Electric Conductivity and Chiral Anomaly - perturbative and holographic perspectives

Kenji Fukushima

The University of Tokyo
— Holographic perspectives on chiral transport -

Chiral Anomaly

From a review (Aspects of Chiral Sym) by Smilga (2000)

$$
K_{\mu \nu}^{A B, \mathcal{H}^{\mathcal{H}}}(q)=i \int\left\langle T\left\{j_{\mu 5}^{A}(x) j_{\nu}^{B}(0)\right\}\right\rangle_{\mathcal{H}} e^{i q x} d^{4} x
$$

One loop calculation leads to

$$
K_{\mu \nu}^{A B, \mathcal{H}}(q)=-\frac{\mathcal{H}}{2 \pi^{2}} \frac{q_{\mu} \tilde{\epsilon}_{\nu \alpha} q^{\alpha}}{q^{2}} \cdot N_{c} \cdot \frac{1}{2} \delta^{A B}
$$

This formula tells us a lot: CME is included, the difference in the order of limits is included, etc.

Chiral Magnetic Effect

If this linear rise is balanced by "relaxation" $\sigma_{\mathrm{CME}} \propto B^{2}$

Chiral Magnetic Effect

$$
j=\left(\sigma_{\mathrm{Ohm}}+\sigma_{\mathrm{CME}}\right) E \quad \sigma_{\mathrm{CME}} \propto B^{2}
$$

Li et al. Nature Phys. 12, 550 (2016)

Son-Spivak (2012)

Two Questions:

* Microscopic calculation of σ_{CME} beyond the relaxation time approx. ?
* \boldsymbol{B} dependece in the Ohmic part: σ_{Ohm} ?

Electric Conductivity

Tensor Decomposition

$$
\begin{aligned}
& \sigma^{i j}=\sigma_{H} \epsilon^{i j k} \hat{B}^{k}+\sigma_{\|} \hat{B}^{i} \hat{B}^{j}+\sigma_{\perp}\left(\delta^{i j}-\hat{B}^{i} \hat{B}^{j}\right) \\
& \sigma_{H}=\frac{n_{0}}{B} \\
& \text { CME } \\
& \frac{\sigma_{\perp}}{T} \sim \frac{g^{2} T^{2}}{|q B|}
\end{aligned}
$$

Perturbative Approach

Magnetic field opens $1 \rightarrow 2(2 \rightarrow 1)$ scattering channels. (Compton scattering with one photon replaced by B + Pair creation/annihilation processes)

(a1) $q \rightarrow q g$

$(\mathrm{a} 2) q g \rightarrow q$

(b1) $\bar{q} \rightarrow \bar{q} g$

(b2) $\bar{q} g \rightarrow \bar{q}$

(c1) $q \bar{q} \rightarrow g$

(c2) $g \rightarrow q \bar{q}$

Fukushima-Hidaka, PRL (2018) / JHEP (2020)
Calculated the conductivity for $T \sim \sqrt{e B} \gg g T$ (dropping the thermal screening effects)

The question: is chiral anomaly included?

Perturbative Approach

Kubo formula \rightarrow Pinch singularities \rightarrow Kinetic equation $f+\delta f: \delta f \propto E \quad$ Linearlized kinetic eq. solved $\rightarrow \sigma$

Fukushima-Hidaka (2018 / 2020)
The question: is chiral anomaly included?

Perturbative Approach

At first, we thought that $\sigma \rightarrow \infty$ at $m \rightarrow 0$ is an artifact from the LLL

No scattering in (1+1)D

Referee pointed out : $\sigma \rightarrow \infty$ must be the answer!
The problem was: our δf did not include chiral charge. n_{5} should be treated as a hydro mode...

Holographic Approach

Sakai-Sugimoto Model

Deconfined

Deconfined Chiral symmetric

Fukushima-Okutsu (2022)
Chiral symmetry is realized in the same way as QCD.

Chiral anomaly is easily seen from the equation of motion.

CME has been well investigated: Yee, Rebhan, Schmitt, Stricker, etc.

Holographic Approach

Suggestive Phase Structure in Sakai-Sugimoto Model

Hawking-Page Transition

$$
\begin{aligned}
& T_{c}= M_{\mathrm{KK}} /(2 \pi) \\
& M_{K K}=0.95 \mathrm{GeV} \\
& \lambda=16.63
\end{aligned}
$$

Compute the current with $E \rightarrow \sigma=j / E$
[$\boldsymbol{B}=\mathbf{0}$]
$\frac{\sigma}{C_{e} T}=\frac{2 \lambda N_{\mathrm{c}} T}{27 \pi M_{\mathrm{KK}}}=\frac{\lambda}{9 \pi^{2}}\left(\frac{T}{T_{c}}\right)$
(per one flavor)

$\sigma /\left(C_{e} T\right)$	$1.1 T_{c}$	$1.3 T_{c}$	$1.5 T_{c}$
This work	0.206	0.243	0.281
Lattice-QCD [52]	$0.201-0.703$	$0.203-0.388$	$0.218-0.413$

Fukushima-Okutsu (2022)

Holographic Approach

With nonzero \boldsymbol{B}, transverse σ is easy to compute.

$$
\sigma_{\perp}=\frac{\sigma(B=0)}{\sqrt{1+B^{2} u_{T}^{-3}}} \quad \begin{aligned}
& \text { Conductivity suppressed for } \\
& \text { large } \boldsymbol{B}, \text { consistent with the } \\
& \text { Landau orbit picture. }
\end{aligned}
$$

With nonzero B, a time-independent term appear from the Chern-Simons term, leading to $\sigma_{\|} \rightarrow \infty$!

* We can adjust the anomaly to be zero...

Coefficient α in the Chern-Simons term changed.

* We can drop the divergent term to be zero...

Extracting the Ohmic part of the conductivity.

Holographic Approach

enhanced even without the Chern-Simons term (maybe without the chiral anomaly).

Good news - Ohmic part with the chiral anomaly shows the positive magnetoresistance, not contaminating the CME signature (negative mag.).
Bad news - conductivity is

Conclusions / Outlooks

Still, the interpretation of the conductivity in terms of chiral anomaly is a subtle issue...
Full perturbative calculation with the chiral charge taken into account is needed (maybe somebody already did it?)
How to reliably calculate the magnetic dependence in the Ohmic part? Is this a well-defined question?
Personally, I am interested in a question of how to formulate the relaxation time in a way calculable in the lattice or in the holographic model.

