Quantum simulation of SU(2) 1D dynamios with ions qudits

Giuseppe Calajò

Collaborations:
P. Silvi, G. Magnifico and S. Montangero (Padova University)
M. Ringbauer (Innsbruck University)

T-NISQ

QUANTERA

QSG Workshop 4/5/2023

Gauge Theories

Main ingredients:

1) Quantum matter
2) Quantum fields
3) Local gauge symmetries implying local constrain

Gauge Theories

Main ingredients:

1) Quantum matter
2) Quantum fields
3) Local gauge symmetries implying local constrain

Example: Gauss's law in QED

$$
\nabla \cdot \mathbf{E}=\rho
$$

Gauge Theories

Fundamental in many area of physics

High energy physics: standard model

Emergent theories in condensed matter: e.g. spin liquids

G. Semeghini, et al. Science, 2021, 374(6572) (2021)

Simulating Gauge theories

- Extremely tough to tackle these problems
- Monte Carlo technics very successful in capturing equilibrium properties but fail at finite density and out of equilibrium

Simulating Gauge theories

- Extremely tough to tackle these problems
- Monte Carlo technics very successful in capturing equilibrium properties but fail at finite density and out of equilibrium

Alternative route: Lattice Gauge Theory

Tensor networks

Quantum simulation

Quantum simulation

Abelian Gauge theories

Digital simulation of the Schwinger model (1D) dynamics
E. Martinez, et al, Nature 534, 516-519 (2016); 4 qubit
N. H. Nguyen, et al, arXiv:2112.14262 (2022); 6 qubit

Analog simulation of U(1) dynamics

Z.Y. Zhou, et al, Science 337, 6603 (2022);

Variational eigensolver (not dynamics) in 2D

D. Paulson, et al, PRX Quantum 2, 030334 (2021);

Quantum simulation

Abelian Gauge theories

Digital simulation of the Schwinger model (1D) dynamics
E. Martinez, et al, Nature 534, 516-519 (2016); 4 qubit
N. H. Nguyen, et al, arXiv:2112.14262 (2022); 6 qubit

Analog simulation of U(1) dynamics
Z.Y. Zhou, et al, Science 337, 6603 (2022);

Variational eigensolver (not dynamics) in 2D
D. Paulson, et al, PRX Quantum 2, 030334 (2021);

Non abelian Gauge theories

Variational eigensolver (not dynamics) in 1D
Y.Y. Atas, et al, Nat. Commun 12, 6499 (2021);

Digital simulation in 1D (1 site)
A. Ciavarella, et al, Phys. Rev. D 103, 094501 (2021);
R. C. Farrel, et al, Phys. Rev. D 107, 054513 (2023);

Quantum simulation

Abelian Gauge theories

Digital simulation of the Schwinger model (1D) dynamics
E. Martinez, et al, Nature 534, 516-519 (2016); 4 qubit
N. H. Nguyen, et al, arXiv:2112.14262 (2022); 6 qubit

Analog simulation of U(1) dynamics
Z.Y. Zhou, et al, Science 337, 6603 (2022);

Variational eigensolver (not dynamics) in 2D
D. Paulson, et al, PRX Quantum 2, 030334 (2021);

Non abelian Gauge theories

Variational eigensolver (not dynamics) in 1D
Y.Y. Atas, et al, Nat. Commun 12, 6499 (2021);

Digital simulation in 1D (1 site)
A. Ciavarella, et al, Phys. Rev. D 103, 094501 (2021);
R. C. Farrel, et al, Phys. Rev. D 107, 054513 (2023);

Can we simulate nonabelian dynamics?

Hamiltonian lattice gauge theory

- Space discretized time kept continuous
- Matter lives on the sites
- Field lives on the links

Hamiltonian lattice gauge theory

- Space discretized time kept continuous
- Matter lives on the sites
- Field lives on the links

Matter Lagrangian

$\mathcal{L}_{\text {Dirac }}=\bar{\psi} \gamma^{\mu} i \partial_{\mu} \psi-m \bar{\psi} \psi$

Hamiltonian lattice gauge theory

- Space discretized time kept continuous
- Matter lives on the sites
- Field lives on the links

Matter Hamiltonian

$$
\begin{array}{r}
\mathcal{L}_{\text {Dirac }}=\bar{\psi} \gamma^{\mu} i \partial_{\mu} \psi-m \bar{\psi} \psi \\
\xrightarrow{x=j a \quad t:=t}
\end{array}
$$

Continuum limit

$$
a \rightarrow 0
$$

$$
H_{\text {Dirac }}=\frac{1}{2 a} \sum_{j}\left[-i \hat{\psi}_{j}^{\dagger} \hat{\psi}_{j+1}+\text { H.c. }\right]+m \sum_{j}(-1)^{j} \hat{\psi}_{j}^{\dagger} \hat{\psi}_{j}
$$

Hamiltonian lattice gauge theory

1D Matter Hamiltonian

$$
H_{\text {Dirac }}=\frac{1}{2 a} \sum_{j}\left[-i \hat{\psi}_{j}^{\dagger} \hat{\psi}_{j+1}+\text { H.c. }\right]+m \sum_{j}(-1)^{j} \hat{\psi}_{j}^{\dagger} \hat{\psi}_{j}
$$

Hamiltonian lattice gauge theory

1D Matter Hamiltonian

$$
H_{\text {Dirac }}=\frac{1}{2 a} \sum_{j}\left[-i \hat{\psi}_{j}^{\dagger} \hat{\psi}_{j+1}+\text { H.c. }\right]+m \sum_{j /}(-1)^{j} \hat{\psi}_{j}^{\dagger} \hat{\psi}_{j}
$$

Staggered fermions

Hamiltonian lattice gauge theory

1D Matter Hamiltonian

$H_{\text {Dirac }}=\frac{1}{2 a} \sum_{j}\left[-i \hat{\psi}_{j}^{\dagger} \hat{\psi}_{j+1}+\right.$ H.c. $]+m \sum_{j}(-1)^{j} \hat{\psi}_{j}^{\dagger} \hat{\psi}_{j}$
Staggered fermions

Ground state: Fermi sea

Hamiltonian lattice gauge theory

1D Matter Hamiltonian

$H_{\text {Dirac }}=\frac{1}{2 a} \sum_{j}\left[-i \hat{\psi}_{j}^{\dagger} \hat{\psi}_{j+1}+\right.$ H.c. $]+m \sum_{j \not}(-1)^{j} \hat{\psi}_{j}^{\dagger} \hat{\psi}_{j}$
Staggered fermions

Excited state:

Fermion-antifermion pairs

Hamiltonian lattice gauge theory

1D Matter Hamiltonian with colors

$H_{\text {Dirac }}=\frac{1}{2 a} \sum_{j} \sum_{a, b=\uparrow, \downarrow}\left[-i \hat{\psi}_{j a}^{\dagger} \hat{\psi}_{j+1 b}+\right.$ H.c. $]+m \sum_{j}(-1)^{j} \hat{\psi}_{j a}^{\dagger} \hat{\psi}_{j a}$ sU(2) two colors: $|\uparrow\rangle|\downarrow\rangle$

Ground state: Fermi sea

Hamiltonian lattice gauge theory

Impose invariance under SU(2) local transformation

$$
\hat{\psi}_{j, a} \rightarrow \hat{\psi}_{j, a} e^{i \Lambda_{j}^{a} \hat{\sigma}_{a}}
$$

$$
\hat{\sigma}_{a} \in S U(2) \quad 2 \times 2 \text { complex matrices }
$$

Hamiltonian lattice gauge theory

Impose invariance under SU(2) local transformation

$$
\hat{\psi}_{j, a} \rightarrow \hat{\psi}_{j, a} e^{i \Lambda_{j}^{a} \hat{\sigma}_{a}}
$$

$$
\hat{\sigma}_{a} \in S U(2) \quad 2 \times 2 \text { complex matrices }
$$

SU(2) invariant Hamiltonian
$H=\frac{1}{2 a} \sum_{j} \sum_{a, b=\uparrow \downarrow}\left[-i \hat{\psi}_{j a}^{\dagger} \hat{U}_{j, j+1, a b} \hat{\psi}_{j+1, b}+\right.$ H.c. $]+m \sum_{j}(-1)^{j} \hat{\psi}_{j a}^{\dagger} \hat{\psi}_{j a}$

Hamiltonian lattice gauge theory

Impose invariance under SU(2) local transformation

$$
\hat{\psi}_{j, a} \rightarrow \hat{\psi}_{j, a} e^{i \Lambda_{j}^{a} \hat{\sigma}_{a}} \quad \hat{\sigma}_{a} \in S U(2) \quad 2 \times 2 \text { complex matrices }
$$

SU(2) invariant Hamiltonian
$H=\frac{1}{2 a} \sum_{j} \sum_{a, b=\uparrow \downarrow}\left[-i \hat{\psi}_{j a}^{\dagger} \hat{U}_{j, j+1, a b} \hat{\psi}_{j+1, b}+\right.$ H.c. $]+m \sum_{j}(-1)^{j} \hat{\psi}_{j a}^{\dagger} \hat{\psi}_{j a}$

$$
\hat{U}_{j, j+1, a b}=e^{i g \hat{A}_{j, j+1, a b}} \quad \text { Parallel transport }
$$

Hamiltonian lattice gauge theory

Impose invariance under SU(2) local transformation

$$
\hat{\psi}_{j, a} \rightarrow \hat{\psi}_{j, a} e^{i \Lambda_{j}^{a} \hat{\sigma}_{a}} \quad \hat{\sigma}_{a} \in S U(2) \quad 2 \times 2 \text { complex matrices }
$$

SU(2) invariant Hamiltonian
$H=\frac{1}{2 a} \sum_{j} \sum_{a, b=\uparrow \downarrow}\left[-i \hat{\psi}_{j a}^{\dagger} \hat{U}_{j, j+1, a b} \hat{\psi}_{j+1, b}+\right.$ H.c. $]+m \sum_{j}(-1)^{j} \hat{\psi}_{j a}^{\dagger} \hat{\psi}_{j a}$

$$
\hat{U}_{j, j+1, a b}=e^{i g \hat{A}_{j, j+1, a b}} \quad \text { Parallel transport }
$$

Hamiltonian lattice gauge theory

Impose invariance under SU(2) local transformation

$$
\hat{\psi}_{j, a} \rightarrow \hat{\psi}_{j, a} e^{i \Lambda_{j}^{a} \hat{\sigma}_{a}} \quad \hat{\sigma}_{a} \in S U(2) \quad 2 \times 2 \text { complex matrices }
$$

SU(2) invariant Hamiltonian
$H=\frac{1}{2 a} \sum_{j} \sum_{a, b=\uparrow \downarrow}\left[-i \hat{\psi}_{j a}^{\dagger} \hat{U}_{j, j+1, a b} \hat{\psi}_{j+1, b}+\right.$ H.c. $]+m \sum_{j}(-1)^{j} \hat{\psi}_{j a}^{\dagger} \hat{\psi}_{j a}$

$$
\hat{U}_{j, j+1, a b}=e^{i g \hat{A}_{j, j+1, a b}} \quad \text { Parallel transport }
$$

Hamiltonian lattice gauge theory

Impose invariance under SU(2) local transformation

$$
\hat{\psi}_{j, a} \rightarrow \hat{\psi}_{j, a} e^{i \Lambda_{j}^{a} \hat{\sigma}_{a}}
$$

$\hat{\sigma}_{a} \in S U(2) \quad 2 \times 2$ complex matrices

SU(2) invariant Hamiltonian

$$
H=\frac{1}{2 a} \sum_{j} \sum_{a, b=\uparrow \downarrow}\left[-i \hat{\psi}_{j a}^{\dagger} \hat{U}_{j, j+1, a b} \hat{\psi}_{j+1, b}+\text { H.c. }\right]+m \sum_{j}(-1)^{j} \hat{\psi}_{j a}^{\dagger} \hat{\psi}_{j a}+\frac{a g^{2}}{2} \sum_{j} \hat{E}_{j, j+1}^{2}
$$

$$
\hat{U}_{j, j+1, a b}=e^{i g \hat{A}_{j, j+1, a b}}
$$

Parallel transport

$$
\hat{E}_{j, j+1}
$$

Electric field operator

Hamiltonian lattice gauge theory

Impose invariance under SU(2) local transformation

$$
\hat{\psi}_{j, a} \rightarrow \hat{\psi}_{j, a} e^{i \Lambda_{j}^{a} \hat{\sigma}_{a}}
$$

$\hat{\sigma}_{a} \in S U(2) \quad 2 \times 2$ complex matrices

SU(2) invariant Hamiltonian

$$
H=\frac{1}{2 a} \sum_{j} \sum_{a, b=\uparrow \downarrow}\left[-i \hat{\psi}_{j a}^{\dagger} \hat{U}_{j, j+1, a b} \hat{\psi}_{j+1, b}+\text { H.c. }\right]+m \sum_{j}(-1)^{j} \hat{\psi}_{j a}^{\dagger} \hat{\psi}_{j a}+\frac{a g^{2}}{2} \sum_{j} \hat{E}_{j, j+1}^{2}
$$

$$
\hat{U}_{j, j+1, a b}=e^{i g \hat{A}_{j, j+1, a b}}
$$

Parallel transport

$$
\hat{E}_{j, j+1}
$$

Electric field operator

Angular momentum commutation rules

$$
\hat{E}:=\hat{L}_{z} \quad \hat{U}:=\hat{L}_{+}
$$

K. G. Wilson, Phys. Rev. D 10, 2445 (1974); J. Kogut and L. Susskind 12, Phys. Rev. D 11, 395 (1975);

Hamiltonian lattice gauge theory

Impose invariance under SU(2) local transformation

$$
\hat{\psi}_{j, a} \rightarrow \hat{\psi}_{j, a} e^{i \Lambda_{j}^{a} \hat{\sigma}_{a}} \quad \hat{\sigma}_{a} \in S U(2) \quad 2 \times 2 \text { complex matrices }
$$

SU(2) invariant Hamiltonian

$H=\frac{1}{2 a} \sum_{j} \sum_{a, b=\uparrow \downarrow}\left[-i \hat{\psi}_{j a}^{\dagger} \hat{U}_{j, j+1, a b} \hat{\psi}_{j+1, b}+\right.$ H.c. $]+m \sum_{j}(-1)^{j} \hat{\psi}_{j a}^{\dagger} \hat{\psi}_{j a}+\frac{a g^{2}}{2} \sum_{j} \hat{E}_{j, j+1}^{2}$

Gauss law

$$
\hat{G}_{j}^{a}\left|\psi_{\mathrm{phys}}\right\rangle=0
$$

\hat{G}_{j}^{a} generator of $\operatorname{SU}(2)$ symmetry transforms matter and fields

Quantum link model

Infinite dimensional field Hilbert space

$$
\hat{E}|\mathcal{E}\rangle=\mathcal{E}|\mathcal{E}\rangle
$$

Quantum link model

- Link model: truncate field Hilbert space

$$
\left(\hat{E}, \hat{U}, \hat{U}^{\dagger}\right) \rightarrow\left(\hat{S}_{z}, \hat{S}^{+}, \hat{S}^{-}\right) \quad \hat{E}|\mathcal{E}\rangle=\mathcal{E}|\mathcal{E}\rangle
$$

Quantum link model

- Link model: truncate field Hilbert space

$$
\left(\hat{E}, \hat{U}, \hat{U}^{\dagger}\right) \rightarrow\left(\hat{S}_{z}, \hat{S}^{+}, \hat{S}^{-}\right)
$$

- Decompose link in pair of rishons

$$
\hat{U}_{j, j+1, a b}=\xi_{j, a}^{L} \xi_{j+1, b}^{\dagger R} \quad \xi_{j, a}^{L / R} \quad \text { fermion operators }
$$

Quantum link model

- Link model: truncate field Hilbert space

$$
\left(\hat{E}, \hat{U}, \hat{U}^{\dagger}\right) \rightarrow\left(\hat{S}_{z}, \hat{S}^{+}, \hat{S}^{-}\right) \quad \hat{E}|\mathcal{E}\rangle=\mathcal{E}|\mathcal{E}\rangle
$$

- Decompose link in pair of rishons

$$
\hat{U}_{j, j+1, a b}=\xi_{j, a}^{L} \xi_{j+1, b}^{\dagger R} \quad \xi_{j, a}^{L / R} \quad \text { fermion operators }
$$

Quantum link model

- Link model: truncate field Hilbert space

$$
\left(\hat{E}, \hat{U}, \hat{U}^{\dagger}\right) \rightarrow\left(\hat{S}_{z}, \hat{S}^{+}, \hat{S}^{-}\right)
$$

- Decompose link in pair of rishons

$$
\hat{U}_{j, j+1, a b}=\xi_{j, a}^{L} \xi_{j+1, b}^{\dagger R} \quad \xi_{j, a}^{L / R} \quad \text { fermion operators }
$$

- Local dressed basis: embed each rishon in adjacent site

Quantum link model

- Link model: truncate field Hilbert space

$$
\left(\hat{E}, \hat{U}, \hat{U}^{\dagger}\right) \rightarrow\left(\hat{S}_{z}, \hat{S}^{+}, \hat{S}^{-}\right) \quad \hat{E}|\mathcal{E}\rangle=\mathcal{E}|\mathcal{E}\rangle
$$

- Decompose link in pair of rishon

$$
\hat{U}_{j, j+1, a b}=\xi_{j, a}^{L} \xi_{j+1, b}^{\dagger R} \quad \xi_{j, a}^{L / R} \quad \text { fermion operators }
$$

- Local dressed basis: embed each rishon in adjacent site
- Gauss law: total color spin on each site sum to 0

Quantum link model

- Link model: truncate field Hilbert space

$$
\left(\hat{E}, \hat{U}, \hat{U}^{\dagger}\right) \rightarrow\left(\hat{S}_{z}, \hat{S}^{+}, \hat{S}^{-}\right) \quad \hat{E}|\mathcal{E}\rangle=\mathcal{E}|\mathcal{E}\rangle
$$

- Decompose link in pair of rishon

$$
\hat{U}_{j, j+1, a b}=\xi_{j, a}^{L} \xi_{j+1, b}^{\dagger R} \quad \xi_{j, a}^{L / R} \quad \text { fermion operators }
$$

- Local dressed basis: embed each rishon in adjacent site
- Gauss law: total color spin on each site sum to 0

- Link parity constrain: even number of rishon per link

SU(2) truncated model

SU(2) invariant Hamiltonian

$H=\frac{1}{2 a} \sum_{j} \sum_{a, b=\uparrow \downarrow}\left[-i \hat{\psi}_{j, a}^{\dagger} \hat{U}_{j, j+1, a b} \hat{\psi}_{j+1, b}+\right.$ H.c. $]+m \sum_{j}(-1)^{j} \hat{\psi}_{j, a}^{\dagger} \hat{\psi}_{j, a}+\frac{a g^{2}}{2} \sum_{j} \hat{E}_{j, j+1}^{2}$

SU(2) truncated model

SU(2) invariant Hamiltonian

$$
\begin{aligned}
H=\frac{1}{2 a} \sum_{j} \sum_{a, b=\uparrow \downarrow}\left[-i \hat{\psi}_{j, a}^{\dagger} \hat{U}_{j, j+1, a b} \hat{\psi}_{j+1, b}+\mathrm{H.c.}\right]+m \sum_{j}(-1)^{j} \hat{\psi}_{j, a}^{\dagger} \hat{\psi}_{j, a}+\frac{a g^{2}}{2} \sum_{j} \hat{E}_{j, j+1}^{2}
\end{aligned}
$$

SU(2) truncated model

SU(2) invariant Hamiltonian

$$
H=\frac{1}{2 a} \sum_{j} \sum_{a, b=\uparrow \downarrow}\left[\begin{array}{l}
\left.-i \hat{\psi}_{j, a}^{\dagger} \hat{U}_{j, j+1, a b} \hat{\psi}_{j+1, b}+\text { H.c. }\right]+m \sum_{j}(-1)^{j} \hat{\psi}_{j, a}^{\dagger} \hat{\psi}_{j, a}+\frac{a g^{2}}{2} \sum_{j} \hat{E}_{j, j+1}^{2} \\
\left.\left|\hat{\psi}_{j, a}^{\dagger} \xi_{j, a}^{L}\right|\right|_{j+1, b} ^{\dagger R} \hat{\psi}_{j+1, b} \mid
\end{array}\right.
$$

Local dressed basis

Model with local dimension 6

$$
H=J \sum_{j}\left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)}+\hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)}\right]+m \sum_{j}(-1)^{j} \hat{M}_{j}+g^{2} \sum_{j} \hat{C}_{j}
$$

SU(2) truncated model

SU(2) invariant Hamiltonian

$$
H=\frac{1}{2 a} \sum_{j} \sum_{a, b=\uparrow \downarrow}\left[\begin{array}{l}
\left.-i \hat{\psi}_{j, a}^{\dagger} \hat{U}_{j, j+1, a b} \hat{\psi}_{j+1, b}+\text { H.c. }\right]+m \sum_{j}(-1)^{j} \hat{\psi}_{j, a}^{\dagger} \hat{\psi}_{j, a}+\frac{a g^{2}}{2} \sum_{j} \hat{E}_{j, j+1}^{2} \\
\left|\hat{\psi}_{j, a}^{\dagger} \xi_{j, a}^{L}\right| \oint_{j+1, b}^{\dagger R} \hat{\psi}_{j+1, b} \mid
\end{array}\right.
$$

Local dressed basis

Model with local dimension 6

$$
H=J \sum_{j}\left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)}+\hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)}\right]+m \sum_{j}(-1)^{j} \hat{M}_{j}+g^{2} \sum_{j} \hat{C}_{j}
$$

Mass term
Diagonal matrices!

$$
\hat{M}=\left(\begin{array}{cccccc}
0 & & & & & \\
& 0 & & & & \\
& & 1 & & & \\
& & & 1 & & \\
& & & & 2 & \\
& & & & & 2
\end{array}\right) \quad \hat{C}=\left(\begin{array}{lllll}
0 & & & & \\
& 2 & & & \\
& & 1 & & \\
& & & 1 & \\
\\
& & & & 0 \\
& & & & \\
2
\end{array}\right)
$$

SU(2) truncated model

SU(2) invariant Hamiltonian

$$
\begin{gathered}
H=\frac{1}{2 a} \sum_{j} \sum_{a, b=\uparrow \downarrow}\left[-i \hat{\psi}_{j, a}^{\dagger} \hat{U}_{j, j+1, a b} \hat{\psi}_{j+1, b}+\text { H.c. }\right]+m \sum_{j}(-1)^{j} \hat{\psi}_{j, a}^{\dagger} \hat{\psi}_{j, a}+\frac{a g^{2}}{2} \sum_{j} \hat{E}_{j, j+1}^{2} \\
\left|\hat{\psi}_{j, a}^{\dagger} \xi_{j, a}^{L}\right| \xi_{j+1, b}^{\dagger R} \hat{\psi}_{j+1, b} \mid
\end{gathered}
$$

Local dressed basis

Model with local dimension 6

$\hat{A}^{(1)}=\left(\begin{array}{cccccc}0 & & & -\sqrt{2} & & \\ & 0 & 1 & & & \\ & 1 & 0 & & & -\sqrt{2} \\ -\sqrt{2} & & & -\sqrt{2} & 0 & \\ & & -1 & & & 0\end{array}\right) \quad \hat{B}^{(1)}=\left(\begin{array}{cccccc}0 & & \sqrt{2} i & & & \\ & & 0 & & -i & \\ -\sqrt{2} i & & 0 & & \sqrt{2} i & \\ & i & & 0 & & \\ & & & -\sqrt{2} i & & 0 \\ & & & & -i & \\ & & & \end{array}\right)$ Sparse matrices!

Recovering SU(2) dynamics

Pairs production

$H=$

Dirac ground state

$$
m \sum_{j}(-1)^{j} \hat{M}_{j}+g^{2} \sum_{j} \hat{C}_{j}
$$

Recovering SU(2) dynamics

Pairs production

$$
H=J \sum_{j}\left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)}+\hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)}\right]+m \sum_{j}(-1)^{j} \hat{M}_{j}+g^{2} \sum_{j} \hat{C}_{j}
$$

Dirac ground state

matter anti-matter pairs

Recovering SU(2) dynamics

Pairs production

$$
H=J \sum_{j}\left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)}+\hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)}\right]+m \sum_{j}(-1)^{j} \hat{M}_{j}+g^{2} \sum_{j} \hat{C}_{j}
$$

Dirac ground state

turn on interactions

Recovering SU(2) dynamics

Pairs production

$$
H=J \sum_{j}\left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)}+\hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)}\right]+m \sum_{j}(-1)^{j} \hat{M}_{j}+g^{2} \sum_{j} \hat{C}_{j}
$$

Dirac ground state

turn on interactions

Recovering SU(2) dynamics

Recovering SU(2) dynamics

String breaking

Barion hopping

Field

Our proposal

Quantum simulation of a SU(2) 1D gauge theory with 6 levels ions qudits

See also other qudit based proposals for lattice gauge theories
D. González-Cuadra, T. V. Zache, J. Carrasco, B. Kraus, and P. Zoller Phys. Rev. Lett. 129, 160501 (2022);
T. V. Zache, D. González-Cuadra, and P. Zoller, arXiv:2303.08683 (2023)

A universal qudit quantum processor with trapped ions

 Philipp Schindler \odot^{1} and Thomas Monz ${ }^{10,3}$

Optical qudit in ${ }^{40} \mathrm{Ca}^{+}$trapped ions

A universal qudit quantum processor with trapped ions

 Philipp Schindler \odot^{1} and Thomas Monz $\mathbb{}^{1,3}$

Optical qudit in ${ }^{40} \mathrm{Ca}^{+}$trapped ions

A universal qudit quantum processor with trapped ions

 Philipp Schindler \odot^{1} and Thomas Monz $\mathbb{}^{1,3}$

Optical qudit in ${ }^{40} \mathbf{C a}^{+}$trapped ions

Zeeman splitted levels

$$
\Delta m=0, \pm 1, \pm 2
$$

Quadrupole allowed transitions

8 levels fully connected qudit

A universal qudit quantum processor with trapped ions

 Philipp Schindler \odot^{1} and Thomas Monz $\mathbb{}^{1,3}$

Optical qudit in ${ }^{40} \mathbf{C a}^{+}$trapped ions

Single qudit operations:
decomposition in single qubit rotations

$$
R(\theta, \phi)=e^{-i \theta \hat{\sigma}_{\phi} / 2}
$$

High fidelities

A universal qudit quantum processor with trapped ions

 Philipp Schindler \odot^{1} and Thomas Monz $\mathbb{}^{1,3}$

Optical qudit in ${ }^{40} \mathbf{C a}^{+}$trapped ions

Single qudit operations:
decomposition in single qubit rotations

$$
R(\theta, \phi)=e^{-i \theta \hat{\sigma}_{\phi} / 2}
$$

High fidelities

Two qudit operations: decomposition in Molmer Sorensen gates

Qubit Molmer Sorensen gate

Lamb-Dicke regime

$\eta=k_{L} a_{0} \ll 1$

Qubit Molmer Sorensen gate

Lamb-Dicke regime

$$
\eta=k_{L} a_{0} \ll 1
$$

Molmer-Sorensen Hamiltonian

$$
H_{\mathrm{MS}} \simeq \frac{(\eta \Omega)^{2}}{2(\nu-\delta)} \hat{\sigma}_{\phi, j} \hat{\sigma}_{\phi^{\prime}, j^{\prime}}
$$

ν vibrational frequency
$\phi \in x-y$ plane

Qubit Molmer Sorensen gate

Lamb-Dicke regime

$$
\eta=k_{L} a_{0} \ll 1
$$

Molmer-Sorensen Hamiltonian

$$
H_{\mathrm{MS}} \simeq \frac{(\eta \Omega)^{2}}{2(\nu-\delta)} \hat{\sigma}_{\phi, j} \hat{\sigma}_{\phi^{\prime}, j^{\prime}} \quad \eta \Omega \ll|\nu-\delta|
$$

ν vibrational frequency

$$
\phi \in x-y \text { plane }
$$

Pairs of lasers: insensitive to
thermal motion

Encoding the model into qudits

$$
H=J \sum_{j}\left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)}+\hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)}\right]+m \sum_{j}(-1)^{j} \hat{M}_{j}+g^{2} \sum_{j} \hat{C}_{j}
$$

Encoding the model into qudits

$$
H=J \sum_{j}\left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)}+\hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)}\right]+\underset{\substack{\text { Diagonal matrices: } \\ \text { single qudit operations }}}{m \sum_{j}(-1)^{j} \hat{M}_{j}+g^{2} \sum_{j} \hat{C}_{j}}
$$

Encoding the model into qudits

$$
\begin{aligned}
& H=J \sum_{j}\left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)}+\hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)}\right]+m \sum_{j}(-1)^{j} \hat{M}_{j}+g^{2} \sum_{j} \hat{C}_{j} \\
& \text { Diagonal matrices: } \\
& \text { single qudit operations }
\end{aligned}
$$

$$
\begin{aligned}
& \sim \hat{\sigma}_{y}^{n, m}
\end{aligned}
$$

Encoding the model into qudits

Encoding the model into qudits

Decomposed in MS qubit gates with only direct transitions

Encoding the model into qudits

Decomposed in MS qubit gates with only direct transitions

32 MS gates necessary... ...but fidelity bad after 10 MS

Qudit Molmer Sorensen gate

Generalized MS gate for qudits: simultaneously drive 4 transitions

$$
H=J \sum_{j}\left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)}+\hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)}\right]+m \sum_{j}(-1)^{j} \hat{M}_{j}+g^{2} \sum_{j} \hat{C}_{j}
$$

Qudit Molmer Sorensen gate

Generalized MS gate for qudits: simultaneously drive 4 transitions

$$
\begin{aligned}
& H=J \sum_{j}\left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)}+\hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)}\right]+m \sum_{j}(-1)^{j} \hat{M}_{j}+g^{2} \sum_{j} \hat{C}_{j} \\
& H_{\mathrm{MS}} \simeq \frac{(\eta \Omega)^{2}}{2(\nu-\delta)}\left[\hat{A}_{j}^{(1)}+\hat{B}_{j+1}^{(1)}\right]^{2}
\end{aligned}
$$

Qudit Molmer Sorensen gate

Generalized MS gate for qudits: simultaneously drive 4 transitions

$$
\begin{aligned}
& H=J \sum_{j}\left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)}+\hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)}\right]+m \sum_{j}(-1)^{j} \hat{M}_{j}+g^{2} \sum_{j} \hat{C}_{j} \\
& H_{\mathrm{MS}} \simeq \frac{(\eta \Omega)^{2}}{2(\nu-\delta)}\left[\hat{A}_{j}^{(1)}+\hat{B}_{j+1}^{(1)}\right]^{2}
\end{aligned}
$$

Price to pay:

unwanted single qudit rotations

$$
\left(\hat{A}_{j}^{(1)}\right)^{2} \quad\left(\hat{B}_{j+1}^{(1)}\right)^{2}
$$

Qudit Molmer Sorensen gate

Generalized MS gate for qudits: simultaneously drive 4 transitions

$$
\begin{aligned}
& H=J \sum_{j}\left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)}+\hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)}\right]+m \sum_{j}(-1)^{j} \hat{M}_{j}+g^{2} \sum_{j} \hat{C}_{j} \\
& H_{\mathrm{MS}} \simeq \frac{(\eta \Omega)^{2}}{2(\nu-\delta)}\left[\hat{A}_{j}^{(1)}+\hat{B}_{j+1}^{(1)}\right]^{2}
\end{aligned}
$$

Price to pay:

unwanted single qudit rotations $\quad\left(\hat{A}_{j}^{(1)}\right)^{2} \quad\left(\hat{B}_{j+1}^{(1)}\right)^{2}$
Just diagonal matrices!

For qudit gates see also: D. P.J. Low, B. M. White, A. A. Cox, M. L. Day, and C. Senko, Phys. Rev. Research 2, 033128 (2020)

Digital simulation of the model

- Suzuki-Trotter evolution

$$
U(t) \simeq\left(\Pi_{j} e^{i H_{j} t_{f} / n}\right)^{n} \quad n \text { Trotter steps }
$$

Digital simulation of the model

- Suzuki-Trotter evolution

$$
U(t) \simeq\left(\Pi_{j} e^{i H_{j} t_{f} / n}\right)^{n} \quad n \text { Trotter steps }
$$

- Circuit decomposition

Digital simulation of the model

- Suzuki-Trotter evolution

$$
U(t) \simeq\left(\Pi_{j} e^{i H_{j} t_{f} / n}\right)^{n} \quad n \text { Trotter steps }
$$

- Circuit decomposition

- Full simulation with vibrational mode

Pairs production for 3 sites

Comments and limitations

- Higher use of control resources and calibration problems

Intermediate protocol with two simultaneously driven transitions

Larger circuit depth (8 MS)

Comments and limitations

- Higher use of control resources and calibration problems

Intermediate protocol with two simultaneously driven transitions

Larger circuit depth (8 MS)

- Check link parity constrain with post selection

Comments and limitations

- Higher use of control resources and calibration problems

Intermediate protocol with two simultaneously driven transitions

Larger circuit depth (8 MS)

- Check link parity constrain with post selection

- Effect of magnetic field fluctuations. Even if mitigated by magnetic shielding
- Include other source of errors: off-resonant driving, imperfect cooling, photon scattering,...

Conclusions

- Convenient rishon representation for 1D SU(2) model restricted to 6 dimensions
- Efficient encoding with ions qudit involving only direct transitions
- Shallow circuit for digital simulation using simultaneous MS gates

T-NiSQ

Conclusions

- Convenient rishon representation for 1D SU(2) model restricted to 6 dimensions
- Efficient encoding with ions qudit involving only direct transitions
- Shallow circuit for digital simulation using simultaneous MS gates

T-NiSQ

