

Quantum kinetics of quenched two-dimensional Bose superfluids

Clément Duval

Quantum Science Generation workshop Trento, May 2023

Uniform 2D Bose gas in equilibrium

$$\hat{H} = \int d^2 \boldsymbol{r} \left(-\frac{1}{2m} \hat{\psi}^{\dagger} \Delta_{\boldsymbol{r}} \hat{\psi} + \frac{g}{2} \hat{\psi}^{\dagger} \hat{\psi}^{\dagger} \hat{\psi} \hat{\psi} \right)$$
$$g > 0, \ T \ge 0$$

• At very low T \rightarrow No condensation, but quasi-long range order \rightarrow Superfluidity

 $\langle \hat{\psi}^{\dagger}(\mathbf{r})\hat{\psi}(\mathbf{r}+\Delta\mathbf{r})\rangle\sim (1/\Delta\mathbf{r})^{\alpha}$

 $\langle \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r} + \Delta \mathbf{r}) \rangle \sim \exp(-\Delta \mathbf{r}/l)$

Hohenberg, Phys. Rev. 158, 383 (1967)

• At large T \rightarrow Exponential decay of spatial correlations \rightarrow ``Normal'' phase

ase

Kosterlitz, Thouless, J. Phys. C: Solid State Phys., 6 1181 (1973)

Quench protocole

$$\hat{H} = \int d^2 \boldsymbol{r} \Big(-\frac{1}{2m} \hat{\psi}^{\dagger} \Delta_{\boldsymbol{r}} \hat{\psi} + \frac{g}{2} \hat{\psi}^{\dagger} \hat{\psi}^{\dagger} \hat{\psi} \hat{\psi} \Big)$$
$$g > 0, \ T \ge 0$$

→ What happens if we push the system **out-of-equilibrium**?
 Quench g inside the superfluid phase:

Typical experimental setup & observations

 \rightarrow Interferences between post-quench quasiparticles

Quantum hydrodynamic formalism

2D uniform Bose gas
$$\hat{H} = \int d^2 m{r} \Big(-rac{1}{2m} \hat{\psi}^\dagger \Delta_{m{r}} \hat{\psi} + rac{g}{2} \hat{\psi}^\dagger \hat{\psi}^\dagger \hat{\psi} \hat{\psi} \Big)$$

• Local density and phase $\hat{\psi}(\mathbf{r}) = e^{i\hat{\theta}(\mathbf{r})}\sqrt{\hat{\rho}(\mathbf{r})}$ • Low $T \rightarrow$ weak density fluctuations $\hat{\rho}(\mathbf{r}) = \rho_0 + \delta \hat{\rho}(\mathbf{r})$ $\delta \hat{\rho} \ll \rho_0$

3rd-order expansion

Quantum hydrodynamic formalism

2D uniform Bose gas
$$\hat{H} = \int d^2 m{r} \Big(-rac{1}{2m} \hat{\psi}^\dagger \Delta_{m{r}} \hat{\psi} + rac{g}{2} \hat{\psi}^\dagger \hat{\psi}^\dagger \hat{\psi} \hat{\psi} \Big)$$

• Local density and phase $\hat{\psi}(\mathbf{r}) = e^{i\hat{\theta}(\mathbf{r})}\sqrt{\hat{\rho}(\mathbf{r})}$ • Low $T \rightarrow$ weak density fluctuations $\hat{\rho}(\mathbf{r}) = \rho_0 + \delta \hat{\rho}(\mathbf{r})$ $\delta \hat{\rho} \ll \rho_0$

3rd-order expansion

$$\rightarrow \left| \hat{H} = \int_{\boldsymbol{q}} \epsilon_{\boldsymbol{q}} a_{\boldsymbol{q}}^{\dagger} a_{\boldsymbol{q}} + \int_{\boldsymbol{p},\boldsymbol{q}} \Lambda_{\boldsymbol{p},\boldsymbol{q}} \left(\hat{a}_{\boldsymbol{p}} \hat{a}_{\boldsymbol{q}} \hat{a}_{\boldsymbol{p}+\boldsymbol{q}}^{\dagger} + \text{h.c.} \right) \right|$$

Free-theory \rightarrow independent quasi-particles (low q phonons)

Cubic interaction \rightarrow three-particle processes $p \rightarrow p+q$

$$\epsilon_q$$

$$cq$$

$$\xi^{-1} = \sqrt{4g\rho_0 m}$$

Coherent dynamics

• **Coherent** (prethermal) dynamics:
$$\hat{H} \simeq \int_{q} \epsilon_{q} a_{q}^{\dagger} a_{q}$$

 $i\hbar \frac{d\hat{a}}{d\tau} = [\hat{a}, H] \rightarrow \hat{a}_{q,\tau} = \hat{a}_{q,0} \exp(-i\epsilon_{q}\tau)$

 \rightarrow Coherent dynamics with characteristic time scale $\tau_{\phi} \sim \epsilon_{q=1/\xi}^{-1} \sim (g\rho_0)^{-1}$

→ QP momentum distributions **time independent**

$$\langle \hat{a}_{\boldsymbol{q},\tau}^{\dagger} \hat{a}_{\boldsymbol{q},\tau} \rangle \equiv n_{\boldsymbol{q},\tau} = n_{\boldsymbol{q},\boldsymbol{0}}$$

$$\langle \hat{a}_{\boldsymbol{q},\tau} \hat{a}_{-\boldsymbol{q},\tau} \rangle = \underbrace{|\langle \hat{a}_{\boldsymbol{q},\tau} \hat{a}_{-\boldsymbol{q},\tau} \rangle|}_{\equiv m_{\boldsymbol{q},t} = m_{\boldsymbol{q},\boldsymbol{0}}}$$
post-quench value

Undamped oscillations $S_{\boldsymbol{q},\tau}$ 2 0 0 4 8 time au (ms)

Coherent dynamics

O Coherent (prethermal) dynamics:
$$\hat{H} \simeq \int_{q} \epsilon_{q} a_{q}^{\dagger} a_{q}$$

 $i\hbar \frac{d\hat{a}}{d\tau} = [\hat{a}, H] \rightarrow \hat{a}_{q,\tau} = \hat{a}_{q,0} \exp(-i\epsilon_{q}\tau)$
 \rightarrow **Coherent dynamics** with characteristic time scale $\tau_{\phi} \sim \epsilon_{q=1/\xi}^{-1} \sim (g\rho_{0})^{-1}$
 $\rightarrow S_{q,\tau} = \frac{E_{q}}{\epsilon_{q}} [2n_{q,0} + 1 + 2\cos(2\epsilon_{q}\tau)m_{q,0}]$
 $S_{q,\tau} = \frac{E_{q}}{\epsilon_{q}} \coth\left[\frac{\epsilon_{q}^{i}}{2k_{B}T_{i}}\right] \left[1 + \frac{\epsilon_{q}^{i} - \epsilon_{q}}{\epsilon_{q}} \sin^{2}(\epsilon_{q}\tau)\right]$
pre-quench temperature $\int_{q}^{q} \operatorname{enteres}_{q} \operatorname{enteres}_{q} \operatorname{enteres}_{q}$

Undamped oscillations Λ $\mathbf{S}_{{m q}, au}$ 2 0 0 4 8 time au (ms)

Coherent dynamics

O Coherent (prethermal) dynamics:
$$\hat{H} \simeq \int_{q} \epsilon_{q} a_{q}^{\dagger} a_{q}$$

 $i\hbar \frac{d\hat{a}}{d\tau} = [\hat{a}, H] \rightarrow \hat{a}_{q,\tau} = \hat{a}_{q,0} \exp(-i\epsilon_{q}\tau)$
 \rightarrow **Coherent dynamics** with characteristic time scale $\tau_{\phi} \sim \epsilon_{q=1/\xi}^{-1} \sim (g\rho_{0})^{-1}$
 $\rightarrow S_{q,\tau} = \frac{E_{q}}{\epsilon_{q}} [2n_{q,0} + 1 + 2\cos(2\epsilon_{q}\tau)m_{q,0}]$
 $S_{q,\tau} = \frac{E_{q}}{\epsilon_{q}} \coth\left[\frac{\epsilon_{q}^{i}}{2k_{B}T_{i}}\right] \left[1 + \frac{\epsilon_{q}^{i} - \epsilon_{q}}{\epsilon_{q}} \sin^{2}(\epsilon_{q}\tau)\right]$
pre-quench temperature interference between
OP emitted at the quench

2

Undamped oscillations

0 0

 $S_{{m q}, au}$

4 8 time au (ms)

 \rightarrow What if the quasiparticles are not independent?

Relaxation of phonons

Include cubic interactions at low energy

$$\hat{H} = \int_{\boldsymbol{q}} \epsilon_{\boldsymbol{q}} a_{\boldsymbol{q}}^{\dagger} a_{\boldsymbol{q}} + \int_{\boldsymbol{p},\boldsymbol{q}} \Lambda_{\boldsymbol{p},\boldsymbol{q}} \left(\hat{\boldsymbol{a}}_{\boldsymbol{p}} \hat{\boldsymbol{a}}_{\boldsymbol{q}} \hat{\boldsymbol{a}}_{\boldsymbol{p}+\boldsymbol{q}}^{\dagger} + \text{h.c.} \right) \quad \epsilon_{\boldsymbol{q}} \simeq cq \qquad \Lambda_{\boldsymbol{q},\boldsymbol{p}} \simeq \frac{3}{4m} \sqrt{\frac{g\rho_0}{2c}} \sqrt{pq|\boldsymbol{p}+\boldsymbol{q}}$$

 $\rightarrow \text{ time evolution of phonon distributions?} \\ n_{\boldsymbol{q},\boldsymbol{\tau}} = \langle \hat{a}_{\boldsymbol{q},\tau}^{\dagger} \hat{a}_{\boldsymbol{q},\tau} \rangle \qquad m_{\boldsymbol{q},\boldsymbol{\tau}} = |\langle \hat{a}_{\boldsymbol{q},\tau} \hat{a}_{-\boldsymbol{q},\tau} \rangle|$

Relaxation of phonons

Include cubic interactions at low energy

$$\hat{H} = \int_{\boldsymbol{q}} \epsilon_{\boldsymbol{q}} a_{\boldsymbol{q}}^{\dagger} a_{\boldsymbol{q}} + \int_{\boldsymbol{p},\boldsymbol{q}} \Lambda_{\boldsymbol{p},\boldsymbol{q}} \left(\hat{a}_{\boldsymbol{p}} \hat{a}_{\boldsymbol{q}} \hat{a}_{\boldsymbol{p}+\boldsymbol{q}}^{\dagger} + \text{h.c.} \right) \quad \epsilon_{\boldsymbol{q}} \simeq cq \qquad \Lambda_{\boldsymbol{q},\boldsymbol{p}} \simeq \frac{3}{4m} \sqrt{\frac{g\rho_0}{2c}} \sqrt{pq|\boldsymbol{p}+\boldsymbol{q}|}$$

 $\rightarrow \text{ time evolution of phonon distributions?}$ $n_{\boldsymbol{q},\boldsymbol{\tau}} = \langle \hat{a}_{\boldsymbol{q},\tau}^{\dagger} \hat{a}_{\boldsymbol{q},\tau} \rangle \qquad m_{\boldsymbol{q},\boldsymbol{\tau}} = |\langle \hat{a}_{\boldsymbol{q},\tau} \hat{a}_{-\boldsymbol{q},\tau} \rangle|$

Theoretical approaches

EOM hierarchy Bertini, Essler, Groha, Robinson, PRL **115**, 180601 (2015) Regemortel, Kurkjian, Wouters, Carusotto, PRA **98**, 053612 (2018)

Keldysh field theory Buchhold, Diehl, EPJD 69, 224 (2015), PRA

Buchhold, Heyl, Diehl, PRA 94, 013601 (2016)

Quantum kinetic equations

• Phonon momentum distribution

• Long-time properties

W

thermal equilibrium $n_{q,\infty} = [\exp(cq/T) - 1]^{-1}$

near-equilibrium dynamics $\partial_{\tau} \delta n_{\boldsymbol{q},\tau} \simeq -2\gamma_{\boldsymbol{q}} \delta n_{\boldsymbol{q},\tau}$ $\delta n_{\boldsymbol{q},\tau} = n_{\boldsymbol{q},\tau} - n_{\boldsymbol{q},\infty}$

Landau
$$\gamma_{\boldsymbol{q}}^{\boldsymbol{L}} = \frac{\sqrt{3}\pi}{8\rho_0 c} q T^2$$
 Beliaev $\gamma_{\boldsymbol{q}}^{\boldsymbol{B}} = \frac{\sqrt{3}\pi}{32\rho_0 c} q^3$

CD, Cherroret, PRA **107**, 043305 (2023) Chung, Bhattacherie, NJP **11**, 123012 (2009)

q + p

Landau

Beliaev

Quantum kinetic equations

• Phonon anomalous distribution

$$\partial_{\tau} m_{\boldsymbol{q},\tau} = 2 \int_{0}^{\infty} dp \, \mathcal{K}_{\boldsymbol{p},\boldsymbol{q}}^{L} \left(n_{\boldsymbol{p}+\boldsymbol{q}} m_{\boldsymbol{q}} + m_{\boldsymbol{p}} m_{\boldsymbol{p}+\boldsymbol{q}} - n_{\boldsymbol{p}} m_{\boldsymbol{q}} \right) + 2 \int_{0}^{q} dp \, \mathcal{K}_{\boldsymbol{p},\boldsymbol{q}}^{B} \left[m_{\boldsymbol{p}} m_{\boldsymbol{q}-\boldsymbol{p}} - m_{\boldsymbol{q}} \left(n_{\boldsymbol{p}} + n_{\boldsymbol{q}-\boldsymbol{p}} + 1 \right) \right]$$

CD, Cherroret, PRA 107, 043305 (2023)

thermal equilibrium $m_{q,\infty} = 0$ near-equilibrium dynamics $\partial_{\tau} m_{q,\tau} \simeq -2\gamma_{q} m_{q,\tau}$

see also 1D: Buchhold, Diehl, EPJD **69**, 224 (2015) 3D: Regemortel et al., PRA **98**, 053612 (2018)

Relaxation time
$$\tau_{\gamma} \sim [2\gamma_{q=1/\xi}^{L}]^{-1} \sim \rho_{0}\xi^{2}\frac{g\rho_{0}}{T^{2}}$$

Numerical results: dynamics of phonon distributions

CD, Cherroret, PRA 107, 043305 (2023)

Numerical results: dynamics of phonon distributions

15

Numerical results: Spatial coherence

$$g_1(\Delta \mathbf{r}, \tau) = \langle \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r} + \Delta \mathbf{r}) \rangle$$

16

Conclusion

• We have derived a quantum kinetic theory for 2D superfluid after a quench

- \rightarrow Small (coherent) time scales
- \rightarrow Late time scales & thermalization

• Perspectives:

- \rightarrow Nonperturbative regime?
- \rightarrow Quench through BKT transition?

Thank you for your attention