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But the fields entering on the right-hand side are dynamical gluon fields present
in the QCD Lagrangian.

In the chiral (left-right asymmetric) gauge theories like the standard elec-
troweak model, both vector and axial currents are coupled directly to the phys-
ical gauge fields. Anomalous divergence of such current would mean explicit
breaking of the gauge invariance which is not nice. Therefore, in chiral the-
ories, one should always take care that such purely internal anomalies would
cancel out at the end of the day. In the Standard Model, they do.

Let us discuss, however, purely external anomalies in QCD which are not
related to breaking of any symmetry but just mean that certain correlators
involving external currents are singular.i

As a simplest nontrivial example, consider the theory with two massless
flavors and look at the correlator

KAB, H
µν (q) = i

∫

〈T {jA
µ5(x)jB

ν (0)}〉H eiqxd4x , (81)

where A, B are flavor indices and H is the external flavor-singlet “magnetic
field.” j The correlator (81) is nothing but a three-point vacuum expectation
value (7) in kinematics in which one of the external momenta associated with
the vector current is set to zero.

The one-loop calculation of the corresponding graph displays a singularity,

KAB, H
µν (q) = − H

2π2

qµε̃ναqα

q2
· Nc ·

1

2
δAB . (82)

The imaginary part of this amplitude is also singular, ∼ δ(p2), which can be
related to the masslessness of quarks.16 However, the quarks (in contrast to
electrons in QED) do not exist as physical particles due to confinement and
one can ask where does the singularity in the imaginary part Im KAB, H

µν (q) ∝
δ(q2) come from? This is a good question, the answer is better still: the
singularity ∼ 1/q2 comes from the propagator of a massless Goldstone boson,
which appears due to the spontaneous chiral symmetry breaking and which is
directly coupled to the axial current jµ5 (see the middle graph in Fig. 4).

Let us ask now: can one reproduce the singularity in Eq. (82) without
Goldstone bosons and without spontaneous chiral symmetry breaking, but in
some other way ?
iThe conventional anomaly (6) is related to the correlator (7) involving both internal (ja

µ)

and external (j5
λ) currents and can be called mixed in this setting.

jThe quotation marks distinguish H which couples to the baryon charge from the physical
magnetic field which has the matrix structure diag(2/3,−1/3) and is a mixture of isotriplet
and isosinglet. But we are not interested in dynamics of electromagnetic or weak currents
here. In QCD proper, all color-singlet currents are external. H is just a source of such vector
flavo-singlet current.
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From a review (Aspects of Chiral Sym) by Smilga (2000)
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This formula tells us a lot: CME is included, 
the difference in the order of limits is included, etc.

(’t Hooft)
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B

E
jOhm = �E

Externally given

Induced with current

n5 / E ·B t
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If this linear rise is balanced by “relaxation”

jCME / n5 B / (E ·B)B t
<latexit sha1_base64="sXqSCzk7ZM7MNTTGJN6alah26Ps="></latexit><latexit sha1_base64="sXqSCzk7ZM7MNTTGJN6alah26Ps="></latexit><latexit sha1_base64="sXqSCzk7ZM7MNTTGJN6alah26Ps="></latexit><latexit sha1_base64="sXqSCzk7ZM7MNTTGJN6alah26Ps=">AAAC4HichVHPa9RAFH6JP1q31k3rRfAyuFRaKMvLuu1We1m2FHoR+sNtC50Skuy0jU0yIZldWMPexYt4EvSkUErxz/DiP+Chxx7FYwUvHnzJrtg9tH0h89773vvefDPjRL6XKMRTTb9x89btkdE7hbG74/eKxsTkZiLbsSuarvRlvO3YifC9UDSVp3yxHcXCDhxfbDmHS1l9qyPixJPhC9WNxG5g74fenufaiiDLSLkj/VbSDcilL3tWyuOALT1f7jG+yKNYRkryRRZac3z2YmdjuD59sbbc425LquH2GTac81mmLKOE5acL85XqPMMyYs2smFlQqVWfVJlJSGYlGNiqNI6BQwskuNCGAASEoCj2wYaEvh0wASEibBdSwmKKvLwuoAcF4rapS1CHTeghrfuU7QzQkPJsZpKzXdrFpz8mJoMp/I4neI7f8Av+wD+XzkrzGZmWLnmnzxWRVXzzYOP3tayAvIKD/6wrNSvYg4Vcq0faoxzJTuH2+Z1X7883nq1PpY/xM/4k/Z/wFL/SCcLOL/doTax/hAI9wL9bZpcHm5WyiWVzrVqqNwZPMQoP4RFM033XoA4rsApN2vdMG9EMbUJ39Nf6W/1dv1XXBpz7MGT6h7/5JLln</latexit>

�CME / B2
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j = (�Ohm + �CME)E �CME / B2

Son-Spivak (2012)

FIG. 2: Magnetoresistance in field parallel to current ( ~B k a) in ZrTe5. (a) MR at various

temperatures. For clarity, the resistivity curves were shifted by 1.5 m⌦cm (150 K), 0.9 m⌦cm

(100 K), 0.2 m⌦cm (70 K) and �0.2 m⌦cm (5 K). (b) MR at 20K (red symbols) fitted with the

CME curve (blue line); inset: temperature dependence of the fitting parameter a(T ) in units of

S/(cm T2).

observed resistivity can be fitted with a simple quadratic term (Supplementary materials,

Fig. S1). This term is treated as a background and subtracted from the parallel field

component for all MR curves recorded at T  100 K.

A negative MR is observed for T  100 K, increasing in magnitude as temperature

decreases. We found that the magnetic field dependence of the negative MR can be nicely

fitted with the CME contribution to the electrical conductivity, given by �CME = �0 +

a(T )B2, where �0 represents the zero field conductivity. The fitting is illustrated in Fig.

2(b) for T = 20 K, with an excellent agreement between the data and the CME fitting

curve. At 4 Tesla, the CME conductivity is about the same as the zero-field conductivity.

At 9T, the CME contribution increases by ⇠ 400%, resulting in a negative MR that is

much stronger than any conventional one reported at an equivalent magnetic field in a

non-magnetic material.

At very low field, the data show a small cusp-like feature. The origin of this feature is not

completely understood, but it probably indicates some form of anti-localization coming from

the perpendicular ( ~B k b) component. Inset in Fig. 2(b) shows the temperature dependence

of the fitting parameter a(T ), which decreases with temperature faster than 1/T , again

consistent with the CME.

6

Li et al. Nature Phys. 12, 550 (2016)

Two Questions:

* Microscopic calculation 
   of sCME beyond the 
   relaxation time approx. ?
* B dependece in the 
   Ohmic part: sOhm ?



March 13, 2023 @ etc*, Trento

Electric Conductivity

5

Tensor Decomposition

given by the Kubo formula as follows:

�
ij = lim

k0!0
lim
k!0

1

2ik0

⇥
⇧ij

R
(k) � ⇧ij

A
(k)

⇤
, (2.1)

where ⇧µ⌫

R
(k) and ⇧µ⌫

A
(k) are the retarded and advanced polarization functions, respectively,

defined by

⇧µ⌫

R
(k) := i

Z
d4

x eik·x ✓(t)
⌦
[jµ(x), j⌫(0)]

↵
, (2.2)

⇧µ⌫

A
(k) := �i

Z
d4

x eik·x ✓(�t)
⌦
[jµ(x), j⌫(0)]

↵
(2.3)

with the electric current j
µ. Precisely speaking, j

µ in the Kubo formula for the electric
conductivity is not the electric current j

i
em itself but j

i
em � n0T

0i
/(E + Pi) with the energy

momentum tensor T
µ⌫ , the density n0, the energy density E := hT 00i, and the pressure

Pi := hT iii. This subtraction ensures the removal of inferred divergence caused by the
hydrodynamic mode. In our calculation, for the moment, we will discard this subtraction
until the calculation of the longitudinal electric conductivity.

In QCD with multiple quark flavors the electric current is a sum of contributions from
all flavors f , i.e.,

j
µ =

X

f

qf  ̄f�
µ
 f . (2.4)

The external magnetic field makes the electric conductivity anisotropic in space. We de-
compose this anisotropic tensor structure using B̂

i := B
i
/|B| as

�
ij = �H ✏

ijk
B̂

k + �k B̂
i
B̂

j + �? (�ij � B̂
i
B̂

j) , (2.5)

where �H represents the Hall conductivity for an electric current perpendicular to both B

and an imposed electric field. Without loss of generality we can identify the magnetic field
direction with the z axis, so that we explicitly denote the longitudinal and the transverse
conductivities as �k = �

33 and �? = �
11 = �

22.
It is useful to express the above physical quantities in terms of ± coordinates, that is,

j
± =

1

2
(j1 ± ij2) , (2.6)

and

�
�+ =

1

2
(�? + i�H) . (2.7)

We can readily confirm that other components are vanishing, i.e., �++ = �
�� = 0. Then,

we do not have to compute �? and �H separately but what we need is only ��+.
For our calculation we adopt the real-time Schwinger-Keldysh formalism in the R/A

basis. The propagators in the R/A basis and the standard ones on the Schwinger-Keldysh

– 3 –

B
E

j

�H =
n0

B

�?
T

⇠ g2T 2

|qB|

Hall conductivity Suppressed

CME

T &
p

qB � gT
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Magnetic field opens 1→2 (2→1) scattering channels. 
(Compton scattering with one photon replaced by B 
  + Pair creation/annihilation processes)

Z

k;p;p0
jMp→p0þkj2ð2πÞ4δð4Þðk−pþp0Þ

¼−
1

2

X

f;n>n0

Z
dpz

2π
1

2εfn

Z
p0
zþ

p0
z−

dp0
z

2π
1

2εfn0
Xðn;n0;ξf−Þ; ð13Þ

Z

k;p;p0
jMpþp0→kj2ð2πÞ4δð4Þðpþ p0 − kÞ

¼ 1

2

X

f;n;n0

Z
dpz

2π
1

2εfn

Z
dp0

z

2π
1

2εfn0
Xðn; n0; ξfþÞ; ð14Þ

where the allowed range ofp0
z is restricted for the synchrotron

radiation in Eq. (13) as p0
z− < p0

z < p0
zþ with

p0
z% ¼ pz

m2
fn þm2

fn0

2m2
fn

%
m2

fn −m2
fn0

2m2
fn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

fn þ p2
z

q
: ð15Þ

Two integrands in Eqs. (13) and (14) are identical, i.e.,
Xðn;n0;ξkÞ≔g2NcCF

R
½d2p⊥=ð2πÞ2'tr½γμS

f
nðpÞγμSfn0ðp−kÞ'

with a group factor CF ≔ ðN2
c − 1Þ=ð2NcÞ, except for the

kinematical constraint; that is, the argument ofXðn; n0; ξf%Þ is
given by

ξf% ¼
ðεfn % εfn0Þ2 − ðpz % p0

zÞ2

2jqfBj
: ð16Þ

Using Eq. (3) and properties of the Laguerre polynomials we
find

Xðn; n0; ξÞ ¼ g2NcCF
jqfBj
2π

e−ξ
n!
n0!

ξn
0−n

"#
4m2

f

− 4jqfBjðnþ n0 − ξÞ 1
ξ
ðnþ n0Þ

$
Fðn; n0; ξÞ

þ 16jqfBjn0ðnþ n0Þ 1
ξ
Lðn0−nÞ
n ðξÞLðn0−nÞ

n−1 ðξÞ
%
;

ð17Þ

Fðn; n0; ξÞ ≔

(
1; ðn ¼ 0Þ;

½Lðn0−nÞ
n ðξÞ'2 þ n0

n ½L
ðn0−nÞ
n−1 ðξÞ'2; ðn > 0Þ:

ð18Þ

Recovery of the lowest Landau level approximation.—It
would be an instructive check whether the LLLA result is
correctly recovered in the limit of eB ≫ T2 (at μ ¼ 0).
Since the synchrotron radiation changes the Landau
level, we can safely discard it. For the pair annihilation
process, Xðn ¼ 0; n0 ¼ 0; ξÞ given in Eq. (17) simplifies
as Xð0; 0; ξfþÞ ¼ 4m2

fg
2NcCFðjqfBj=2πÞe−ξ

0
þ with ξ0þ ¼

½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

f

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0
z
2 þm2

f

q
Þ2 − ðpz þ p0

zÞ2'=ð2jqfBjÞ,
which is nothing but ξþ in Eq. (16) with n ¼ n0 ¼ 0. When
jqfBj is much larger than any other scales, we can
approximate e−ξ

0
þ ≈ 1. Then, the linearized kinetic equa-

tions reduce to

qfNc
jqfBj
2π

βfeqðpÞ½1 − feqðpÞ'
pz

εf0
¼ 4m2

fg
2NcCF

× β
jqfBj
2π

1

4εf0

Z
dp0

z

2π
1

2ε0f0
feqðpÞf̄eqðp0Þ½1þ geqðkÞ'χp;

ð19Þ

where εf0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

f

q
and ε0f0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0
z
2 þm2

f

q
. We need

to keep the current quark mass mf that breaks chiral
symmetry to make the above LLLA expression sensible.
In contrast, we can safely neglect the thermal mass mT ∼
gT ≪ T that does not break chiral symmetry, though the
thermal mass is greater than the current quark mass. Here,
we do not have to consider mixing terms with χ̄p0 . In this
special limit, L is not a matrix and the matrix inversion is
unnecessary. Actually, we can easily solve the above
kinetic equation to obtain χp. Thanks to the charge
conjugation symmetry, the solution for antiquarks is
χ̄p ¼ −χp. Summarizing them, we arrive at the LLLA
result from Eq. (12) as

σk ¼
X

f

Ncβ
g2CFm2

f
q2f

jqfBj
2π

Z
dpz

2π
p2
z

εf0

×
feqðpÞ½1 − feqðpÞ'2R dp0
z

2π
1
ε0f0

f̄eqðp0Þ½1þ geqðkÞ'
; ð20Þ

which is consistent with Ref. [7].
Numerical results and discussions.—Below we will

show numerical results, for which we should write down
the matrix elements of L as a phase space convolution of

FIG. 2. Diagrams of the synchrotron radiation process with a quark (a1), with an antiquark (b1), and with the pair annihilation (c1).
Their inverse processes are (a2), (b2), and (c2), respectively.

PHYSICAL REVIEW LETTERS 120, 162301 (2018)

162301-4

T ⇠
p
eB � gT
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Fukushima-Hidaka, PRL (2018) / JHEP (2020)

Calculated the conductivity for 
(dropping the thermal screening effects)

The question: is chiral anomaly included?
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Fukushima-Hidaka (2018 / 2020)Figure 5. Mass dependence of the longitudinal electric conductivity for a single flavor case with
qf = e. In the small mass region the LLLA blows up, while the results at nmax = 1, 2 have
regular behavior at mq ⇠ 0. The red shaded bands are the lattice-QCD estimates. See the text for
discussions.

restriction. In the LLLA the longitudinal and the transverse dynamics of fermions are de-
coupled, and the longitudinal scattering in (1 + 1) dimensions is prohibited for massless
fermions due to the energy-momentum conservation. In this sense, only the LLLA is excep-
tional, and the convergence of the Landau level sum is pretty fast if one goes beyond the
LLLA, as seen in Fig. 5; the nmax = 1 results already give a good approximation close to the
nmax = 2 results. Here, we make one important remark; one might think that �k(mq ! 0)

should diverge even beyond the LLLA because, according to the axial Ward identity, the
chirality in the massless limit is linearly increasing with time regardless the scattering (ex-
cept for the sphaleron transition which is suppressed and negligible at weak coupling). This
argument is mathematically correct, but physically the divergence signifies a hydrodynamic
mode (in a particular hydrodynamic regime; see discussions in Introduction). In fact, as we
closely explained, the conserved quantities such as the energy momentum tensor and the
electric charge constitute the hydrodynamic modes which should be subtracted; otherwise,
they lead to divergence. In the small mass limit the axial charge is approximately conserved,
thus it forms another hydrodynamic mode. We did not explicitly subtract this additional
hydrodynamic mode, but our calculation procedures without coupling to the axial charge
automatically drops out such a hydrodynamic mode. More specifically, out treatment of
the distributions did not allow for the axial charge beyond the linear response regime, so
that the hydrodynamic mode corresponding to the axial charge is excluded.

In Fig. 5 the red shaded bands represent the lattice-QCD estimates. It is interesting
that our results are quantitatively consistent with the lattice-QCD estimates, i.e., the light
red region of 1/3  �/T  1 at T = 1.45 Tc (for the quark charge squared sum Cem = 1

which corresponds to our single flavor with q = e) in Ref. [42] and the darker red region of

– 24 –

Figure 1. Negative magnetoresistance; ⇢k decreases with increasing magnetic field eB. The
temperature is T = 200 MeV and the density is zero, and nmax = 5 represents the highest Landau
level taken into the calculation.

Now that we articulated what we want to calculate under which condition, then, we
shall present our final results in advance. The easiest to obtain is the Hall conductivity,
that is,

�H =
ne

B
, (2.8)

as will be elaborated in the next warm-up section, where we will deal with explicit expres-
sions for the propagators in the magnetic field. The transverse conductivity is vanishing at
the one-loop level and, as discussed in the next section, higher-loop terms are suppressed
by the magnetic field parametrically as

�?
T

⇠ g2T 2

|qfB| . (2.9)

Since the transverse conductivity is small in our hierarchy regime (2.7), we would not try
to quantify �? any further.

The most interesting is the longitudinal electric conductivity �k or the resistance ⇢k,
which is made dimensionless with the temperature as

⇢kT :=
1

(�k/T )
. (2.10)

The negative magnetoresistance signifies decreasing behavior of ⇢k with increasing magnetic
field, and this is precisely what we finally find in our calculation as shown in Fig. 1. We
note that e of eB on the horizontal axis is the (positive) elementary charge, and in this
calculation, u and d quark flavors are included with qu = 2

3e and qd = �1
3e. As is clear

from the plot, we have confirmed the negative magnetoresistance from field-theoretical
calculations without assuming anything special about the chirality production and the

– 6 –

The question: is chiral anomaly included?

Kubo formula → Pinch singularities → Kinetic equation
   Linearlized kinetic eq. solved → f + δf : δf ∝ E σ
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Xðn; n0; ξf"Þ and the distribution functions feq, f̄eq, and geq.
Besides the flavor f and the Landau level n, we should
choose the complete set basis for functions of pz, kz, and
k⊥, which we will take the simplest polynomial form as
p̂zjpzjm for (anti)quarks and k̂zjkzjmkl⊥ for gluons with
integral m and l.
Figure 3 shows our numerical results for the current

quark mass dependence of σk=T for a fictitious single flavor
with q ¼ e at finite T and B but at zero μ. We choose the
QCD charge as g2=ð4πÞ ¼ 0.3 [18]. We clearly see that the
LLLA has artificial enhancement as mq approaches zero.
For the numerical calculation we truncate the Landau level
at nmax. In the eB ¼ 10m2

π case, the convergence of the
Landau level sum is very fast and nmax ¼ 1 already gives a
good approximation, even though the LLLA badly breaks
down in the small mq region. It is interesting that our result
is quantitatively consistent with the lattice-QCD estimate
0.3 ≤ σ=T ≤ 1.0 (for the quark charge squared sum
Cem ¼ 1) [11], which is indicated by the shaded region
in Fig. 3.
The B dependence of σk=T has a nonmonotonic structure

as shown in Fig. 4, for which we adopted a physical

parameter set with u and d quarks. For small nmax or strong
B, the lowest Landau level contribution is dominant, and
then σk is linearly proportional to B (reflecting the fact that
the charge carrier increases), which explains the growing
behavior at large B in Fig. 4. When B is not so large,
contributions from higher Landau levels lead to a larger
interaction cross section due to the phase space factor,
which pushes σk down with larger B. As a result of the
interplay of these competing effects, in an intermediate
region of B, the increasing behavior of σk looks quadratic;
moreover, this nonmonotonic behavior is consistent with
what is seen in the CME experiment in Ref. [3]. Although
quantitative details may depend on the underlying theory,
qualitative features should be the same for general physical
systems (but could be different with different approxima-
tions, say, the relaxation time approximation [2] may lead
to a different B dependence).
Finally, we discuss the dependence of quark chemical

potential μ as shown in Fig. 5. The carrier density is
different from the net particle number but is the sum of
particle and antiparticle numbers. This latter quantity is not
changed by μ, so σk is rather insensitive to μ.
In the future our estimated B dependence of σk could be

tested by the lattice-QCD simulation at finite B, while our
calculation at finite μ would be a unique prediction.

The authors thank Koichi Hattori, Daisuke Satow, and
Misha Stephanov for useful comments and discussions. This
work was supported by Japan Society for the Promotion of
Science (JSPS) KAKENHI Grants No. 15H03652,
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x4

u
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x4

u

uT

Figure 12: Geometries in the confined and the deconfined phases. The roles of the (imaginary) time ⌧

and the extra coordinate x4 are swapped from one to the other phase.

3.5.3 Sakai-Sugimoto model

Another non-perturbative approach developed in the large-Nc limit is the holographic technique that
is becoming more and more familiar among QCD physicists nowadays. There are countless number of
works using the holographic QCD models, and it is not realistic to make an attempt to cover them all.
We will pay special attention to the phase diagram disclosed by the Sakai-Sugimoto model, following
the computational steps of Ref. [22].

The basic idea of the holographic approach is based on a hypothetical correspondence between a
gravity theory in higher dimensions and a field theory of our interest (see Ref. [191] for a review). The
original conjecture was made for the N = 4 supersymmetric Yang-Mills theory, which at large-Nc and
large-’t Hooft coupling may be equivalently described by the classical solution (anti-de Sitter metric)
of the super-gravity theory. For the investigation of QCD, however, supersymmetry and conformal
symmetry are unwanted and should be gotten rid of. To this end, one can compactify one extra direc-
tion and impose the anti-periodic boundary condition to fermionic super-particles, so that unphysical
particles become heavy and decouple from the low-lying dynamics (see Fig. 12). This extra direction is
denoted by the coordinate X4 here.

In this subsection, to simplify the notation, we use dimensionless variables rescaled by the radius of
the AdS space, R. That is,

t̃ =
t

R
, x̃ =

x

R
, x̃4 =

X4

R
, ũ =

u

R
, (96)

where the first (t,x) refer to the ordinary Minkowski coordinates, X4 is the compact direction, and u,
together with (t,x), spans the 5-dimensional AdS space, and the Minkowski space-time resides at the
UV edge, u = 1. In what follows, we omit writing the tilde for notational simplicity.

Deconfinement phase transition In the confined phase at low temperature, the bulk geometry
corresponding to the D4-brane background is expressed by the following metric,

(Confining geometry) ds
2 = u

3/2
⇥
�dt

2 + dx2 + f(u)dx2

4

⇤
+

du
2

u3/2f(u)
+ u

1/2
d⌦2

4
, (97)

where f(u) = 1 � (uKK/u)3 and uKK is fixed by the size of x4 compactification. This above geometry
is singular at u = uKK and to avoid the conical singularity at u = uKK, in the same way as the angle
variable in the polar coordinates, the period of x4 (denoted by �x4 here) is uniquely determined that is
translated to a mass scale called the Kaluza-Klein mass, i.e.

�x4 =
4⇡

3u1/2
KK

) MKK =
2⇡R�1

�x4

=
3

2

p
uKK R

�1
. (98)

The physical meaning of MKK is a cuto↵ scale above which super-particles could get excited and the
Sakai-Sugimoto model would be no longer a QCD dual. As we will see soon later, the deconfinement
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Confined
Chiral broken

x4

u

x4 x4

Deconfined
Chiral broken

Deconfined
Chiral symmetric

uc

L L

Figure 13: Flavor branes (D8 and D8 separated by the length parameter L) in the confined and the
deconfined phases. In the confined phase chiral symmetry is inevitably broken, while in the deconfined
phase both chiral broken and symmetric states are realized.

(DBI) action involving the gauge fields on the Nf D8-brane, after integrating over the four-dimensional
angular part ⌦4, as

S
DBI

D8
= �

N

V4

Z
dt d

3
x du u

1/4
q

� det(g↵� + F↵�) . (104)

Here the dilaton potential is already included in the action and the field strength tensor in the above
is rescaled to eliminate the string scale ls (see Refs. [23, 22] for details). The normalization constant
including the ⌦4 integration is given as N = V4 · (NcNf/3)R6

/((2⇡)5l6s) with V4 =
R
dt d

3
x.

In Euclidean space-time at finite T , integrating further over the Euclidean coordinates, we can
express the action in a form of the one-dimensional integration with respect to u. Hereafter we drop the
irrelevant normalization N from the action and then the action simplifies, respectively, in the confined
and the deconfined phases as

(Confining geometry) S
DBI

D8
=

Z
du u

4

r
f(u)x0

4
(u)2 +

1

u3

�
f(u)�1

� a
02
0

�
, (105)

(Deconfining geometry) S
DBI

D8
=

Z
du u

4

r
f(u)x0

4
(u)2 +

1

u3
(1� a

02
0
) , (106)

where a0(u) denotes the rescaled A0(u) that eventually translates to the (dimensionless) chemical po-
tential. It is convenient to use a “density” variable ⇢(u) = ��S

DBI

D8
/�a

0
0
(u), because ⇢(u) turns out to

be u-independent thanks to the equation of motion. Then, we can easily solve a0
0
(u) from the definition

of ⇢ to find,

(Confining geometry) a
0
0
(u) = ⇢

s
u3f(u)2x0

4
(u)2 + 1

f(u)(u5 + ⇢2)
, (107)

(Deconfining geometry) a
0
0
(u) = ⇢

s
u3f(u) x0

4
(u)2 + 1

u5 + ⇢2
, (108)

from which the quark chemical potential µq = a0(1) is obtained in respective phases.

Introduction of the density source Here we shall explain how to fix the lower boundary uc dis-
played on Fig. 13. If the system is in the deconfined and chiral symmetric phase at high T , D8 and
D8 are parallel and such a configuration can have a finite density without source, and thus uc is not
necessary and the u-integration starts simply from uT .

When chiral symmetry is spontaneously broken, on the other hand, there should be a source for the
density coming from the Chern-Simons action. To accommodate a finite density of baryonic matter,
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Sakai-Sugimoto Model Fukushima-Okutsu (2022)

Chiral symmetry is 
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Figure 14: Phase diagram at finite temperature and density in the Sakai-Sugimoto model. The decon-
finement temperature is chosen at Td = 0.08 and the scale is set by L = 1 according to the choice of
Ref. [22]. The vertical dashed line represents the onset of baryon density.

It is quite interesting to notice that this sort of spatially inhomogeneous structure was once discussed
actively in the context of nuclear physics, and nowadays, is becoming one of the central issues in quark
matter research. Here, for a while, it should be worth revisiting the possibility of inhomogeneous
condensation in nuclear matter.

3.6 Inhomogeneity: pion condensation

In a medium at finite density there are collective excitations made from particle and hole (p-h) in the
same channel as pions. The interaction between N and ⇡ is, however, repulsive in the s-wave channel
and the pion self-energy is positive then. It was recognized later in Refs. [199, 200] that the p-wave
interaction is attractive, which causes a resonant state � in the channel of L = 1, J = 3/2, T = 3/2,
and it would render the pion energy decrease in matter. This attractive interaction is attributed to
underlying chiral symmetry.

The in-medium pion propagator can be written with the self-energy as

D
�1

⇡ (!,p) = !
2
� p2

�m
2

⇡ � ⇧(!,p) , (116)

where the self-energy ⇧(!,p) should involve the p-h and �-h contributions; ⇧ = �p
2[UN(!,p) +

U�(!,p)]. In the symmetric nuclear matter with Z = N that is of our main interest, the collective
mode is pushed down at finite p and there appears a condensate of ⇡0, while in neutron matter which
is relevant to the astrophysical application the collective ⇡

+ (Migdal’s ⇡
+

s ) and ⇡
� are spontaneously

generated [200].
When the ⇡0 condensation occurs in symmetric nuclear matter at the momentum pc, the expectation

value should behave as
h⇡

0(x,pc)i ⇠ cos(pc · x) . (117)

The physical implication of such condensate to nuclear matter has been discussed (see Ref. [201] and
other contributions in this volume).

One can find the critical density for the ⇡
0 condensation, for instance, adopting the linear sigma

model including p, n, and �’s. Once the density exceeds the threshold, however, the system is unstable
because only the attractive force is taken into account and the short-range (shorter than the pion
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Under coordinate transformation ⇠ = uT /u and using the
Fourier transformed variable ai(⇠,!), we can rewrite the
EoM as

⇠
�3/2 ⌦2

1� ⇠3
ai + @⇠

h
⇠
�1/2(1� ⇠

3)@⇠ai
i
= 0 . (18)

Here, we defined the dimensionless frequency as ⌦2 =
!
2
/uT .
As discussed in Ref. [48], we should impose the infalling

boundary condition near the blackhole horizon at u ⇠ uT

or ⇠ ⇠ 1. We can approximate the EoM near ⇠ ⇠ 1 and
identify the asymptotic form of the solution from

⌦2

3(1� ⇠)
ai � 3@⇠ai + 3(1� ⇠)@2

⇠ai = 0 , (19)

which is obtained from Eq. (18) near ⇠ ⇠ 1. We can easily
solve Eq. (19) using the asymptotic form, ai ⇠ (1 � ⇠)�,
from which (⌦/3)2+�+�(��1) = 0 follows, leading to � =
± i⌦

3
immediately. The infalling direction corresponds to

� = � i⌦
3

and we can parametrize the solution as

ai(⇠) = (1� ⇠)�
i⌦
3 g(⇠) , (20)

where g(⇠) is a regular function near ⇠ ⇠ 1. The normal-
ization of ai(⇠) is conventionally chosen as the unity, i.e.,
ai(⇠ = 0) = 1 or g(⇠ = 0) = 1. We can then expand g(⇠)
for small ⌦, under the condition that g(⇠ = 1) is regular.
Up to the first order in ⌦ we can drop the first term in
Eq. (18) and the equation to be satisfied by ai is

@⇠

h
⇠
�1/2(1� ⇠

3)@⇠ai
i
= 0 , (21)

which can be solved as

ai(⇠) = C

Z ⇠

0

d⇠
⇠
1/2

1� ⇠3
+D =

C

3
ln

✓
1 + ⇠

3/2

1� ⇠3/2

◆
+D ,

(22)
where C and D are ⌦ dependent constants. We can then
write down a form of g(⇠) for small ⌦ as g(⇠) ' [1 +
i
⌦

3
ln(1 � ⇠)]ai(⇠). The condition of ai(⇠ = 0) = 1 fixes

D = 1, and the regularity of g(⇠ ! 1) fixes C = i⌦.
Therefore, we can conclude,

g(⇠) = 1 +
i⌦

3
ln


(1� ⇠)(1 + ⇠

3/2)

1� ⇠3/2

�
+O(⌦2) . (23)

In response to the boundary condition at the infrared
(IR) side, the behavior at the ultraviolet (UV) side near
⇠ ⇠ 0 is fixed, from which the physical information can
be extracted. That is,

ai(⇠) ' 1 +
2i⌦

3
⇠
3/2 + · · · (24)

Now, let us prescribe how to calculate the electric current
expectation value using the GKP-W relation [49, 50]. It
is the generating functional coupled to the gauge poten-
tial, which results from the on-shell action in the gravity

�/(CeT ) 1.1Tc 1.3Tc 1.5Tc

This work 0.206 0.243 0.281

Lattice-QCD [52] 0.201-0.703 0.203-0.388 0.218-0.413

TABLE I. Comparison between our estimates and the lattice-
QCD results from Ref. [52] for the dimensionless electric con-
ductivity for three di↵erent temperatures above Tc.

theory with the UV boundary condition of ai(⇠ ! 0) as
the physical vector potential in the gauge theory.
To calculate the electric current expectation value,

thus, we should take a functional derivative of the grav-
ity action with respect to ai on the UV boundary. Near
the UV boundary (⇠ ⇠ 0 or u ⇠ 1), the action has
asymptotic behavior as follows:

S ⇠ �N
Z

d
4
xduu

5/2 1

2
(f2

ux + f
2

uy + f
2

uz)

⇠ �Nu
3/2
T

2

Z
d
4
xd⇠ ⇠

� 1
2 (@⇠ai)

2
. (25)

Therefore, the dimensionless electric current is

ji =
�S

�@⇠ai(⇠ = 0)

= �2

✓
�Nu

3
2
T

2

◆
⇠
� 1

2 @⇠ai

���
⇠=0

= iN!uT . (26)

This is an expression in the dimensionless units. We note
that ji = �Ei translates to ji = i�!Ai in frequency
space (if � is a time-independent constant). We note
that our normalization is ai(⇠ ! 0) = 1 and we should
add the D8 contribution multiplying a factor 2. Plugging
uT = (4⇡/3)2R2

T
2 into ji, we can derive the electric

conductivity:

�

q2
= 2

✓
4⇡

3

◆2

N (2⇡↵0)2R�3
T

2 =
2�NfNcT

2

27⇡MKK

. (27)

Here, we retrieved 2⇡↵0 from Eq. (2) and also recovered
the electric charge q. This T 2 behavior is consistent with
preceding studies, see Ref. [30].
Once the t’ Hooft coupling, �, and the Kaluza-Klein

mass, MKK, are determined to reproduce the physical
quantities, we can express � in the physical units. More
specifically, the ⇢ meson mass, m⇢, and the pion decay
constant, f⇡, can fix these parameters as [19, 20, 51]

� = 16.63 , MKK = 0.95GeV . (28)

To make a quantitative comparison to the lattice-QCD
results for Nf = 2, we should consider normalized � by
the flavor factor, Ce = (2e/3)2+(�e/3)2 = 5e2/9. In our
calculation we simply treated the electric charge in the
normalization, which implies that the above expression
is already normalized. Then,

�

CeT
=

2�NcT

27⇡MKK

=
�

9⇡2

✓
T

Tc

◆
, (29)
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where we used the known relation Tc = MKK/(2⇡) in the
SSM. Table I shows the comparison between our SSM
estimates and the lattice-QCD results from Ref. [52], in-
dicating consistency. We note that the lattice results are
for massive quarks, while our calculations are in the chi-
ral limit. In view of Fig. 3 of Ref. [16] the quark mass
dependence of the electric conductivity is expected to be
minor (as compared to the large error bar in the lattice
data), and the comparison with di↵erent quark masses
makes sense. Our estimates are also consistent with the
lattice-QCD results with dynamical quarks in Ref. [53];
however, one should not take the quantitative compari-
son too seriously. The physical setups with and without
dynamical quarks are di↵erent. As we noted, the probe
approximation corresponds to the quench approximation,
and it could be justified in the Nc ! 1 limit, but QCD
has only Nc = 3, and Nf/Nc corrections are expected
beyond the probe approximation.

IV. FINITE MAGNETIC CASE

We can repeat the same procedures including full B
e↵ects. First, let us consider the transverse degrees of
freedom, i.e., the x and y directions perpendicular to B.
For ax,y, as seen from Eq. (7), there is no contribution
from the Chern-Simons term and the analysis is easier
than the longitudinal direction. The EoM for ax is,

� u
�1/2

f
�1B�1/2

@0f0x + @u

�
u
5/2

fB�1/2
a
0
x

�
= 0 . (30)

In the same way as the B = 0 case, in frequency space
and in terms of ⇠ = uT /u, we can rewrite the above into

⇠
�3/2 ⌦2

1� ⇠3
B�1/2

ax + @⇠

⇥
⇠
�1/2(1� ⇠

3)B�1/2
@⇠ax

⇤
= 0 .

(31)
Near ⇠ ⇠ 1, the asymptotic behavior is determined by
the singular part of the above EoM which is the same
as the B = 0 case. Then, we can take the form of the
solution to be ax(⇠) = (1 � ⇠)�

i⌦
3 g(⇠) and expand g(⇠)

for small ⌦. Some calculations similar to previous ones
lead us to the following solution:

ax(⇠) = C

Z ⇠

0

d⇠
⇠
1/2B1/2

1� ⇠3
+D . (32)

The integration is analytically possible but the expression
is highly intricate. Nevertheless, the previous exercise at
B = 0 tells us that C is fixed to cancel the singularity of
ln(1� ⇠) around ⇠ ⇠ 1, which requires,

C = i⌦B�1/2
0

, D = 1 , (33)

where B0 = 1+B
2
u
�3

T . Once these constants are known,
we can expand ax(⇠) near ⇠ ⇠ 0 as

ax(⇠) ' 1 +
2i⌦

3
B�1/2
0

⇠
3/2 + · · · (34)

Therefore, the correction due to B is simply B�1/2
0

and
the conductivity is, thus,

�? =
�(B = 0)q
1 +B2u

�3

T

, (35)

where �(B = 0) is given by Eq. (29). The transverse
conductivity is suppressed by large B, and this makes
physical sense. The external magnetic field restricts the
transverse motion of charged particles and the charge
transport along the transverse directions needs a jump
between di↵erent Landau levels. In the strong B limit,
therefore, the electric conductivity should be vanishing.
We note that the drift motion of charged particles under
B may change the scenario. In the probe approximation
of the SSM the drift motion e↵ect (whose time scale /
Nc/Nf) is negligible and our calculations are justified.
For the AC conductivity, for which the drift frequency
can be smaller than the electric frequency, the transverse
conductivity should not be vanishing even in the strong
B limit, see Ref. [32] for details.
Next, we shall find the longitudinal conductivity. To

this end we consider the constraints and then solve the
EoMs as we did for the B = 0 case. From Eq. (9) we
have

� @u(u
5/2B1/2

a
0
0
)� 4↵Ba

0
z = 0 , (36)

which means that u5/2B1/2
a
0
0
+4↵Baz is a u independent

constant. The chiral anomaly in Eq. (10) in the presence
of B 6= 0 reads,

@0(u
5/2B1/2

a
0
0
) + 4↵Bf0z = 0 . (37)

Because f0z = @0az (dropping @z), the above two equa-
tions are summarized into

u
5/2B1/2

a
0
0
+ 4↵Baz = c , (38)

where c is a t and u independent constant. We note
that, unlike the B = 0 case, a0 takes a nonvanishing
value. Physically speaking, u

5/2B1/2
a
0
0
is proportional

to the matter chirality, whilst Baz is the magnetic helic-
ity up to an overall factor. We can interpret the chiral
anomaly as a conservation law of the matter chirality
and the magnetic helicity. It should be noted that the
magnetic helicity plays an important role in the descrip-
tion of magneto-hydrodynamical evolutions [54]. Now it
is clear that c physically means a net chirality charge in
the system and it should be, in principle, fixed by an
initial condition.
The longitudinal EoM is

� u
�1/2

f
�1B1/2

@0f0z + @u(u
5/2

fB1/2
a
0
z) + 4↵Ba

0
0
= 0 ,
(39)

and we can eliminate a0 by combining Eqs. (38) and (39),
so that we can find a di↵erential equation for az only.
Then, we convert the equation into the one in frequency

Compute the current with E → σ = j/E

Hawking-Page Transition

5

Under coordinate transformation ⇠ = uT /u and using the
Fourier transformed variable ai(⇠,!), we can rewrite the
EoM as

⇠
�3/2 ⌦2

1� ⇠3
ai + @⇠

h
⇠
�1/2(1� ⇠

3)@⇠ai
i
= 0 . (18)

Here, we defined the dimensionless frequency as ⌦2 =
!
2
/uT .
As discussed in Ref. [48], we should impose the infalling

boundary condition near the blackhole horizon at u ⇠ uT

or ⇠ ⇠ 1. We can approximate the EoM near ⇠ ⇠ 1 and
identify the asymptotic form of the solution from

⌦2

3(1� ⇠)
ai � 3@⇠ai + 3(1� ⇠)@2

⇠ai = 0 , (19)

which is obtained from Eq. (18) near ⇠ ⇠ 1. We can easily
solve Eq. (19) using the asymptotic form, ai ⇠ (1 � ⇠)�,
from which (⌦/3)2+�+�(��1) = 0 follows, leading to � =
± i⌦

3
immediately. The infalling direction corresponds to

� = � i⌦
3

and we can parametrize the solution as

ai(⇠) = (1� ⇠)�
i⌦
3 g(⇠) , (20)

where g(⇠) is a regular function near ⇠ ⇠ 1. The normal-
ization of ai(⇠) is conventionally chosen as the unity, i.e.,
ai(⇠ = 0) = 1 or g(⇠ = 0) = 1. We can then expand g(⇠)
for small ⌦, under the condition that g(⇠ = 1) is regular.
Up to the first order in ⌦ we can drop the first term in
Eq. (18) and the equation to be satisfied by ai is

@⇠

h
⇠
�1/2(1� ⇠

3)@⇠ai
i
= 0 , (21)

which can be solved as

ai(⇠) = C

Z ⇠

0

d⇠
⇠
1/2

1� ⇠3
+D =

C

3
ln

✓
1 + ⇠

3/2

1� ⇠3/2

◆
+D ,

(22)
where C and D are ⌦ dependent constants. We can then
write down a form of g(⇠) for small ⌦ as g(⇠) ' [1 +
i
⌦

3
ln(1 � ⇠)]ai(⇠). The condition of ai(⇠ = 0) = 1 fixes

D = 1, and the regularity of g(⇠ ! 1) fixes C = i⌦.
Therefore, we can conclude,

g(⇠) = 1 +
i⌦

3
ln


(1� ⇠)(1 + ⇠

3/2)

1� ⇠3/2

�
+O(⌦2) . (23)

In response to the boundary condition at the infrared
(IR) side, the behavior at the ultraviolet (UV) side near
⇠ ⇠ 0 is fixed, from which the physical information can
be extracted. That is,

ai(⇠) ' 1 +
2i⌦

3
⇠
3/2 + · · · (24)

Now, let us prescribe how to calculate the electric current
expectation value using the GKP-W relation [49, 50]. It
is the generating functional coupled to the gauge poten-
tial, which results from the on-shell action in the gravity

�/(CeT ) 1.1Tc 1.3Tc 1.5Tc

This work 0.206 0.243 0.281

Lattice-QCD [52] 0.201-0.703 0.203-0.388 0.218-0.413

TABLE I. Comparison between our estimates and the lattice-
QCD results from Ref. [52] for the dimensionless electric con-
ductivity for three di↵erent temperatures above Tc.

theory with the UV boundary condition of ai(⇠ ! 0) as
the physical vector potential in the gauge theory.
To calculate the electric current expectation value,

thus, we should take a functional derivative of the grav-
ity action with respect to ai on the UV boundary. Near
the UV boundary (⇠ ⇠ 0 or u ⇠ 1), the action has
asymptotic behavior as follows:

S ⇠ �N
Z

d
4
xduu

5/2 1

2
(f2

ux + f
2

uy + f
2

uz)

⇠ �Nu
3/2
T

2

Z
d
4
xd⇠ ⇠

� 1
2 (@⇠ai)

2
. (25)

Therefore, the dimensionless electric current is

ji =
�S

�@⇠ai(⇠ = 0)

= �2

✓
�Nu

3
2
T

2

◆
⇠
� 1

2 @⇠ai

���
⇠=0

= iN!uT . (26)

This is an expression in the dimensionless units. We note
that ji = �Ei translates to ji = i�!Ai in frequency
space (if � is a time-independent constant). We note
that our normalization is ai(⇠ ! 0) = 1 and we should
add the D8 contribution multiplying a factor 2. Plugging
uT = (4⇡/3)2R2

T
2 into ji, we can derive the electric

conductivity:

�

q2
= 2

✓
4⇡

3

◆2

N (2⇡↵0)2R�3
T

2 =
2�NfNcT

2

27⇡MKK

. (27)

Here, we retrieved 2⇡↵0 from Eq. (2) and also recovered
the electric charge q. This T 2 behavior is consistent with
preceding studies, see Ref. [30].
Once the t’ Hooft coupling, �, and the Kaluza-Klein

mass, MKK, are determined to reproduce the physical
quantities, we can express � in the physical units. More
specifically, the ⇢ meson mass, m⇢, and the pion decay
constant, f⇡, can fix these parameters as [19, 20, 51]

� = 16.63 , MKK = 0.95GeV . (28)

To make a quantitative comparison to the lattice-QCD
results for Nf = 2, we should consider normalized � by
the flavor factor, Ce = (2e/3)2+(�e/3)2 = 5e2/9. In our
calculation we simply treated the electric charge in the
normalization, which implies that the above expression
is already normalized. Then,

�

CeT
=

2�NcT

27⇡MKK

=
�

9⇡2

✓
T

Tc

◆
, (29)

5

Under coordinate transformation ⇠ = uT /u and using the
Fourier transformed variable ai(⇠,!), we can rewrite the
EoM as

⇠
�3/2 ⌦2

1� ⇠3
ai + @⇠

h
⇠
�1/2(1� ⇠

3)@⇠ai
i
= 0 . (18)

Here, we defined the dimensionless frequency as ⌦2 =
!
2
/uT .
As discussed in Ref. [48], we should impose the infalling

boundary condition near the blackhole horizon at u ⇠ uT

or ⇠ ⇠ 1. We can approximate the EoM near ⇠ ⇠ 1 and
identify the asymptotic form of the solution from

⌦2

3(1� ⇠)
ai � 3@⇠ai + 3(1� ⇠)@2

⇠ai = 0 , (19)

which is obtained from Eq. (18) near ⇠ ⇠ 1. We can easily
solve Eq. (19) using the asymptotic form, ai ⇠ (1 � ⇠)�,
from which (⌦/3)2+�+�(��1) = 0 follows, leading to � =
± i⌦

3
immediately. The infalling direction corresponds to

� = � i⌦
3

and we can parametrize the solution as

ai(⇠) = (1� ⇠)�
i⌦
3 g(⇠) , (20)

where g(⇠) is a regular function near ⇠ ⇠ 1. The normal-
ization of ai(⇠) is conventionally chosen as the unity, i.e.,
ai(⇠ = 0) = 1 or g(⇠ = 0) = 1. We can then expand g(⇠)
for small ⌦, under the condition that g(⇠ = 1) is regular.
Up to the first order in ⌦ we can drop the first term in
Eq. (18) and the equation to be satisfied by ai is

@⇠

h
⇠
�1/2(1� ⇠

3)@⇠ai
i
= 0 , (21)

which can be solved as

ai(⇠) = C

Z ⇠

0

d⇠
⇠
1/2

1� ⇠3
+D =

C

3
ln

✓
1 + ⇠

3/2

1� ⇠3/2

◆
+D ,

(22)
where C and D are ⌦ dependent constants. We can then
write down a form of g(⇠) for small ⌦ as g(⇠) ' [1 +
i
⌦

3
ln(1 � ⇠)]ai(⇠). The condition of ai(⇠ = 0) = 1 fixes

D = 1, and the regularity of g(⇠ ! 1) fixes C = i⌦.
Therefore, we can conclude,

g(⇠) = 1 +
i⌦

3
ln


(1� ⇠)(1 + ⇠

3/2)

1� ⇠3/2

�
+O(⌦2) . (23)

In response to the boundary condition at the infrared
(IR) side, the behavior at the ultraviolet (UV) side near
⇠ ⇠ 0 is fixed, from which the physical information can
be extracted. That is,

ai(⇠) ' 1 +
2i⌦

3
⇠
3/2 + · · · (24)

Now, let us prescribe how to calculate the electric current
expectation value using the GKP-W relation [49, 50]. It
is the generating functional coupled to the gauge poten-
tial, which results from the on-shell action in the gravity

�/(CeT ) 1.1Tc 1.3Tc 1.5Tc

This work 0.206 0.243 0.281

Lattice-QCD [52] 0.201-0.703 0.203-0.388 0.218-0.413

TABLE I. Comparison between our estimates and the lattice-
QCD results from Ref. [52] for the dimensionless electric con-
ductivity for three di↵erent temperatures above Tc.

theory with the UV boundary condition of ai(⇠ ! 0) as
the physical vector potential in the gauge theory.
To calculate the electric current expectation value,

thus, we should take a functional derivative of the grav-
ity action with respect to ai on the UV boundary. Near
the UV boundary (⇠ ⇠ 0 or u ⇠ 1), the action has
asymptotic behavior as follows:

S ⇠ �N
Z

d
4
xduu

5/2 1

2
(f2

ux + f
2

uy + f
2

uz)

⇠ �Nu
3/2
T

2

Z
d
4
xd⇠ ⇠

� 1
2 (@⇠ai)

2
. (25)

Therefore, the dimensionless electric current is

ji =
�S

�@⇠ai(⇠ = 0)

= �2

✓
�Nu

3
2
T

2

◆
⇠
� 1

2 @⇠ai

���
⇠=0

= iN!uT . (26)

This is an expression in the dimensionless units. We note
that ji = �Ei translates to ji = i�!Ai in frequency
space (if � is a time-independent constant). We note
that our normalization is ai(⇠ ! 0) = 1 and we should
add the D8 contribution multiplying a factor 2. Plugging
uT = (4⇡/3)2R2

T
2 into ji, we can derive the electric

conductivity:

�

q2
= 2

✓
4⇡

3

◆2

N (2⇡↵0)2R�3
T

2 =
2�NfNcT

2

27⇡MKK

. (27)

Here, we retrieved 2⇡↵0 from Eq. (2) and also recovered
the electric charge q. This T 2 behavior is consistent with
preceding studies, see Ref. [30].
Once the t’ Hooft coupling, �, and the Kaluza-Klein

mass, MKK, are determined to reproduce the physical
quantities, we can express � in the physical units. More
specifically, the ⇢ meson mass, m⇢, and the pion decay
constant, f⇡, can fix these parameters as [19, 20, 51]

� = 16.63 , MKK = 0.95GeV . (28)

To make a quantitative comparison to the lattice-QCD
results for Nf = 2, we should consider normalized � by
the flavor factor, Ce = (2e/3)2+(�e/3)2 = 5e2/9. In our
calculation we simply treated the electric charge in the
normalization, which implies that the above expression
is already normalized. Then,

�

CeT
=

2�NcT

27⇡MKK

=
�

9⇡2

✓
T

Tc

◆
, (29)

(per one flavor)

[B=0]
5

Under coordinate transformation ⇠ = uT /u and using the
Fourier transformed variable ai(⇠,!), we can rewrite the
EoM as

⇠
�3/2 ⌦2

1� ⇠3
ai + @⇠

h
⇠
�1/2(1� ⇠

3)@⇠ai
i
= 0 . (18)

Here, we defined the dimensionless frequency as ⌦2 =
!
2
/uT .
As discussed in Ref. [48], we should impose the infalling

boundary condition near the blackhole horizon at u ⇠ uT

or ⇠ ⇠ 1. We can approximate the EoM near ⇠ ⇠ 1 and
identify the asymptotic form of the solution from

⌦2

3(1� ⇠)
ai � 3@⇠ai + 3(1� ⇠)@2

⇠ai = 0 , (19)

which is obtained from Eq. (18) near ⇠ ⇠ 1. We can easily
solve Eq. (19) using the asymptotic form, ai ⇠ (1 � ⇠)�,
from which (⌦/3)2+�+�(��1) = 0 follows, leading to � =
± i⌦

3
immediately. The infalling direction corresponds to

� = � i⌦
3

and we can parametrize the solution as

ai(⇠) = (1� ⇠)�
i⌦
3 g(⇠) , (20)

where g(⇠) is a regular function near ⇠ ⇠ 1. The normal-
ization of ai(⇠) is conventionally chosen as the unity, i.e.,
ai(⇠ = 0) = 1 or g(⇠ = 0) = 1. We can then expand g(⇠)
for small ⌦, under the condition that g(⇠ = 1) is regular.
Up to the first order in ⌦ we can drop the first term in
Eq. (18) and the equation to be satisfied by ai is

@⇠

h
⇠
�1/2(1� ⇠

3)@⇠ai
i
= 0 , (21)

which can be solved as

ai(⇠) = C

Z ⇠

0

d⇠
⇠
1/2

1� ⇠3
+D =

C

3
ln

✓
1 + ⇠

3/2

1� ⇠3/2

◆
+D ,

(22)
where C and D are ⌦ dependent constants. We can then
write down a form of g(⇠) for small ⌦ as g(⇠) ' [1 +
i
⌦

3
ln(1 � ⇠)]ai(⇠). The condition of ai(⇠ = 0) = 1 fixes

D = 1, and the regularity of g(⇠ ! 1) fixes C = i⌦.
Therefore, we can conclude,

g(⇠) = 1 +
i⌦

3
ln


(1� ⇠)(1 + ⇠

3/2)

1� ⇠3/2

�
+O(⌦2) . (23)

In response to the boundary condition at the infrared
(IR) side, the behavior at the ultraviolet (UV) side near
⇠ ⇠ 0 is fixed, from which the physical information can
be extracted. That is,

ai(⇠) ' 1 +
2i⌦

3
⇠
3/2 + · · · (24)

Now, let us prescribe how to calculate the electric current
expectation value using the GKP-W relation [49, 50]. It
is the generating functional coupled to the gauge poten-
tial, which results from the on-shell action in the gravity

�/(CeT ) 1.1Tc 1.3Tc 1.5Tc

This work 0.206 0.243 0.281

Lattice-QCD [52] 0.201-0.703 0.203-0.388 0.218-0.413

TABLE I. Comparison between our estimates and the lattice-
QCD results from Ref. [52] for the dimensionless electric con-
ductivity for three di↵erent temperatures above Tc.

theory with the UV boundary condition of ai(⇠ ! 0) as
the physical vector potential in the gauge theory.
To calculate the electric current expectation value,

thus, we should take a functional derivative of the grav-
ity action with respect to ai on the UV boundary. Near
the UV boundary (⇠ ⇠ 0 or u ⇠ 1), the action has
asymptotic behavior as follows:

S ⇠ �N
Z

d
4
xduu

5/2 1

2
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ux + f
2

uy + f
2

uz)

⇠ �Nu
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. (25)

Therefore, the dimensionless electric current is

ji =
�S

�@⇠ai(⇠ = 0)

= �2

✓
�Nu

3
2
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2
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⇠
� 1

2 @⇠ai
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= iN!uT . (26)

This is an expression in the dimensionless units. We note
that ji = �Ei translates to ji = i�!Ai in frequency
space (if � is a time-independent constant). We note
that our normalization is ai(⇠ ! 0) = 1 and we should
add the D8 contribution multiplying a factor 2. Plugging
uT = (4⇡/3)2R2

T
2 into ji, we can derive the electric

conductivity:

�

q2
= 2

✓
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3

◆2

N (2⇡↵0)2R�3
T

2 =
2�NfNcT

2

27⇡MKK

. (27)

Here, we retrieved 2⇡↵0 from Eq. (2) and also recovered
the electric charge q. This T 2 behavior is consistent with
preceding studies, see Ref. [30].
Once the t’ Hooft coupling, �, and the Kaluza-Klein

mass, MKK, are determined to reproduce the physical
quantities, we can express � in the physical units. More
specifically, the ⇢ meson mass, m⇢, and the pion decay
constant, f⇡, can fix these parameters as [19, 20, 51]

� = 16.63 , MKK = 0.95GeV . (28)

To make a quantitative comparison to the lattice-QCD
results for Nf = 2, we should consider normalized � by
the flavor factor, Ce = (2e/3)2+(�e/3)2 = 5e2/9. In our
calculation we simply treated the electric charge in the
normalization, which implies that the above expression
is already normalized. Then,

�

CeT
=

2�NcT

27⇡MKK

=
�

9⇡2

✓
T

Tc

◆
, (29)

Fukushima-Okutsu (2022)
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With nonzero B, a time-independent term appear from 
the Chern-Simons term, leading to  !σ∥ → ∞

With nonzero B, transverse  is easy to compute.σ

6

where we used the known relation Tc = MKK/(2⇡) in the
SSM. Table I shows the comparison between our SSM
estimates and the lattice-QCD results from Ref. [52], in-
dicating consistency. We note that the lattice results are
for massive quarks, while our calculations are in the chi-
ral limit. In view of Fig. 3 of Ref. [16] the quark mass
dependence of the electric conductivity is expected to be
minor (as compared to the large error bar in the lattice
data), and the comparison with di↵erent quark masses
makes sense. Our estimates are also consistent with the
lattice-QCD results with dynamical quarks in Ref. [53];
however, one should not take the quantitative compari-
son too seriously. The physical setups with and without
dynamical quarks are di↵erent. As we noted, the probe
approximation corresponds to the quench approximation,
and it could be justified in the Nc ! 1 limit, but QCD
has only Nc = 3, and Nf/Nc corrections are expected
beyond the probe approximation.

IV. FINITE MAGNETIC CASE

We can repeat the same procedures including full B
e↵ects. First, let us consider the transverse degrees of
freedom, i.e., the x and y directions perpendicular to B.
For ax,y, as seen from Eq. (7), there is no contribution
from the Chern-Simons term and the analysis is easier
than the longitudinal direction. The EoM for ax is,

� u
�1/2

f
�1B�1/2

@0f0x + @u

�
u
5/2

fB�1/2
a
0
x

�
= 0 . (30)

In the same way as the B = 0 case, in frequency space
and in terms of ⇠ = uT /u, we can rewrite the above into

⇠
�3/2 ⌦2

1� ⇠3
B�1/2

ax + @⇠

⇥
⇠
�1/2(1� ⇠

3)B�1/2
@⇠ax

⇤
= 0 .

(31)
Near ⇠ ⇠ 1, the asymptotic behavior is determined by
the singular part of the above EoM which is the same
as the B = 0 case. Then, we can take the form of the
solution to be ax(⇠) = (1 � ⇠)�

i⌦
3 g(⇠) and expand g(⇠)

for small ⌦. Some calculations similar to previous ones
lead us to the following solution:

ax(⇠) = C

Z ⇠

0

d⇠
⇠
1/2B1/2

1� ⇠3
+D . (32)

The integration is analytically possible but the expression
is highly intricate. Nevertheless, the previous exercise at
B = 0 tells us that C is fixed to cancel the singularity of
ln(1� ⇠) around ⇠ ⇠ 1, which requires,

C = i⌦B�1/2
0

, D = 1 , (33)

where B0 = 1+B
2
u
�3

T . Once these constants are known,
we can expand ax(⇠) near ⇠ ⇠ 0 as

ax(⇠) ' 1 +
2i⌦

3
B�1/2
0

⇠
3/2 + · · · (34)

Therefore, the correction due to B is simply B�1/2
0

and
the conductivity is, thus,

�? =
�(B = 0)q
1 +B2u

�3

T

, (35)

where �(B = 0) is given by Eq. (29). The transverse
conductivity is suppressed by large B, and this makes
physical sense. The external magnetic field restricts the
transverse motion of charged particles and the charge
transport along the transverse directions needs a jump
between di↵erent Landau levels. In the strong B limit,
therefore, the electric conductivity should be vanishing.
We note that the drift motion of charged particles under
B may change the scenario. In the probe approximation
of the SSM the drift motion e↵ect (whose time scale /
Nc/Nf) is negligible and our calculations are justified.
For the AC conductivity, for which the drift frequency
can be smaller than the electric frequency, the transverse
conductivity should not be vanishing even in the strong
B limit, see Ref. [32] for details.
Next, we shall find the longitudinal conductivity. To

this end we consider the constraints and then solve the
EoMs as we did for the B = 0 case. From Eq. (9) we
have

� @u(u
5/2B1/2

a
0
0
)� 4↵Ba

0
z = 0 , (36)

which means that u5/2B1/2
a
0
0
+4↵Baz is a u independent

constant. The chiral anomaly in Eq. (10) in the presence
of B 6= 0 reads,

@0(u
5/2B1/2

a
0
0
) + 4↵Bf0z = 0 . (37)

Because f0z = @0az (dropping @z), the above two equa-
tions are summarized into

u
5/2B1/2

a
0
0
+ 4↵Baz = c , (38)

where c is a t and u independent constant. We note
that, unlike the B = 0 case, a0 takes a nonvanishing
value. Physically speaking, u

5/2B1/2
a
0
0
is proportional

to the matter chirality, whilst Baz is the magnetic helic-
ity up to an overall factor. We can interpret the chiral
anomaly as a conservation law of the matter chirality
and the magnetic helicity. It should be noted that the
magnetic helicity plays an important role in the descrip-
tion of magneto-hydrodynamical evolutions [54]. Now it
is clear that c physically means a net chirality charge in
the system and it should be, in principle, fixed by an
initial condition.
The longitudinal EoM is

� u
�1/2

f
�1B1/2

@0f0z + @u(u
5/2

fB1/2
a
0
z) + 4↵Ba

0
0
= 0 ,
(39)

and we can eliminate a0 by combining Eqs. (38) and (39),
so that we can find a di↵erential equation for az only.
Then, we convert the equation into the one in frequency

Conductivity suppressed for 
large B, consistent with the 
Landau orbit picture.

* We can adjust the anomaly to be zero…

* We can drop the divergent term to be zero…
Coefficient  in the Chern-Simons term changed.α

Extracting the Ohmic part of the conductivity.



March 13, 2023 @ etc*, Trento

Holographic Approach

12

7

space. The resultant di↵erential equation reads:

⇠
�3/2 ⌦2

1� ⇠3
B1/2

az + @⇠

⇥
⇠
�1/2(1� ⇠

3)B1/2
@⇠az

⇤

� 16↵2(B0 � 1)B�1/2
⇠
1/2(az � 1� c̄) = 0 .

(40)

Here, c̄ represents a Fourier transform of the sum of
c/(4↵B) and the zero mode of az, which should be sin-
gular as �(⌦) since c as well as B is time independent. It
should be noted that az � 1 is of order ⌦ in our choice
of the normalization and so this combination is free from
the zero mode. Thus, in the SSM at finite B, the longi-
tudinal electric conductivity diverges. This conclusion is
consistent with Ref. [31].

We can give an intuitive physical interpretation to
c̄ / �(⌦). In the strict limit of ⌦ = 0, we are look-
ing at the long time behavior of physical observables,
and then the electric conductivity must diverge in this
model. The reason is quite simple: quarks are massless
in the SSM, and there is no other process to destroy chi-
rality. Thus, the matter chirality results from the chiral
anomaly and eventually blows up under the long time
limit. In other words, due to the chirality production,
the electric carriers increase with increasing time. Then,
the CME current grows up linearly as a function of time,
and the electric conductivity corresponding to the linear
time dependence is divergent by definition.

This argument implies that a nonzero ⌦ piece in az

could still be well-defined. Even though the strict zero
mode is singular, let us keep our normalization of az !
1 at ⌦ ! 0 for convenience and az � 1 in the above
expression is a contribution from the nonzero mode. It
is now quite interesting that our calculations can evade
a pathological singularity as long as ⌦ 6= 0 (including
⌦ ! 0+ for strictly static B), for which we can drop c̄.
We can also give an intuitive interpretation to dropping
c̄ in physical terms. We can drop the zero mode if c in
Eq. (38) happens to cancel az, which occurs when the
zero mode of the matter chirality is forced to be zero. In
fact, this matter chirality directly couples to the chiral
anomaly, and it should be reasonable to define a finite
Ohmic part of the electric conductivity by imposing an
extra condition to neutralize the matter chirality. This is
our working definition of the Ohmic electric conductivity
denoted by �

Ohmic.
Let us try to evaluate the electric current under the

condition of c̄ = 0. It is di�cult to find an analytical
expression of az(⇠) in general, but the calculation is quite
simple in the ↵ = 0 case (in which there appears no
divergence), that is the case with the full suppression of
the chiral anomaly. In this special limit of ↵ = 0, first,

we can easily solve the di↵erential equation as a(0)z (⇠) =
az(⇠;↵ = 0) = (1� ⇠)�

i⌦
3 g(⇠;↵ = 0) with

a
(0)

z (⇠) = C

Z ⇠

0

d⇠
⇠
1/2B�1/2

1� ⇠3
+D

' 1 +
2i⌦

3
B1/2
0

⇠
3/2 + · · · (41)
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FIG. 1. Magnetic dependence of the transverse electric con-
ductivity �? and the longitudinal electric conductivity �k
at ↵ = 0. The physical scale is set at T = 0.2GeV and
Tc = 0.15GeV using Eq. (29).

with C = i⌦B1/2
0

and D = 1. We see that the di↵erence
from ax(⇠) in Eq. (32) is only the power of B, and it is
almost obvious that the magnetic dependence is

�k(↵ = 0) = �(B = 0)
q

1 +B2u
�3

T . (42)

Therefore, in this special case with ↵ = 0 the longitudinal
conductivity is enhanced by the e↵ect of increasing B.
Now, to see quantitative behavior in the physical units,
we convert B2

u
�3

T into a GeV quantity using

B
2
u
�3

T = 9

✓
4⇡

3

◆�4
M

2

KK
B̃

2

�2T 6
, (43)

where B̃ is the physical magnetic field. In Fig. 1 we plot
��(B) = �(B)��(0) in the unit of CeT (where the tilde
is omitted) for the transverse conductivity in Eq. (35) and
the longitudinal conductivity at ↵ = 0 in Eq. (42) using
Eq. (29) with T = 0.2GeV and Tc = 0.15GeV. From
this it is evident that the modification is sizable for B

at the order of GeV2. The transverse conductivity, �?,
(solid curve in Fig. 1) numerically looks consistent with
the lattice-QCD data as shown in Fig. 2 in Ref. [53]. The
comparison of the longitudinal conductivity, �k, needs
subtle discussions. The dashed curve in Fig. 1 repre-
sents the longitudinal conductivity at ↵ = 0 (without
the anomaly), while the lattice-QCD data are supposed
to contain the anomaly e↵ects. Actually, our results at
↵ = 0 are almost a half of the lattice-QCD results. They
do not have to match since they are di↵erent quantities.
Next, we can consider the full ↵ dependence numer-

ically. For actual procedures it is convenient to in-
troduce a function, ⌘(⇠) = (1 � ⇠)@⇠az(⇠), and then
the infalling boundary condition can be expressed as
⌘(⇠ ⇠ 1) = i⌦

3
az(⇠ ⇠ 1). The set of two di↵erential

equations can be integrated with an initial condition,

Bad news — conductivity is 
enhanced even without the 
Chern-Simons term (maybe 
without the chiral anomaly).
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FIG. 2. Longitudinal electric conductivity �k normalized by
its value �0 at ↵ = B = 0. The physical value of ↵ is 3/4, for
which �k decreases with increasing B.

az(⇠ ⇠ 0) = 1, and ⌘(⇠ ⇠ 0) should be fixed to sat-
isfy the infalling boundary condition. We performed the
numerical calculation by means of the Shooting Method
for various ↵ and B, and the results are summarized in
Fig. 2.

For ↵ = 0 our numerical results in Fig. 2 correctly re-
produce the increasing behavior as in Fig. 1. Also, there
is no ↵ dependence at all for B = 0 since the Chern-
Simons action has no contribution, which is confirmed
in Fig. 2. It is intriguing to observe that the qualitative
tendency of the B dependence is changed as ↵ increases.
Indeed, for ↵ = 3/4 (i.e., the physical value), �Ohmic

k (B)
decreases with increasing B, and this is our central find-
ing.

Actually, for ↵ = 0, we can give a simple account for
the increasing behavior of �k. In the limit of strong B the
LLL approximation should be justified, and the fermion
dynamics is reduced to (1+1) dimensions along the longi-
tudinal direction. Then, massless fermions cannot scat-
ter in (1+1) dimensions (see discussions in Ref. [55]) and
the transport coe�cients are inevitably divergent [15],
see more specifically Fig. 3 in Ref. [16]. This phase space
argument has nothing to do with the chiral anomaly, so
that it is applied to the ↵ = 0 case. At the algebraic level
we can understand �k ! 1 at strong B from Eq. (40).
For ↵ = 0 and small ⌦, the di↵erential equation to be
solved corresponding to Eq. (21) is

@⇠

h
⇠(1� ⇠

3)@⇠az
i
= 0 (44)

after we replace B ! B
2
u
�3

T ⇠
3. The integration near

⇠ ⇠ 0 is singular, which makes �k divergent.
The situation is drastically changed by the third term

/ ↵
2 in Eq. (40). In the large B limit, again, the dif-

ferential equation simplifies and the general solution can
be expressed in terms of the hypergeometric functions.
To meet the boundary condition near ⇠ ⇠ 1, the con-
ductivity should come along with a normalization factor
that is suppressed by ↵. The third term in Eq. (40) was
originally 4↵Ba

0
0
and this is proportional to the matter

chirality [i,e., the first term in Eq. (38)]. It is therefore the

matter chirality that allows for fermion scatterings even
at strong B. We have subtracted the zero mode (and di-
vergent) contribution from the chiral anomaly, and yet,
the nonzero mode (that is, az�1 is of order ⌦) still plays
a role. This is a sensible scenario; the anomaly can gen-
erate the chirality, which in turn means that the chirality
can decay via the anomaly. This is extremely interest-
ing. We identified the Ohmic electric conductivity, but
its properties reflect interactions induced by the chiral
anomaly. A very favorable feature is that the anomaly
dependence in the Ohmic part is opposite to the negative
magnetoresistance expected in the zero mode.

V. SUMMARY

We calculated the magnetic field dependence of the
electric conductivity in deconfined QCD matter using
a holographic QCD model, namely, the Sakai-Sugimoto
Model. For simplicity we considered only the high tem-
perature environment at T > Tc and solved the equations
of motion in the presence of external magnetic field B

within the probe approximation.
We first checked the qualitative consistency between

the SSM results and the lattice-QCD data of the electric
conductivity � at B = 0. Because of a mass scale, the
Kaluza-Klein mass MKK, the T dependence is found to
be � / T

2
/MKK, but as long as T & Tc, we have verified

that our estimates are consistent with the lattice-QCD
values.
We then proceed to the finite B case, and we found

that the transverse conductivity, �?, is suppressed by
larger B, which is understandable from the Landau quan-
tization picture. In contrast, the longitudinal conductiv-
ity, �k, is an increasing function of B if we drop the
Chern-Simons action with ↵ = 0. This is also intuitively
understandable from the phase space argument in the
lowest Landau level approximation. Massless fermions
cannot scatter in e↵ectively reduced (1+1) dimensions,
and transport coe�cients generally diverge. However,
our numerical results for ↵ 6= 0 show a turnover; that
is, ↵k decreases with increasing ↵ and B. We gave a
plain explanation on this numerical observation. That
is, the zero mode contribution from the chiral anomaly
yields the negative magnetoresistance (and it is diver-
gent for massless fermions unless a relaxation time is in-
troduced), and the nonzero mode contribution from the
chiral anomaly can significantly a↵ect the fermion inter-
actions and even the Ohmic part of the electric conduc-
tivity. Fortunately, however, the B dependence that we
discovered in the Ohmic part is opposite to the negative
magnetoresistance, and it would not impede a common
interpretation of the negative magnetoresistance as a sig-
nature for the chiral magnetic e↵ect.
We emphasize that this common interpretation of the

negative magnetoresistance as a signature for the chiral
magnetic e↵ect implicitly assumes that the Ohmic part
is B independent. Therefore, it is a very important check

Good news — Ohmic part 
with the chiral anomaly shows 
the positive magnetoresistance, 
not contaminating the CME 
signature (negative mag.).
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Conclusions / Outlooks

Still, the interpretation of the conductivity in terms 
of chiral anomaly is a subtle issue… 
Full perturbative calculation with the chiral 

charge taken into account is needed (maybe 
somebody already did it?) 
How to reliably calculate the magnetic dependence 

in the Ohmic part?  Is this a well-defined question? 
Personally, I am interested in a question of how to 

formulate the relaxation time in a way calculable in 
the lattice or in the holographic model.
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