nu}=0$

$$
\left(-\partial_{i} \partial_{i}+m_{0}^{2}\right) h(x)=\frac{16 \pi G_{N}}{A(0) \ell_{A S}^{d-1}} E e^{\frac{2 \pi}{\beta} t_{w}} a_{0}(x)
$$

Shockwave geometry

Applying $\quad V \rightarrow V+h(x) \delta(U)$

$$
\begin{aligned}
d s_{\text {future }}^{2} & =d s_{\text {past }}^{2}-A(U V) h(x) \delta(U) d U^{2}-\frac{D(U V)}{V} h(x) \delta(U) d U d x_{3} \\
F_{\text {future }} & =F_{\text {past }}-\frac{H(U V)}{V} h(x) \delta(U) d x_{3} \wedge d U .
\end{aligned}
$$

- Einstein equations then give

$$
\begin{gathered}
\left(\partial_{\|}^{2}+\mathfrak{q}^{2} \partial_{\perp}^{2}+2 \mathfrak{p} \vec{b} \cdot \vec{\partial}-m_{0}^{2}\right) h(x) \sim \frac{2 B_{L}(0)}{A(0)} E e^{\frac{1}{2} \tilde{f}^{\prime}\left(r_{h}\right) t_{w}} \delta^{3}(\vec{x}) \\
\mathfrak{p}=(\pi T) \kappa(\log (4)-1) \nu^{2} \\
m_{0}^{2}=(\pi T)^{2}\left[6+36 \nu^{2}-\left(\frac{\pi^{2}}{6}-1\right) b^{2}-\left(\pi^{2}+\frac{92}{9}+56 \kappa^{2}(\log (2)-1)\right) \nu^{2} b^{2}\right]
\end{gathered}
$$

$$
\begin{array}{cr}
\operatorname{Im} k \\
\ldots & \tilde{h} \\
\hline
\end{array}
$$

- Compare it with $\mathrm{b}=\mathrm{nu}=0$

$$
\begin{aligned}
& \left(-\partial_{i} \partial_{i}+m_{0}^{2}\right) h(x)=\frac{16 \pi G_{N}}{A(0) \ell_{A d S}^{d-1}} E e^{\frac{2 \pi}{\beta} t_{w}} a_{0}(x) \\
& C(t, x)=2-2\langle W(t, \vec{x}) W(0) W(t, \vec{x}) W(0)\rangle_{\beta} \sim \frac{1}{N^{2}} e^{\lambda\left(t-\frac{x}{v_{B}}\right)}
\end{aligned}
$$

Asymmetry

Two different velocities

$$
\begin{array}{ll}
x_{3}>0: & v_{B}^{L_{1}}=\frac{2 \pi T}{m_{0}^{2}}\left(\sqrt{\mathfrak{p}^{2}+m_{0}^{2}}-\mathfrak{p}\right) \\
x_{3}<0: & v_{B}^{L_{2}}=-\frac{2 \pi T}{m_{0}^{2}}\left(\sqrt{\mathfrak{p}^{2}+m_{0}^{2}}+\mathfrak{p}\right)
\end{array}
$$

Asymmetry

Two different velocities

$$
\begin{array}{ll}
x_{3}>0: & v_{B}^{L_{1}}=\frac{2 \pi T}{m_{0}^{2}}\left(\sqrt{\mathfrak{p}^{2}+m_{0}^{2}}-\mathfrak{p}\right) \\
x_{3}<0: & v_{B}^{L_{2}}=-\frac{2 \pi T}{m_{0}^{2}}\left(\sqrt{\mathfrak{p}^{2}+m_{0}^{2}}+\mathfrak{p}\right)
\end{array}
$$

Asymmetry

Two different velocities

$$
\begin{array}{ll}
x_{3}>0: & v_{B}^{L_{1}}=\frac{2 \pi T}{m_{0}^{2}}\left(\sqrt{\mathfrak{p}^{2}+m_{0}^{2}}-\mathfrak{p}\right) \\
x_{3}<0: & v_{B}^{L_{2}}=-\frac{2 \pi T}{m_{0}^{2}}\left(\sqrt{\mathfrak{p}^{2}+m_{0}^{2}}+\mathfrak{p}\right)
\end{array}
$$

Asymmetry

Two different velocities

$$
\begin{array}{ll}
x_{3}>0: & v_{B}^{L_{1}}=\frac{2 \pi T}{m_{0}^{2}}\left(\sqrt{\mathfrak{p}^{2}+m_{0}^{2}}-\mathfrak{p}\right) \\
x_{3}<0: & \\
v_{B}^{L_{2}}=-\frac{2 \pi T}{m_{0}^{2}}\left(\sqrt{\mathfrak{p}^{2}+m_{0}^{2}}+\mathfrak{p}\right)
\end{array}
$$

$$
\mathfrak{p}=(\pi T) \kappa(\log (4)-1) \nu^{2}
$$

$$
m_{0}^{2}=(\pi T)^{2}\left[6+36 \nu^{2}-\left(\frac{\pi^{2}}{6}-1\right) b^{2}-\left(\pi^{2}+\frac{92}{9}+56 \kappa^{2}(\log (2)-1)\right) \nu^{2} b^{2}\right]
$$

$$
v_{B}^{L_{1,2}}= \pm \sqrt{\frac{2}{3}}\left(1-\frac{\mu^{2}}{3(\pi T)^{2}}\right)-\frac{2}{3} \kappa(\log (4)-1) \frac{\mu^{2} B}{(\pi T)^{4}} \pm\left(\frac{\pi^{2}-6}{36 \sqrt{6}}-\frac{\pi^{2}+18\left(-4 \kappa^{2}(\log (4)-2)\right)}{108 \sqrt{6}} \frac{\mu^{2}}{(\pi T)^{2}}\right) \frac{B^{2}}{(\pi T)^{4}}
$$

Asymmetry

Two different velocities

$$
\begin{array}{ll}
x_{3}>0: & v_{B}^{L_{1}}=\frac{2 \pi T}{m_{0}^{2}}\left(\sqrt{\mathfrak{p}^{2}+m_{0}^{2}}-\mathfrak{p}\right) \\
x_{3}<0: & v_{B}^{L_{2}}=-\frac{2 \pi T}{m_{0}^{2}}\left(\sqrt{\mathfrak{p}^{2}+m_{0}^{2}}+\mathfrak{p}\right)
\end{array}
$$

$$
\mathfrak{p}=(\pi T) \kappa(\log (4)-1) \nu^{2}
$$

$$
m_{0}^{2}=(\pi T)^{2}\left[6+36 \nu^{2}-\left(\frac{\pi^{2}}{6}-1\right) b^{2}-\left(\pi^{2}+\frac{92}{9}+56 \kappa^{2}(\log (2)-1)\right) \nu^{2} b^{2}\right]
$$

$$
v_{B}^{L_{1,2}}= \pm \sqrt{\frac{2}{3}}\left(1-\frac{\mu^{2}}{3(\pi T)^{2}}\right)-\frac{2}{3} \kappa(\log (4)-1) \frac{\mu^{2} B}{(\pi T)^{4}} \pm\left(\frac{\pi^{2}-6}{36 \sqrt{6}}-\frac{\pi^{2}+18\left(-4 \kappa^{2}(\log (4)-2)\right)}{108 \sqrt{6}} \frac{\mu^{2}}{(\pi T)^{2}}\right) \frac{B^{2}}{(\pi T)^{4}}
$$

Asymmetry

Two different velocities

$$
\begin{array}{ll}
x_{3}>0: & v_{B}^{L_{1}}=\frac{2 \pi T}{m_{0}^{2}}\left(\sqrt{\mathfrak{p}^{2}+m_{0}^{2}}-\mathfrak{p}\right) \\
x_{3}<0: & v_{B}^{L_{2}}=-\frac{2 \pi T}{m_{0}^{2}}\left(\sqrt{\mathfrak{p}^{2}+m_{0}^{2}}+\mathfrak{p}\right)
\end{array}
$$

$$
\mathfrak{p}=(\pi T) \kappa(\log (4)-1) \nu^{2}
$$

$$
m_{0}^{2}=(\pi T)^{2}\left[6+36 \nu^{2}-\left(\frac{\pi^{2}}{6}-1\right) b^{2}-\left(\pi^{2}+\frac{92}{9}+56 \kappa^{2}(\log (2)-1)\right) \nu^{2} b^{2}\right]
$$

$$
v_{B}^{L_{1,2}}= \pm \sqrt{\frac{2}{3}}\left(1-\frac{\mu^{2}}{3(\pi T)^{2}}\right)-\frac{2}{3} \kappa(\log (4)-1) \frac{\mu^{2} B}{(\pi T)^{4}} \pm\left(\frac{\pi^{2}-6}{36 \sqrt{6}}-\frac{\pi^{2}+18\left(-4 \kappa^{2}(\log (4)-2)\right)}{108 \sqrt{6}} \frac{\mu^{2}}{(\pi T)^{2}}\right) \frac{B^{2}}{(\pi T)^{4}}
$$

The difference is:

$$
\kappa=-\frac{2}{\sqrt{3}} \rightarrow \Delta v_{B}^{L}=v_{B}^{L_{1}}-\left|v_{B}^{L_{2}}\right|=\frac{8}{3 \sqrt{3}}(\log 4-1) \frac{\mu^{2} B}{(\pi T)^{4}}
$$

Asymmetry

Two different velocities

$$
\begin{array}{ll}
x_{3}>0: & v_{B}^{L_{1}}=\frac{2 \pi T}{m_{0}^{2}}\left(\sqrt{\mathfrak{p}^{2}+m_{0}^{2}}-\mathfrak{p}\right) \\
x_{3}<0: & v_{B}^{L_{2}}=-\frac{2 \pi T}{m_{0}^{2}}\left(\sqrt{\mathfrak{p}^{2}+m_{0}^{2}}+\mathfrak{p}\right)
\end{array}
$$

$$
\mathfrak{p}=(\pi T) \kappa(\log (4)-1) \nu^{2}
$$

$$
m_{0}^{2}=(\pi T)^{2}\left[6+36 \nu^{2}-\left(\frac{\pi^{2}}{6}-1\right) b^{2}-\left(\pi^{2}+\frac{92}{9}+56 \kappa^{2}(\log (2)-1)\right) \nu^{2} b^{2}\right]
$$

$$
v_{B}^{L_{1,2}}= \pm \sqrt{\frac{2}{3}}\left(1-\frac{\mu^{2}}{3(\pi T)^{2}}\right)-\frac{2}{3} \kappa(\log (4)-1) \frac{\mu^{2} B}{(\pi T)^{4}} \pm\left(\frac{\pi^{2}-6}{36 \sqrt{6}}-\frac{\pi^{2}+18\left(-4 \kappa^{2}(\log (4)-2)\right)}{108 \sqrt{6}} \frac{\mu^{2}}{(\pi T)^{2}}\right) \frac{B^{2}}{(\pi T)^{4}}
$$

The difference is:

$$
\kappa=-\frac{2}{\sqrt{3}} \rightarrow \Delta v_{B}^{L}=v_{B}^{L_{1}}-\left|v_{B}^{L_{2}}\right|=\frac{8}{3 \sqrt{3}}(\log 4-1) \frac{\mu^{2} B}{(\pi T)^{4}}
$$

This is actually a diagnostic of the chiral anomaly. [NA, Tabatabaei 1910.13696]

Connection to Chiral Transport

Hydrodynamic spectrum in a chiral system

Constitutive relations:

$$
\begin{array}{r}
T^{\mu \nu}=w u^{\mu} u^{\nu}+p g^{\mu \nu}+\sigma_{\epsilon}^{\mathcal{B}}\left(u^{\mu} B^{\nu}+u^{\nu} B^{\mu}\right)+\sigma_{\epsilon}^{\mathcal{V}}\left(u^{\mu} \omega^{\nu}+u^{\nu} \omega^{\mu}\right), \\
J^{\mu}=n u^{\mu}+\sigma^{\mathcal{B}} B^{\mu}+\sigma^{\mathcal{V}} \omega^{\mu}, \\
\text { [Baiman, Oz 1011.5107] } \\
\quad \begin{array}{r}
\text { [Kharzeev, Yee 1105.6360] }
\end{array} \\
\begin{array}{r}
\text { [Banerjee , Bhattacharya, Bhattacharya, Jain, Minwalla, Sharma 1203.3544] } \\
\text { [Jensen, Kaminski, Kovtun, Meyer, Ritz, Yarom 1203.3556] } \\
\text { [Landsteiner 1610.04413] }
\end{array}
\end{array}
$$

Hydrodynamic spectrum in a chiral system

Constitutive relations:

$$
\begin{aligned}
& T^{\mu \nu}=w u^{\mu} u^{\nu}+p g^{\mu \nu}+\sigma_{\epsilon}^{\mathcal{B}}\left(u^{\mu} B^{\nu}+u^{\nu} B^{\mu}\right)+\sigma_{\epsilon}^{\mathcal{V}}\left(u^{\mu} \omega^{\nu}+u^{\nu} \omega^{\mu}\right), \\
& J^{\mu}=n u^{\mu}+\sigma^{\mathcal{B}} B^{\mu}+\sigma^{\mathcal{V}} \omega^{\mu}, \\
& \text { [Landsteiner 1610.04413] }
\end{aligned}
$$

Hydro equations $\quad \partial_{\mu} T^{\mu \nu}=0$

$$
\partial_{\mu} J^{\mu}=C E^{\mu} B_{\mu}
$$

Hydrodynamic spectrum in a chiral system

Constitutive relations:

$$
\begin{array}{rlrl}
T^{\mu \nu} & =w u^{\mu} u^{\nu}+p g^{\mu \nu}+\sigma_{\epsilon}^{\mathcal{B}}\left(u^{\mu} B^{\nu}+u^{\nu} B^{\mu}\right)+\sigma_{\epsilon}^{\mathcal{V}}\left(u^{\mu} \omega^{\nu}+u^{\nu} \omega^{\mu}\right), \\
J^{\mu} & =n u^{\mu}+\sigma^{\mathcal{B}} B^{\mu}+\sigma^{\mathcal{V}} \omega^{\mu}, & \text { [Kharzeev, Yee 1105.6360] } \tag{Neiman,Oz1011.5107}
\end{array}
$$

[Banerjee, Bhattacharya, Bhattacharya, Jain, Minwalla, Sharma 1203.3544]
[Jensen, Kaminski, Kovtun, Meyer, Ritz, Yarom 1203.3556]
[Landsteiner 1610.04413]

Hydro equations $\quad \partial_{\mu} T^{\mu \nu}=0$

$$
\partial_{\mu} J^{\mu}=C E^{\mu} B_{\mu}
$$

Hydro modes:
[Chernodub 1509.01245]

$$
\begin{aligned}
\omega= & \pm \frac{n B}{w}+\frac{n B}{w^{2}} \sigma_{\epsilon}^{\mathcal{V}} k \\
\omega= & \frac{B}{w} \frac{1}{[\beta, \alpha]}\left(w\left(\alpha_{1} \partial_{\mu}+\alpha_{2} \partial_{T}\right) \sigma^{\mathcal{B}}-n\left(\alpha_{1} \partial_{\mu}+\alpha_{2} \partial_{T}\right) \sigma_{\epsilon}^{\mathcal{B}}\right) k \\
\omega= & \pm c_{s} k+\frac{B}{2 w} \frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(-1+\frac{\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}-\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma^{\mathcal{B}} k \\
& +\frac{B}{w}\left(1-\frac{[\gamma, \beta]}{[\alpha, \beta]}\right) \sigma_{\epsilon}^{\mathcal{B}} k+\frac{B}{2 w} \frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(\frac{\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}-\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma_{\epsilon}^{\mathcal{B}} k
\end{aligned}
$$

Hydrodynamic spectrum in a chiral system

Constitutive relations:

$$
T^{\mu \nu}=w u^{\mu} u^{\nu}+p g^{\mu \nu}+\sigma_{\epsilon}^{\mathcal{B}}\left(u^{\mu} B^{\nu}+u^{\nu} B^{\mu}\right)+\sigma_{\epsilon}^{\mathcal{\nu}}\left(u^{\mu} \omega^{\nu}+u^{\nu} \omega^{\mu}\right)
$$

$$
\begin{equation*}
J^{\mu}=n u^{\mu}+\sigma^{\mathcal{B}} B^{\mu}+\sigma^{\mathcal{V}} \omega^{\mu} \tag{Neiman,Oz1011.5107}
\end{equation*}
$$

[Kharzeev, Yee 1105.6360]
[Banerjee, Bhattacharya, Bhattacharya, Jain, Minwalla, Sharma 1203.3544]
[Jensen, Kaminski, Kovtun, Meyer, Ritz, Yarom 1203.3556]
[Landsteiner 1610.04413]

Hydro equations $\quad \partial_{\mu} T^{\mu \nu}=0$

$$
\partial_{\mu} J^{\mu}=C E^{\mu} B_{\mu}
$$

Hydro modes:
[Chernodub 1509.01245]

$$
\begin{aligned}
\omega= & \pm \frac{n B}{w}+\frac{n B}{w^{2}} \sigma_{\epsilon}^{\mathcal{V}} k \\
\omega= & \frac{B}{w} \frac{1}{[\beta, \alpha]}\left(w\left(\alpha_{1} \partial_{\mu}+\alpha_{2} \partial_{T}\right) \sigma^{\mathcal{B}}-n\left(\alpha_{1} \partial_{\mu}+\alpha_{2} \partial_{T}\right) \sigma_{\epsilon}^{\mathcal{B}}\right) k \\
\omega= & \pm c_{s} k+\frac{B}{2 w} \frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(-1+\frac{\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}-\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma^{\mathcal{B}} k \\
& +\frac{B}{w}\left(1-\frac{[\gamma, \beta]}{[\alpha, \beta]}\right) \sigma_{\epsilon}^{\mathcal{B}} k+\frac{B}{2 w} \frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(\frac{\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}-\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma_{\epsilon}^{\mathcal{B}} k
\end{aligned}
$$

Special case: holographic chiral system

Thermodynamics: [NA, Ghazi, Taghinavaz, Tavakol, 1812.11310]

$$
\begin{aligned}
& \epsilon=\frac{N_{c}^{2}}{8 \pi^{2}}\left(3(\pi T)^{4}+12(\pi T)^{2} \mu^{2}+8 \mu^{4}\right)+\frac{N_{c}^{2} B^{2}}{4 \pi^{2}}\left(\left(1-\log \left(\frac{\pi T}{\Delta}\right)\right)-\frac{2}{3} \frac{\mu^{2}}{\pi T^{2}}(8 \log (2)-3)\right) \\
& p=\frac{N_{c}^{2}}{24 \pi^{2}}\left(3(\pi T)^{4}+12(\pi T)^{2} \mu^{2}+8 \mu^{4}\right)+\frac{N_{c}^{2} B^{2}}{4 \pi^{2}}\left(\log \left(\frac{\pi T}{\Delta}\right)+\frac{2}{3} \frac{\mu^{2}}{\pi T^{2}}(8 \log (2)-3)\right) \\
& n=\frac{N_{c}^{2}}{3 \pi^{2}}\left(3(\pi T)^{2} \mu+4 \mu^{3}\right)+\frac{N_{c}^{2} B^{2}}{3 \pi^{2}} \frac{\mu}{(\pi T)^{2}}(8 \log (2)-3)
\end{aligned}
$$

Transport coefficients: [Landsteiner, Megias, Pena-Benitez 1207.5808]

$$
\begin{aligned}
\sigma^{\mathcal{B}} & =-\frac{\kappa}{2 \pi G_{5}} \mu=\frac{2 N_{c}^{2}}{\pi^{2} \sqrt{3}} \mu \\
\sigma^{\mathcal{V}}=\sigma_{\epsilon}^{\mathcal{B}} & =-\frac{\kappa}{2 \pi G_{5}} \mu^{2}=\frac{N_{c}^{2}}{\pi^{2} \sqrt{3}} \mu^{2} \\
\sigma_{\epsilon}^{\mathcal{V}} & =-\frac{\kappa}{6 \pi G_{5}} \mu^{3}=\frac{2 N_{c}^{2}}{3 \pi^{2} \sqrt{3}} \mu^{3}
\end{aligned}
$$

Special case: holographic chiral system

Thermodynamics: [NA, Ghazi, Taghinavaz, Tavakol, 1812.11310$]$

$$
\begin{aligned}
& \epsilon=\frac{N_{c}^{2}}{8 \pi^{2}}\left(3(\pi T)^{4}+12(\pi T)^{2} \mu^{2}+8 \mu^{4}\right)+\frac{N_{c}^{2} B^{2}}{4 \pi^{2}}\left(\left(1-\log \left(\frac{\pi T}{\Delta}\right)\right)-\frac{2}{3} \frac{\mu^{2}}{\pi T^{2}}(8 \log (2)-3)\right) \\
& p=\frac{N_{c}^{2}}{24 \pi^{2}}\left(3(\pi T)^{4}+12(\pi T)^{2} \mu^{2}+8 \mu^{4}\right)+\frac{N_{c}^{2} B^{2}}{4 \pi^{2}}\left(\log \left(\frac{\pi T}{\Delta}\right)+\frac{2}{3} \frac{\mu^{2}}{\pi T^{2}}(8 \log (2)-3)\right) \\
& n=\frac{N_{c}^{2}}{3 \pi^{2}}\left(3(\pi T)^{2} \mu+4 \mu^{3}\right)+\frac{N_{c}^{2} B^{2}}{3 \pi^{2}} \frac{\mu}{(\pi T)^{2}}(8 \log (2)-3)
\end{aligned}
$$

Transport coefficients: [Landsteiner, Megias, Pena-Benitez 1207.5808]

$$
\begin{aligned}
\sigma^{\mathcal{B}} & =-\frac{\kappa}{2 \pi G_{5}} \mu=\frac{2 N_{c}^{2}}{\pi^{2} \sqrt{3}} \mu \\
\sigma^{\mathcal{V}}=\sigma_{\epsilon}^{\mathcal{B}} & =-\frac{\kappa}{2 \pi G_{5}} \mu^{2}=\frac{N_{c}^{2}}{\pi^{2} \sqrt{3}} \mu^{2} \\
\sigma_{\epsilon}^{\mathcal{V}} & =-\frac{\kappa}{6 \pi G_{5}} \mu^{3}=\frac{2 N_{c}^{2}}{3 \pi^{2} \sqrt{3}} \mu^{3}
\end{aligned}
$$

Hydro modes: [NA, Tabatabaei 1910.13696]

$$
\begin{aligned}
& v_{\mathrm{CAW}}=0 \\
& v_{\mathrm{CMW}}=\frac{2}{\sqrt{3}} b\left(1-2 \nu^{2}\right) \\
& v_{\text {sound }}=\frac{1}{\sqrt{3}}\left(\pm 1+\frac{4}{3} \nu^{2} b\right)
\end{aligned}
$$

Sound vs butterfly velocity

- We see that

$$
\Delta v_{\text {sound }}=\frac{8}{9 \sqrt{3}} \nu^{2} b
$$

Sound vs butterfly velocity

- We see that

$$
\Delta v_{\text {sound }}=\frac{8}{9 \sqrt{3}} \nu^{2} b \quad \text { and }
$$

$$
\Delta v_{B}^{L}=v_{B}^{L_{1}}-\left|v_{B}^{L_{2}}\right|=\frac{8}{3 \sqrt{3}}(\log 4-1) \frac{\mu^{2} B}{(\pi T)^{4}}
$$

Sound vs butterfly velocity

- We see that

$$
\begin{gathered}
\Delta v_{\text {sound }}=\frac{8}{9 \sqrt{3}} \nu^{2} b \quad \text { and } \quad \Delta v_{B}^{L}=v_{B}^{L_{1}}-\left|v_{B}^{L_{2}}\right|=\frac{8}{3 \sqrt{3}}(\log 4-1) \frac{\mu^{2} B}{(\pi T)^{4}} \\
\frac{\Delta v_{B}^{L}}{\Delta v_{\text {sound }}}=\frac{8 \sqrt{3} / 9(\log 4-1)}{8 \sqrt{3} / 9}=\log 4-1
\end{gathered}
$$

Sound vs butterfly velocity

- We see that
$\Delta v_{\text {sound }}=\frac{8}{9 \sqrt{3}} \nu^{2} b \quad$ and
$\Delta v_{B}^{L}=v_{B}^{L_{1}}-\left|v_{B}^{L_{2}}\right|=\frac{8}{3 \sqrt{3}}(\log 4-1) \frac{\mu^{2} B}{(\pi T)^{4}}$

- This suggests:

1. Splitting of butterfly velocities might be originated just from chiral magnetic effects.

$$
\begin{aligned}
v_{\text {sound }}= & \pm c_{s}+\frac{B}{2 w} \frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(-1+\frac{\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}-\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma^{\mathcal{B}} \\
& +\frac{B}{w}\left(1-\frac{[\gamma, \beta]}{[\alpha, \beta]}\right) \sigma_{\epsilon}^{\mathcal{B}}+\frac{B}{2 w} \frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(\frac{\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}-\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma_{\epsilon}^{\mathcal{B}}
\end{aligned}
$$

Sound vs butterfly velocity

- We see that $\Delta v_{\text {sound }}=\frac{8}{9 \sqrt{3}} \nu^{2} b \quad$ and $\Delta v_{B}^{L}=v_{B}^{L_{1}}-\left|v_{B}^{L_{2}}\right|=\frac{8}{3 \sqrt{3}}(\log 4-1) \frac{\mu^{2} B}{(\pi T)^{4}}$

- This suggests:

1. Splitting of butterfly velocities might be originated just from chiral magnetic effects.

$$
\begin{aligned}
v_{\text {sound }}= & \pm c_{s}+\frac{B}{2 w}\left[\frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(-1+\frac{\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}-\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma^{B}\right. \\
& +\frac{B}{w}\left(1-\frac{[\gamma, \beta]}{[\alpha, \beta]}\right) \sigma_{\epsilon}^{B}+\frac{B}{2 w} \frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(\frac{\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}-\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma_{\epsilon}^{B}
\end{aligned}
$$

2. There might be a relation between hydrodynamics and quantum chaos in anomalous systems. Note that Hydro works well at scales $\omega \ll T$, while chaos is sensitive to scales $\omega \sim T$.

Sound vs butterfly velocity

- We see that $\Delta v_{\text {sound }}=\frac{8}{9 \sqrt{3}} \nu^{2} b \quad$ and $\Delta v_{B}^{L}=v_{B}^{L_{1}}-\left|v_{B}^{L_{2}}\right|=\frac{8}{3 \sqrt{3}}(\log 4-1) \frac{\mu^{2} B}{(\pi T)^{4}}$

$$
\frac{\Delta v_{B}^{L}}{\Delta v_{\text {sound }}}=\frac{8 \sqrt{3} / 9(\log 4-1)}{8 \sqrt{3} / 9}=\log 4-1
$$

- This suggests:

1. Splitting of butterfly velocities might be originated just from chiral magnetic effects.

$$
\begin{aligned}
v_{\text {sound }}= & \pm c_{s}+\frac{B}{2 w}\left[\frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(-1+\frac{\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}-\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma^{B}\right. \\
& +\frac{B}{w}\left(1-\frac{[\gamma, \beta]}{[\alpha, \beta]}\right) \sigma_{\epsilon}^{B}+\frac{B}{2 w} \frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(\frac{\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}-\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma_{\epsilon}^{B}
\end{aligned}
$$

2. There might be a relation between hydrodynamics and quantum chaos in anomalous systems. Note that Hydro works well at scales $\omega \ll T$, while chaos is sensitive to scales $\omega \sim T$.

Confirmed by Pole-skipping
[Grozdanov, Schalm, Scopelliti 1710.00921]

Sound vs butterfly velocity

- We see that $\Delta v_{\text {sound }}=\frac{8}{9 \sqrt{3}} \nu^{2} b \quad$ and $\Delta v_{B}^{L}=v_{B}^{L_{1}}-\left|v_{B}^{L_{2}}\right|=\frac{8}{3 \sqrt{3}}(\log 4-1) \frac{\mu^{2} B}{(\pi T)^{4}}$

- This suggests:

1. Splitting of butterfly velocities might be originated just from chiral magnetic effects.

$$
\begin{aligned}
v_{\text {sound }}= & \pm c_{s}+\frac{B}{2 w} \frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(-1+\frac{\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}-\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma^{\mathcal{B}} \\
& +\frac{B}{w}\left(1-\frac{[\gamma, \beta]}{[\alpha, \beta]}\right) \sigma_{\epsilon}^{\mathcal{B}}+\frac{B}{2 w} \frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(\frac{\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}-\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma_{\epsilon}^{\mathcal{B}}
\end{aligned}
$$

2. There might be a relation between hydrodynamics and quantum chaos in anomalous systems. Note that Hydro works well at scales $\omega \ll T$, while chaos is sensitive to scales $\omega \sim T$.

Confirmed by Pole-skipping
[Grozdanov, Schalm, Scopelliti 1710.00921]
[Blake, Lee, Liu 1801.00010]
[Blake, Davison, Grozdanov, Liu 1809.01169]

Sound vs butterfly velocity

- We see that $\Delta v_{\text {sound }}=\frac{8}{9 \sqrt{3}} \nu^{2} b \quad$ and $\Delta v_{B}^{L}=v_{B}^{L_{1}}-\left|v_{B}^{L_{2}}\right|=\frac{8}{3 \sqrt{3}}(\log 4-1) \frac{\mu^{2} B}{(\pi T)^{4}}$

- This suggests:

1. Splitting of butterfly velocities might be originated just from chiral magnetic effects.

$$
\begin{aligned}
v_{\text {sound }}= & \pm c_{s}+\frac{B}{2 w} \frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(-1+\frac{\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}-\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma^{\mathcal{B}} \\
& +\frac{B}{w}\left(1-\frac{[\gamma, \beta]}{[\alpha, \beta]}\right) \sigma_{\epsilon}^{\mathcal{B}}+\frac{B}{2 w} \frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(\frac{\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}-\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma_{\epsilon}^{\mathcal{B}}
\end{aligned}
$$

2. There might be a relation between hydrodynamics and quantum chaos in anomalous systems. Note that Hydro works well at scales $\omega \ll T$, while chaos is sensitive to scales $\omega \sim T$.

Confirmed by Pole-skipping

$$
(\omega, k)=\left(i \lambda, i \frac{\lambda}{v_{B}}\right)
$$

Sound vs butterfly velocity

- We see that $\Delta v_{\text {sound }}=\frac{8}{9 \sqrt{3}} \nu^{2} b \quad$ and $\Delta v_{B}^{L}=v_{B}^{L_{1}}-\left|v_{B}^{L_{2}}\right|=\frac{8}{3 \sqrt{3}}(\log 4-1) \frac{\mu^{2} B}{(\pi T)^{4}}$

- This suggests:

1. Splitting of butterfly velocities might be originated just from chiral magnetic effects.

$$
\begin{aligned}
v_{\text {sound }}= & \pm c_{s}+\frac{B}{2 w} \frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(-1+\frac{\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}-\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma^{\mathcal{B}} \\
& +\frac{B}{w}\left(1-\frac{[\gamma, \beta]}{[\alpha, \beta]}\right) \sigma_{\epsilon}^{\mathcal{B}}+\frac{B}{2 w} \frac{[\gamma, \alpha]}{[\beta, \alpha]}\left(\frac{\left(n \alpha_{1}-w \beta_{1}\right) \partial_{\mu}-\left(n \alpha_{2}-w \beta_{2}\right) \partial_{T}}{n[\gamma, \alpha]-w[\gamma, \beta]}\right) \sigma_{\epsilon}^{\mathcal{B}}
\end{aligned}
$$

2. There might be a relation between hydrodynamics and quantum chaos in anomalous systems. Note that Hydro works well at scales $\omega \ll T$, while chaos is sensitive to scales $\omega \sim T$.

Confirmed by Pole-skipping
$(\omega, k)=\left(i \lambda, i \frac{\lambda}{v_{B}}\right)$

Discussion

- Butterfly velocity is a measurable quantity in experiment.
- Observing the advertised splitting is an implicit sign of chiral anomaly
- Can it be regraded as a sign of CME?

$$
\frac{\Delta v_{B}^{L}}{\Delta v_{\text {sound }}}=\frac{8 \sqrt{3} / 9(\log 4-1)}{8 \sqrt{3} / 9}=\log 4-1
$$

Discussion

- Butterfly velocity is a measurable quantity in experiment.
- Observing the advertised splitting is an implicit sign of chiral anomaly
- Can it be regraded as a sign of CME?

$$
\frac{\Delta v_{B}^{L}}{\Delta v_{\text {sound }}}=\frac{8 \sqrt{3} / 9(\log 4-1)}{8 \sqrt{3} / 9}=\log 4-1
$$

needs more exploration!

Thank you for your attention

Scrambling measures

In a qubit system with $H_{L}=\sum_{i=1}^{10}\left\{\sigma_{z}^{(i)} \sigma_{z}^{(i+1)}-1.05 \sigma_{x}^{(i)}+0.5 \sigma_{z}^{(i)}\right\}$
Prepare the system in the thermofield state $|\Psi\rangle=\frac{1}{Z^{1 / 2}} \sum_{n} e^{-\beta E_{n} / 2}|n\rangle_{L}|n\rangle_{R}$
[Shenker, Stanford 1306.0622]
$|\Psi\rangle$

Scrambling measures

In a qubit system with $H_{L}=\sum_{i=1}^{10}\left\{\sigma_{z}^{(i)} \sigma_{z}^{(i+1)}-1.05 \sigma_{x}^{(i)}+0.5 \sigma_{z}^{(i)}\right\}$
Prepare the system in the thermofield state $|\Psi\rangle=\frac{1}{Z^{1 / 2}} \sum_{n} e^{-\beta E_{n} / 2}|n\rangle_{L}|n\rangle_{R}$
[Shenker, Stanford 1306.0622]

- perturb the system: apply $\sigma_{z}^{(5, L)}$ at t_{w}
$|\Psi\rangle$

Scrambling measures

In a qubit system with $H_{L}=\sum_{i=1}^{10}\left\{\sigma_{z}^{(i)} \sigma_{z}^{(i+1)}-1.05 \sigma_{x}^{(i)}+0.5 \sigma_{z}^{(i)}\right\}$
Prepare the system in the thermofield state $|\Psi\rangle=\frac{1}{Z^{1 / 2}} \sum_{n} e^{-\beta E_{n} / 2}|n\rangle_{L}|n\rangle_{R}$
[Shenker, Stanford 1306.0622]

- perturb the system: apply $\sigma_{z}^{(5, L)}$ at t_{w}
- The state becomes: $\left|\Psi^{\prime}\right\rangle=e^{-i H_{L} t_{w}} \sigma_{z}^{(5, L)} e^{i H_{L} t_{w}}|\Psi\rangle$
$|\Psi\rangle$

Scrambling measures

In a qubit system with $H_{L}=\sum_{i=1}^{10}\left\{\sigma_{z}^{(i)} \sigma_{z}^{(i+1)}-1.05 \sigma_{x}^{(i)}+0.5 \sigma_{z}^{(i)}\right\}$
Prepare the system in the thermofield state $|\Psi\rangle=\frac{1}{Z^{1 / 2}} \sum_{n} e^{-\beta E_{n} / 2}|n\rangle_{L}|n\rangle_{R}$
[Shenker, Stanford 1306.0622]

- perturb the system: apply $\sigma_{z}^{(5, L)}$ at t_{w}
- The state becomes: $\left|\Psi^{\prime}\right\rangle=e^{-i H_{L} t_{w}} \sigma_{z}^{(5, L)} e^{i H_{L} t_{w}}|\Psi\rangle$
- Let's measure the correlation between (1L) and (1R)

$$
\left\langle\Psi^{\prime}\right| \sigma_{z}^{(1, L)} \sigma_{z}^{(1, R)}\left|\Psi^{\prime}\right\rangle
$$

Scrambling measures

In a qubit system with $H_{L}=\sum_{i=1}^{10}\left\{\sigma_{z}^{(i)} \sigma_{z}^{(i+1)}-1.05 \sigma_{x}^{(i)}+0.5 \sigma_{z}^{(i)}\right\}$
Prepare the system in the thermofield state $|\Psi\rangle=\frac{1}{Z^{1 / 2}} \sum_{n} e^{-\beta E_{n} / 2}|n\rangle_{L}|n\rangle_{R}$
[Shenker, Stanford 1306.0622]

- perturb the system: apply $\sigma_{z}^{(5, L)}$ at t_{w}
- The state becomes: $\left|\Psi^{\prime}\right\rangle=e^{-i H_{L} t_{w}} \sigma_{z}^{(5, L)} e^{i H_{L} t_{w}}|\Psi\rangle$
- Let's measure the correlation between (1L) and (1R)

$$
\left\langle\Psi^{\prime}\right| \sigma_{z}^{(1, L)} \sigma_{z}^{(1, R)}\left|\Psi^{\prime}\right\rangle
$$

Scrambling measures

In a qubit system with $H_{L}=\sum_{i=1}^{10}\left\{\sigma_{z}^{(i)} \sigma_{z}^{(i+1)}-1.05 \sigma_{x}^{(i)}+0.5 \sigma_{z}^{(i)}\right\}$
Prepare the system in the thermofield state $|\Psi\rangle=\frac{1}{Z^{1 / 2}} \sum_{n} e^{-\beta E_{n} / 2}|n\rangle_{L}|n\rangle_{R}$
[Shenker, Stanford 1306.0622]

- perturb the system: apply $\sigma_{z}^{(5, L)}$ at t_{w}
- The state becomes: $\left|\Psi^{\prime}\right\rangle=e^{-i H_{L} t_{w}} \sigma_{z}^{(5, L)} e^{i H_{L} t_{w}}|\Psi\rangle$

Scrambling measures

In a qubit system with $H_{L}=\sum_{i=1}^{10}\left\{\sigma_{z}^{(i)} \sigma_{z}^{(i+1)}-1.05 \sigma_{x}^{(i)}+0.5 \sigma_{z}^{(i)}\right\}$
Prepare the system in the thermofield state $|\Psi\rangle=\frac{1}{Z^{1 / 2}} \sum_{n} e^{-\beta E_{n} / 2}|n\rangle_{L}|n\rangle_{R}$
[Shenker, Stanford 1306.0622]

- perturb the system: apply $\sigma_{z}^{(5, L)}$ at t_{w}
- The state becomes: $\left|\Psi^{\prime}\right\rangle=e^{-i H_{L} t_{w}} \sigma_{z}^{(5, L)} e^{i H_{L} t_{w}}|\Psi\rangle$
- Scrambling destroys spin correlation

Out-of-time-order correlator: OTOC

The correlator $\left\langle\Psi^{\prime}\right| \sigma_{z}^{(1, L)} \sigma_{z}^{(1, R)}\left|\Psi^{\prime}\right\rangle$ is in fact: $\left|\Psi^{\prime}\right\rangle=e^{-i H_{L} t_{t_{0}}} \sigma_{z}^{(5, L)} e^{i_{H} t_{t} \mid}|\Psi\rangle$

$$
\langle\Psi| \sigma_{z}^{(5, L)}\left(t_{w}\right) \sigma_{z}^{(1, L)} \sigma_{z}^{(1, R)} \sigma_{z}^{(5, L)}\left(t_{w}\right)|\Psi\rangle
$$

- Or more generally: $\quad\langle\Psi| W_{L}(t) V_{L} V_{R} W_{L}(t)|\Psi\rangle$
- Similarly: \quad OTOC $=F(t)=\langle\Psi| V_{L} W_{R}(t) V_{R} W_{L}(t)|\Psi\rangle$

Out-of-time-order correlator: OTOC

The correlator $\left\langle\Psi^{\prime}\right| \sigma_{z}^{(1, L)} \sigma_{z}^{(1, R)}\left|\Psi^{\prime}\right\rangle$ is in fact: $\quad\left|\Psi^{\prime}\right\rangle=e^{-i H_{L} t_{0} \sigma_{z}^{(\xi, L)}} e^{i \mu_{L} t_{t}|\Psi\rangle}$

$$
\langle\Psi| \sigma_{z}^{(5, L)}\left(t_{w}\right) \sigma_{z}^{(1, L)} \sigma_{z}^{(1, R)} \sigma_{z}^{(5, L)}\left(t_{w}\right)|\Psi\rangle
$$

Out-of-time-order correlator: OTOC

The correlator $\left\langle\Psi^{\prime}\right| \sigma_{z}^{(1, L)} \sigma_{z}^{(1, R)}\left|\Psi^{\prime}\right\rangle$ is in fact: $\quad\left|\Psi^{\prime}\right\rangle=e^{-i H_{L} t_{0} \sigma_{z}^{(\xi, L)}} e^{i \mu_{L} t_{t}|\Psi\rangle}$

$$
\langle\Psi| \sigma_{z}^{(5, L)}\left(t_{w}\right) \sigma_{z}^{(1, L)} \sigma_{z}^{(1, R)} \sigma_{z}^{(5, L)}\left(t_{w}\right)|\Psi\rangle
$$

- Or more generally: $\langle\Psi| W_{L}(t) V_{L} V_{R} W_{L}(t)|\Psi\rangle$

Out-of-time-order correlator: OTOC

The correlator $\left\langle\Psi^{\prime}\right| \sigma_{z}^{(1, L)} \sigma_{z}^{(1, R)}\left|\Psi^{\prime}\right\rangle$ is in fact: $\quad\left|\Psi^{\prime}\right\rangle=e^{-i H_{L} t_{t_{w}}} \sigma_{z}^{(5, L)} e^{i i_{L} t_{t} \mid}|\Psi\rangle$

$$
\langle\Psi| \sigma_{z}^{(5, L)}\left(t_{w}\right) \sigma_{z}^{(1, L)} \sigma_{z}^{(1, R)} \sigma_{z}^{(5, L)}\left(t_{w}\right)|\Psi\rangle
$$

- Or more generally: $\quad\langle\Psi| W_{L}(t) V_{L} V_{R} W_{L}(t)|\Psi\rangle$
- Similarly: \quad OTOC $=F(t)=\langle\Psi| V_{L} W_{R}(t) V_{R} W_{L}(t)|\Psi\rangle$

Out-of-time-order correlator: OTOC

The correlator $\left\langle\Psi^{\prime}\right| \sigma_{z}^{(1, L)} \sigma_{z}^{(1, R)}\left|\Psi^{\prime}\right\rangle$ is in fact: $\quad\left|\Psi^{\prime}\right\rangle=e^{-i H_{L} t_{t_{0}}} \sigma_{z}^{(5, L)} e^{i H_{L} t_{w}|\Psi\rangle}$

$$
\langle\Psi| \sigma_{z}^{(5, L)}\left(t_{w}\right) \sigma_{z}^{(1, L)} \sigma_{z}^{(1, R)} \sigma_{z}^{(5, L)}\left(t_{w}\right)|\Psi\rangle
$$

- Or more generally: $\quad\langle\Psi| W_{L}(t) V_{L} V_{R} W_{L}(t)|\Psi\rangle$
- Similarly: \quad OTOC $=F(t)=\langle\Psi| V_{L} W_{R}(t) V_{R} W_{L}(t)|\Psi\rangle$
- For large N holographic CFTs

$$
F(t)=f_{0}-\frac{f_{1}}{N^{2}} \exp \frac{2 \pi}{\beta} t+\mathcal{O}\left(N^{-4}\right)
$$

[Maldacena, Shenker, Stanford 1503.01406]

Out-of-time-order correlator: OTOC

The correlator $\left\langle\Psi^{\prime}\right| \sigma_{z}^{(1, L)} \sigma_{z}^{(1, R)}\left|\Psi^{\prime}\right\rangle$ is in fact: $\quad\left|\Psi^{\prime}\right\rangle=e^{-i H_{L} t_{t_{w}}} \sigma_{z}^{(5, L)} e^{i i_{L} t_{t} \mid}|\Psi\rangle$

$$
\langle\Psi| \sigma_{z}^{(5, L)}\left(t_{w}\right) \sigma_{z}^{(1, L)} \sigma_{z}^{(1, R)} \sigma_{z}^{(5, L)}\left(t_{w}\right)|\Psi\rangle
$$

- Or more generally: $\quad\langle\Psi| W_{L}(t) V_{L} V_{R} W_{L}(t)|\Psi\rangle$
- Similarly: \quad OTOC $=F(t)=\langle\Psi| V_{L} W_{R}(t) V_{R} W_{L}(t)|\Psi\rangle$
- For large N holographic CFTs

$$
F(t)=f_{0}-\frac{f_{1}}{N^{2}} \exp \frac{2 \pi}{\beta} t+\underset{\text { [Maldacena, Shenker, Stanford 1503.01406] }}{\mathcal{O}\left(N^{-4}\right)}
$$

Size of precursor growth

- The squared commutator

$$
\begin{aligned}
C\left(t_{w},|x-y|\right) & =\operatorname{tr}\left\{\rho(\beta)\left[W_{x}\left(t_{w}\right), W_{y}\right]^{\dagger}\left[W_{x}\left(t_{w}\right), W_{y}\right]\right\} \\
& =2-2 \operatorname{Re}\langle T F D| W_{y} W_{x}\left(t_{w}\right) W_{y} W_{x}\left(t_{w}\right)|T F D\rangle
\end{aligned}
$$

- Size of precursor $s\left[W_{x}\left(t_{w}\right)\right]$ is the volume of region in y such that $C \geq 1$

$$
=\text { a ball centered at } x \text { of the radius }
$$

$$
\begin{gathered}
r\left[W_{x}\left(t_{w}\right)\right] \approx v_{B}\left(t_{w}-t_{*}\right) \\
C(t)=2-2\langle W(t, \vec{x}) V(0) W(t, \vec{x}) V(0)\rangle_{\beta} \sim \frac{1}{N} e^{\lambda\left(t-\frac{x}{v_{B}}\right)}
\end{gathered}
$$

Size of precursor growth

- The squared commutator

$$
\begin{aligned}
C\left(t_{w},|x-y|\right) & =\operatorname{tr}\left\{\rho(\beta)\left[W_{x}\left(t_{w}\right), W_{y}\right]^{\dagger}\left[W_{x}\left(t_{w}\right), W_{y}\right]\right\} \\
& =2-2 \operatorname{Re}\langle T F D| W_{y} W_{x}\left(t_{w}\right) W_{y} W_{x}\left(t_{w}\right)|T F D\rangle
\end{aligned}
$$

$C(t)=2-2\langle W(t, \vec{x}) V(0) W(t, \vec{x}) V(0)\rangle_{\beta} \sim \frac{1}{N} e^{\lambda\left(t-\frac{x}{v_{B}}\right)}$

- Size of precursor $s\left[W_{x}\left(t_{w}\right)\right]$ is the volume of region in y such that $C \geq 1$

$$
=\text { a ball centered at } x \text { of the radius }
$$

$$
r\left[W_{x}\left(t_{w}\right)\right] \approx v_{B}\left(t_{w}-t_{*}\right)
$$

- Linear growth in time is checked numerically in the spin chain $H=-\sum_{i} Z_{i} Z_{i+1}+g X_{i}+h Z_{i}$

Size of precursor growth

- The squared commutator

$$
\begin{aligned}
C\left(t_{w},|x-y|\right) & =\operatorname{tr}\left\{\rho(\beta)\left[W_{x}\left(t_{w}\right), W_{y}\right]^{\dagger}\left[W_{x}\left(t_{w}\right), W_{y}\right]\right\} \\
& =2-2 \operatorname{Re}\langle T F D| W_{y} W_{x}\left(t_{w}\right) W_{y} W_{x}\left(t_{w}\right)|T F D\rangle
\end{aligned}
$$

- Size of precursor $s\left[W_{x}\left(t_{w}\right)\right]$ is the volume of region in y such that $C \geq 1$ $=$ a ball centered at x of the radius
$r\left[W_{x}\left(t_{w}\right)\right] \approx v_{B}\left(t_{w}-t_{*}\right)$

Butterfly speed
[Roberts, Shenker, Stanford, 1409.8180]

$y=0$

