

Driven-dissipative quantum many-body systems

From instability in cavity-boson systems to enhancement of superconductivity

Rui Lin, A. Ramires, R. Chitra

Workshop Quantum Science Generation Trento, 02.05.2023

(Parts I & III) soon on arXiv

I DRIVEN & DISSIPATIVE SYSTEMS

Introduction

DRIVEN

Cond. matter & Quantum gas

Floquet engineering

Effective strobo. Hamiltonian

Synthetic dimension

DISSIPATIVE Quantum optical Lindblad form Third quantization Weak symmetry

Introduction

"Lattice sites" "Hoppings" Synthetic dimension

PRX 4, 031027 (2014), Goldman, Dalibard PRL 106, 236401 (2011) Tsuji, Oka, Werner, Aoki

Dissipative quantum systems – Keldysh

Dissipation:

 $\sum W_{m,n}(b_m^{\dagger}c_n + c_n^{\dagger}b_m) + \sum \xi_m b_m^{\dagger}b_m$

m,n

Rev. Mod. Phys. 86, 779 (2014) Aoki, Tsuji, et al. Rep. Prog. Phys. 79, 096001 (2016), Sieberer, Buchhold, Diehl

Fluctuation-Dissipation relation

 $G^{R/A} = (\omega \pm i\Sigma - H)^{-1}$

Driven-Dissipative quantum systems Fluc-Diss: $\mathbf{G}^{K} = \mathbf{G}^{R} \rho - \rho \mathbf{G}^{A}$ $\mathbf{G}^{R/A} = (\omega \pm i\Sigma - \mathbf{H})^{-1}$ $\cos(\Omega t)$ **Intrinsic relative rotation:** Generally $[\mathbf{H}, \rho] \neq 0$ when $H_{\pm 1} \neq 0$ System Bath H, G^R ρ, Σ

Floquet structure in bath H =

Condensed Matter Field Theory (2010), Altland, Simons

Driven-Dissipative quantum systems Fluc-Diss: $\mathbf{G}^{K} = \mathbf{G}^{R} \rho - \rho \mathbf{G}^{A}$ $\mathbf{G}^{R/A} = (\omega \pm i\Sigma - \mathbf{H})^{-1}$

Intrinsic relative rotation: Generally $[\mathbf{H}, \rho] \neq 0$ when $H_{\pm 1} \neq 0$

II CAVITY-BOSON SYSTEMS within LINDBLAD FORM

A V-shaped cavity-boson systems

 $\partial_t \rho = -i[H,\rho] + \kappa \left(2a\rho a^{\dagger} - a^{\dagger}a\rho - \rho a^{\dagger}a\right)$ κ Disspation

Ground state v.s. steady state

Invalid energy minimization arguments

PRL **128**, 153601 (2022) **RL** et al. PRL **128**, 143602 (2022) Rosa-Medina et al.

Lindblad form in Floquet-Keldysh Static system

- \mathscr{R} : Response function
- ρ : Thermal distribution

Lindblad form in Floquet-Keldysh Lab frameRotating frame

Driven-dissipative stabilization Driven system

Driven-dissipative destabilization

The Holstein-Primakoff bosonic modes...

manifest driven-dissipative instability

with particle-hole (counter-rotating) couplings.

 $H = \omega_c a^{\dagger} a + \omega_0 b^{\dagger} b + \lambda (a^{\dagger} b^{\dagger} + ba)$

III SUPERCONDUCTORS beyond LINDBLAD FORM

Gap equation of superconductors Mean-field gap equation: $\Delta = \frac{ig}{2} \left[\frac{d\omega}{2\pi} \mathscr{R}(\omega, \Delta) \right]$ (with Floquet structure) Static system $\cos(\Omega t)$ Superconductor $\Delta = ig \sum_{\mathbf{k}} \frac{\Delta}{\sqrt{\epsilon_{\mathbf{k}}^2 + \Delta^2}} \tanh\left(\frac{\sqrt{\epsilon_{\mathbf{k}}^2 + \Delta^2}}{2T}\right)$

Enhancement of superconductivity

 $H_D = 0$

 $H_D = \tau_0 \cos(\Omega t)$

Time-averaged Gap

Enhancement of superconductivity

 $H_D = 0$

 $[H_D, \Delta] = 0$

Enhancement of superconductivity

Time-averaged Gap

 Ω : Driving freq., $\delta\Omega$: Cutoff-drive detuning

 $\{H_D, \Delta\} = 0$

Conclusions and Outlook Floquet-Keldysh $G^{K} = G^{R}$

- Field theory for systems described by Lindblad form
- Floquet \rightarrow Driven-dissipative engineering

$$\rho - \rho \mathbf{G}^A \qquad [\mathbf{G}^R, \rho] \neq 0$$

• Framework for more general driven-dissipative systems

with a focus on **particle-hole coupling?**