Quantum simulation of SU(2) 1D dynamics with ions qudits

Giuseppe Calajò

Collaborations:

P. Silvi, G. Magnifico and S. Montangero (Padova University) M. Ringbauer (Innsbruck University)

QSG Workshop 4/5/2023

Gauge Theories

Main ingredients:

- 1) Quantum matter
- **2) Quantum fields**

3) Local gauge symmetries implying local constrain

Gauge Theories

Main ingredients:

1) Quantum matter

2) Quantum fields

3) <u>Local gauge symmetries implying local</u> constrain

Example: Gauss's law in QED

$$\nabla \cdot \mathbf{E} = \rho$$

Gauge Theories

Fundamental in many area of physics

High energy physics: standard model

Emergent theories in condensed matter: e.g. spin liquids

G. Semeghini, et al. Science, 2021, 374(6572) (2021)

Simulating Gauge theories

- Extremely tough to tackle these problems
- Monte Carlo technics very successful in capturing equilibrium properties but fail at finite density and out of equilibrium

Simulating Gauge theories

- Extremely tough to tackle these problems
- Monte Carlo technics very successful in capturing equilibrium properties but fail at finite density and out of equilibrium

Alternative route: Lattice Gauge Theory

Quantum simulation

M.C. Banalus, et al, Eur. Phys. J. D 74, 165 (2020); M. Dalmonte and S. Montangero Contemporary Physics, 57(3), 388-412 (2016);

Quantum simulation

Abelian Gauge theories

Digital simulation of the Schwinger model (1D) dynamics

E. Martinez, et al, Nature **534**, 516-519 (2016); **4 qubit**

N. H. Nguyen, et al, arXiv:2112.14262 (2022); 6 qubit

Analog simulation of U(1) dynamics

Z.Y. Zhou, et al, Science **337**, 6603 (2022);

Variational eigensolver (not dynamics) in 2D

D. Paulson, et al, PRX Quantum 2, 030334 (2021);

Quantum simulation

Abelian Gauge theories

Digital simulation of the Schwinger model (1D) dynamics

E. Martinez, et al, Nature **534**, 516-519 (2016); **4 qubit**

N. H. Nguyen, et al, arXiv:2112.14262 (2022); 6 qubit

Analog simulation of U(1) dynamics

Z.Y. Zhou, et al, Science 337, 6603 (2022);

Variational eigensolver (not dynamics) in 2D

D. Paulson, et al, PRX Quantum 2, 030334 (2021);

Non abelian Gauge theories

a VQE circuit to prepare baryon and vacuum states

Variational eigensolver (not dynamics) in 1D

Y.Y. Atas, et al, Nat. Commun 12, 6499 (2021);

Digital simulation in 1D (1 site)

A. Ciavarella, et al, Phys. Rev. D 103, 094501 (2021);

R. C. Farrel, et al, Phys. Rev. D 107, 054513 (2023);

Quantum simulation

Abelian Gauge theories

Digital simulation of the Schwinger model (1D) dynamics

E. Martinez, et al, Nature **534**, 516-519 (2016); **4 qubit**

N. H. Nguyen, et al, arXiv:2112.14262 (2022); 6 qubit

Analog simulation of U(1) dynamics

Z.Y. Zhou, et al, Science 337, 6603 (2022);

Variational eigensolver (not dynamics) in 2D

D. Paulson, et al, PRX Quantum 2, 030334 (2021);

Non abelian Gauge theories

VQE circuit to prepare baryon and vacuum states

Variational eigensolver (not dynamics) in 1D

Y.Y. Atas, et al, Nat. Commun 12, 6499 (2021);

Digital simulation in 1D (1 site)

A. Ciavarella, et al, Phys. Rev. D 103, 094501 (2021);

R. C. Farrel, et al, Phys. Rev. D 107, 054513 (2023);

Can we simulate nonabelian dynamics?

- Space discretized time kept continuous
- Matter lives on the sites
- Field lives on the links

- Space discretized time kept continuous
- Matter lives on the sites
- Field lives on the links

Matter Lagrangian

$$\mathcal{L}_{\text{Dirac}} = \bar{\psi} \gamma^{\mu} i \partial_{\mu} \psi - m \bar{\psi} \psi$$

- Space discretized time kept continuous
- Matter lives on the sites
- Field lives on the links

$$\mathcal{L}_{\text{Dirac}} = \bar{\psi}\gamma^{\mu}i\partial_{\mu}\psi - m\bar{\psi}\psi$$
Continuum limit
$$\underbrace{x = ja \quad t := t}_{a \to 0}$$

$$H_{\text{Dirac}} = \frac{1}{2a}\sum_{j} \left[-i\hat{\psi}_{j}^{\dagger}\hat{\psi}_{j+1} + \text{H.c.}\right] + m\sum_{j}(-1)^{j}\hat{\psi}_{j}^{\dagger}\hat{\psi}_{j}$$

K. G. Wilson, Phys. Rev. D 10, 2445 (1974); J. Kogut and L.Susskind 12, Phys. Rev. D 11, 395 (1975);

$$H_{\text{Dirac}} = \frac{1}{2a} \sum_{j} \left[-i\hat{\psi}_{j}^{\dagger}\hat{\psi}_{j+1} + \text{H.c.} \right] + m \sum_{j} (-1)^{j}\hat{\psi}_{j}^{\dagger}\hat{\psi}_{j}$$

1D Matter Hamiltonian with colors

Ground state: Fermi sea

Impose invariance under SU(2) local transformation

$$\hat{\psi}_{j,a} \to \hat{\psi}_{j,a} e^{i\Lambda_j^a \hat{\sigma}_a}$$

 $\hat{\sigma}_a \in SU(2)$ 2x2 complex matrices

$$E_{j-1,j} \quad E_{j,j+1}$$

$$\psi_{j-1,a} \quad \psi_{j,a} \quad \psi_{j+1,a}$$

Impose invariance under SU(2) local transformation

 $\hat{\psi}_{j,a} \to \hat{\psi}_{j,a} e^{i\Lambda_j^a \hat{\sigma}_a} \qquad \qquad \hat{\sigma}_a \in SU(2) \quad \text{2x2 complex matrices}$

$$H = \frac{1}{2a} \sum_{j} \sum_{a,b=\uparrow\downarrow} \left[-i\hat{\psi}_{ja}^{\dagger} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right] + m \sum_{j} (-1)^{j} \hat{\psi}_{ja}^{\dagger} \hat{\psi}_{ja}$$

$$E_{j-1,j} \quad E_{j,j+1}$$

$$\psi_{j-1,a} \quad \psi_{j,a} \quad \psi_{j+1,a}$$

Impose invariance under SU(2) local transformation

 $\hat{\psi}_{j,a} \rightarrow \hat{\psi}_{j,a} e^{i\Lambda_j^a \hat{\sigma}_a}$ $\hat{\sigma}_a \in SU(2)$ 2x2 complex matrices

SU(2) invariant Hamiltonian

$$H = \frac{1}{2a} \sum_{j} \sum_{a,b=\uparrow\downarrow} \left[-i\hat{\psi}_{ja}^{\dagger} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right] + m \sum_{j} (-1)^{j} \hat{\psi}_{ja}^{\dagger} \hat{\psi}_{ja}$$

 $\hat{U}_{j,j+1,ab} = e^{ig\hat{A}_{j,j+1,ab}}$

Parallel transport

$$E_{j-1,j} \quad E_{j,j+1}$$

$$\psi_{j-1,a} \quad \psi_{j,a} \quad \psi_{j+1,a}$$

Impose invariance under SU(2) local transformation

 $\hat{\psi}_{j,a} \rightarrow \hat{\psi}_{j,a} e^{i\Lambda_j^a \hat{\sigma}_a}$ $\hat{\sigma}_a \in SU(2)$ 2x2 complex matrices

SU(2) invariant Hamiltonian

$$H = \frac{1}{2a} \sum_{j} \sum_{a,b=\uparrow\downarrow} \left[-i\hat{\psi}_{ja}^{\dagger} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right] + m \sum_{j} (-1)^{j} \hat{\psi}_{ja}^{\dagger} \hat{\psi}_{ja}$$

 $\hat{U}_{j,j+1,ab} = e^{ig\hat{A}_{j,j+1,ab}}$

Parallel transport

$$E_{j-1,j} \quad E_{j,j+1}$$

$$\psi_{j-1,a} \quad \psi_{j,a} \quad \psi_{j+1,a}$$

Impose invariance under SU(2) local transformation

 $\hat{\psi}_{j,a} \rightarrow \hat{\psi}_{j,a} e^{i\Lambda_j^a \hat{\sigma}_a}$ $\hat{\sigma}_a \in SU(2)$ 2x2 complex matrices

SU(2) invariant Hamiltonian

$$H = \frac{1}{2a} \sum_{j} \sum_{a,b=\uparrow\downarrow} \left[-i\hat{\psi}_{ja}^{\dagger} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right] + m \sum_{j} (-1)^{j} \hat{\psi}_{ja}^{\dagger} \hat{\psi}_{ja}$$

 $\hat{U}_{j,j+1,ab} = e^{ig\hat{A}_{j,j+1,ab}}$

Parallel transport

$$E_{j-1,j} \quad E_{j,j+1}$$

$$\psi_{j-1,a} \quad \psi_{j,a} \quad \psi_{j+1,a}$$

Impose invariance under SU(2) local transformation

 $\hat{\psi}_{j,a} \to \hat{\psi}_{j,a} e^{i\Lambda_j^a \hat{\sigma}_a} \qquad \qquad \hat{\sigma}_a \in SU(2) \quad \text{2x2 complex matrices}$

SU(2) invariant Hamiltonian

$$H = \frac{1}{2a} \sum_{j} \sum_{a,b=\uparrow\downarrow} \left[-i\hat{\psi}_{ja}^{\dagger} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right] + m \sum_{j} (-1)^{j} \hat{\psi}_{ja}^{\dagger} \hat{\psi}_{ja} + \frac{ag^{2}}{2} \sum_{j} \hat{E}_{j,j+1}^{2} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right]$$

$$\hat{U}_{j,j+1,ab} = e^{ig\hat{A}_{j,j+1,ab}}$$

Parallel transport

Electric field operator

K. G. Wilson, Phys. Rev. D 10, 2445 (1974); J. Kogut and L.Susskind 12, Phys. Rev. D 11, 395 (1975);

$$E_{j-1,j} \quad E_{j,j+1}$$

$$\psi_{j-1,a} \quad \psi_{j,a} \quad \psi_{j+1,a}$$

Impose invariance under SU(2) local transformation

 $\hat{\psi}_{j,a} \rightarrow \hat{\psi}_{j,a} e^{i\Lambda_j^a \hat{\sigma}_a}$ $\hat{\sigma}_a \in SU(2)$ 2x2 complex matrices

SU(2) invariant Hamiltonian

$$H = \frac{1}{2a} \sum_{j} \sum_{a,b=\uparrow\downarrow} \left[-i\hat{\psi}_{ja}^{\dagger} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right] + m \sum_{j} (-1)^{j} \hat{\psi}_{ja}^{\dagger} \hat{\psi}_{ja} + \frac{ag^{2}}{2} \sum_{j} \hat{E}_{j,j+1}^{2} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right]$$

 $\hat{U}_{j,j+1,ab} = e^{ig\hat{A}_{j,j+1,ab}}$

Parallel transport

 $\hat{E}_{j,j+1}$

Electric field operator

Angular momentum commutation rules

$$\hat{E} := \hat{L}_z \qquad \hat{U} := \hat{L}_+$$

K. G. Wilson, Phys. Rev. D 10, 2445 (1974); J. Kogut and L.Susskind 12, Phys. Rev. D 11, 395 (1975);

$$E_{j-1,j} \quad E_{j,j+1}$$

$$\psi_{j-1,a} \quad \psi_{j,a} \quad \psi_{j+1,a}$$

Impose invariance under SU(2) local transformation

 $\hat{\psi}_{j,a} \rightarrow \hat{\psi}_{j,a} e^{i\Lambda_j^a \hat{\sigma}_a}$ $\hat{\sigma}_a \in SU(2)$ 2x2 complex matrices

SU(2) invariant Hamiltonian

$$H = \frac{1}{2a} \sum_{j} \sum_{a,b=\uparrow\downarrow} \left[-i\hat{\psi}_{ja}^{\dagger} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right] + m \sum_{j} (-1)^{j} \hat{\psi}_{ja}^{\dagger} \hat{\psi}_{ja} + \frac{ag^{2}}{2} \sum_{j} \hat{E}_{j,j+1}^{2} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right]$$

Gauss law

$$\hat{G}^a_j |\psi_{\rm phys}\rangle = 0$$

\hat{G}_{j}^{a} generator of SU(2) symmetry transforms matter and fields

U. J. Wiese, Ann. Phys. (Berlin) 525, No. 10–11, 777–796 (2013); E. Zohar, J. I. Cirac and B. Reznik Rep. Prog. Phys. 79 (2016);

Infinite dimensional field Hilbert space

• Link model: truncate field Hilbert space

• Link model: truncate field Hilbert space

 $(\hat{E}, \hat{U}, \hat{U}^{\dagger}) \rightarrow (\hat{S}_z, \hat{S}^+, \hat{S}^-)$

Decompose link in pair of rishons

$$\hat{U}_{j,j+1,ab} = \xi_{j,a}^L \xi_{j+1,b}^{\dagger R} \quad \xi_{j,a}^{L/R} \text{ fermion operators}$$

Link model: truncate field Hilbert space

 $(\hat{E}, \hat{U}, \hat{U}^{\dagger}) \rightarrow (\hat{S}_z, \hat{S}^+, \hat{S}^-)$

Decompose link in pair of rishons

$$\hat{U}_{j,j+1,ab} = \xi_{j,a}^L \xi_{j+1,b}^{\dagger R}$$

 $\begin{array}{c} \xi^L & \xi^{\dagger R} \end{array}$

 $\hat{E}|\mathcal{E}\rangle = \mathcal{E}|\mathcal{E}\rangle$

Link model: truncate field Hilbert space

 $(\hat{E}, \hat{U}, \hat{U}^{\dagger}) \rightarrow (\hat{S}_z, \hat{S}^+, \hat{S}^-)$

Decompose link in pair of rishons

$$\hat{U}_{j,j+1,ab} = \xi_{j,a}^L \xi_{j+1,b}^{\dagger R} \quad \xi_{j,a}^{L/R}$$

 $\xi_{j,a}$ fermion operators

 $\hat{E}|\mathcal{E}\rangle = \mathcal{E}|\mathcal{E}\rangle$

 Local dressed basis: embed each rishon in adjacent site

 $\xi^{\dagger R}$

• Link model: truncate field Hilbert space

 $(\hat{E}, \hat{U}, \hat{U}^{\dagger}) \rightarrow (\hat{S}_z, \hat{S}^+, \hat{S}^-)$

Decompose link in pair of rishon

 $\hat{U}_{j,j+1,ab} = \xi_{j,a}^L \xi_{j+1,b}^{\dagger R} \quad \xi_{j,a}^{L/R} \text{ fermion operators}$

- Local dressed basis: embed each rishon in adjacent site
- Gauss law: total color spin on each site sum to 0

• Link model: truncate field Hilbert space

 $(\hat{E}, \hat{U}, \hat{U}^{\dagger}) \rightarrow (\hat{S}_z, \hat{S}^+, \hat{S}^-)$

Decompose link in pair of rishon

 $\hat{U}_{j,j+1,ab} = \xi_{j,a}^L \xi_{j+1,b}^{\dagger R} \quad \xi_{j,a}^{L/R} \text{ fermion operators}$

 $\zeta^L \xi^{\dagger R}$

 $\hat{E}|\mathcal{E}\rangle = \mathcal{E}|\mathcal{E}\rangle$

- Local dressed basis: embed each rishon in adjacent site
- Gauss law: total color spin on each site sum to O
- Link parity constrain: even number of rishon per link

$$H = \frac{1}{2a} \sum_{j} \sum_{a,b=\uparrow\downarrow} \left[-i\hat{\psi}_{j,a}^{\dagger} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right] + m \sum_{j} (-1)^{j} \hat{\psi}_{j,a}^{\dagger} \hat{\psi}_{j,a} + \frac{ag^{2}}{2} \sum_{j} \hat{E}_{j,j+1}^{2} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right]$$

$$H = \frac{1}{2a} \sum_{j} \sum_{a,b=\uparrow\downarrow} \left[-i\hat{\psi}_{j,a}^{\dagger} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right] + m \sum_{j} (-1)^{j} \hat{\psi}_{j,a}^{\dagger} \hat{\psi}_{j,a} + \frac{ag^{2}}{2} \sum_{j} \hat{E}_{j,j+1}^{2} \hat{\psi}_{j,a} \hat{\xi}_{j,a}^{\dagger} \hat{\xi}_{j,a}^{\dagger} \hat{\xi}_{j+1,b}^{\dagger} \hat{\psi}_{j+1,b} \right]$$

$$H = \frac{1}{2a} \sum_{j} \sum_{a,b=\uparrow\downarrow} \left[-i\hat{\psi}_{j,a}^{\dagger} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right] + m \sum_{j} (-1)^{j} \hat{\psi}_{j,a}^{\dagger} \hat{\psi}_{j,a} + \frac{ag^{2}}{2} \sum_{j} \hat{E}_{j,j+1}^{2} \hat{U}_{j,j+1,b} \hat{\psi}_{j+1,b} \right]$$

$$Local dressed basis$$
Model with local dimension 6
$$H = J \sum_{j} \left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)} + \hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)} \right] + m \sum_{j} (-1)^{j} \hat{M}_{j} + g^{2} \sum_{j} \hat{C}_{j}$$

$$H = \frac{1}{2a} \sum_{j} \sum_{a,b=\uparrow\downarrow} \left[-i\hat{\psi}_{j,a}^{\dagger} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right] + m \sum_{j} (-1)^{j} \hat{\psi}_{j,a}^{\dagger} \hat{\psi}_{j,a} + \frac{ag^{2}}{2} \sum_{j} \hat{E}_{j,j+1}^{2} \hat{E}_{j,j+1}^{2} \right]$$

$$Iocal dressed basis$$

$$Model with local dimension 6$$

$$H = J \sum_{j} \left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)} + \hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)} \right] + m \sum_{j} (-1)^{j} \hat{M}_{j} + g^{2} \sum_{j} \hat{C}_{j}$$

$$Mass term$$

$$Field term$$

$$Diagonal matrices!$$

$$\hat{M} = \begin{pmatrix} 0 & & \\ & 1 & \\ & & 2 & \\ & & & 2 \end{pmatrix}$$

$$\hat{C} = \begin{pmatrix} 0 & 2 & \\ & 1 & \\ & & & 0 & \\ & & & & 2 \end{pmatrix}$$

$$H = \frac{1}{2a} \sum_{j} \sum_{a,b=\uparrow\downarrow} \left[-i\hat{\psi}_{j,a}^{\dagger} \hat{U}_{j,j+1,ab} \hat{\psi}_{j+1,b} + \text{H.c.} \right] + m \sum_{j} (-1)^{j} \hat{\psi}_{j,a}^{\dagger} \hat{\psi}_{j,a} + \frac{ag^{2}}{2} \sum_{j} \hat{E}_{j,j+1}^{2} \hat{E}_{j,j+1}^{2} \\ \hat{\psi}_{j,a}^{\dagger} \xi_{j,a}^{L} \xi_{j,a}^{L} \xi_{j+1,b}^{\dagger R} \hat{\psi}_{j+1,b} \right] + \text{Local dressed basis}$$

$$Model \text{ with local dimension 6}$$

$$H = J \sum_{j} \left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)} + \hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)} \right] + m \sum_{j} (-1)^{j} \hat{M}_{j} + g^{2} \sum_{j} \hat{C}_{j} \\ \text{Hopping terms}$$

$$\hat{A}^{(1)} = \begin{pmatrix} 0 & 0 & -\sqrt{2} & 0 \\ -\sqrt{2} & 0 & 0 & -\sqrt{2} & 0 \\ -\sqrt{2} & 0 & 0 & 0 \end{pmatrix} \quad \hat{B}^{(1)} = \begin{pmatrix} 0 & \sqrt{2}i & 0 & 0 \\ -\sqrt{2}i & 0 & 0 & i \\ 0 & -\sqrt{2}i & 0 & 0 \\ -\sqrt{2}i & 0 & 0 & -\sqrt{2}i \\ 0 & 0 & -i & 0 & 0 \\ -\sqrt{2}i & 0 & 0 & 0 \\ -\sqrt{2}i & 0 & 0 & 0 \end{pmatrix}$$

Pairs production

Dirac ground state

H =

Pairs production

$$H = J \sum_{j} \left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)} + \hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)} \right] + m \sum_{j} (-1)^{j} \hat{M}_{j} + g^{2} \sum_{j} \hat{C}_{j}$$

Dirac ground state

Pairs production

$$H = J \sum_{j} \left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)} + \hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)} \right] + m \sum_{j} (-1)^{j} \hat{M}_{j} + g^{2} \sum_{j} \hat{C}_{j}$$

Dirac ground state

Pairs production

$$H = J \sum_{j} \left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)} + \hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)} \right] + m \sum_{j} (-1)^{j} \hat{M}_{j} + g^{2} \sum_{j} \hat{C}_{j}$$

Dirac ground state

String breaking

Field

String breaking

Field

Barion population

Quantum simulation of a SU(2) 1D gauge theory with <u>6 levels ions qudits</u>

See also other qudit based proposals for lattice gauge theories

D. González-Cuadra, T. V. Zache, J. Carrasco, B. Kraus, and P. Zoller Phys. Rev. Lett. **129**, 160501 (2022); T. V. Zache, D. González-Cuadra, and P. Zoller, arXiv:2303.08683 (2023)

A universal qudit quantum processor with trapped ions

Martin Ringbauer[®]¹[∞], Michael Meth¹, Lukas Postler¹, Roman Stricker[®]¹, Rainer Blatt^{1,2,3}, Philipp Schindler[®]¹ and Thomas Monz[®]^{1,3}

Optical qudit in⁴⁰**Ca**⁺ **trapped ions**

A universal qudit quantum processor with trapped ions

Martin Ringbauer[®]¹[∞], Michael Meth¹, Lukas Postler¹, Roman Stricker[®]¹, Rainer Blatt^{1,2,3}, Philipp Schindler[®]¹ and Thomas Monz[®]^{1,3}

Optical qudit in⁴⁰**Ca**⁺ **trapped ions**

A universal qudit quantum processor with trapped ions

Martin Ringbauer[®]¹[∞], Michael Meth¹, Lukas Postler¹, Roman Stricker[®]¹, Rainer Blatt^{1,2,3}, Philipp Schindler[®]¹ and Thomas Monz[®]^{1,3}

Optical qudit in⁴⁰**Ca**⁺ **trapped ions**

Zeeman splitted levels

 $\Delta m = 0, \pm 1, \pm 2$

Quadrupole allowed transitions

8 levels fully connected qudit

A universal qudit quantum processor with trapped ions

Martin Ringbauer[®]¹[∞], Michael Meth¹, Lukas Postler¹, Roman Stricker[®]¹, Rainer Blatt^{1,2,3}, Philipp Schindler[®]¹ and Thomas Monz[®]^{1,3}

Optical qudit in⁴⁰**Ca**⁺ **trapped ions**

Single qudit operations: decomposition in single qubit rotations

$$R(\theta,\phi) = e^{-i\theta\hat{\sigma}_{\phi}/2}$$

<u>High fidelities</u>

A universal qudit quantum processor with trapped ions

Martin Ringbauer[®]¹[∞], Michael Meth¹, Lukas Postler¹, Roman Stricker[®]¹, Rainer Blatt^{1,2,3}, Philipp Schindler[®]¹ and Thomas Monz[®]^{1,3}

Optical qudit in⁴⁰**Ca**⁺ **trapped ions**

Single qudit operations: decomposition in single qubit rotations

$$R(\theta,\phi) = e^{-i\theta\hat{\sigma}_{\phi}/2}$$

High fidelities

Two qudit operations: decomposition in Molmer Sorensen gates

Lamb-Dicke regime

 $\eta = k_L a_0 \ll 1$

u vibrational frequency $\phi \in x - y$ plane

$${\cal V}$$
 vibrational frequency

 $\phi \in x - y$ plane

Pairs of lasers: <u>insensitive to</u> <u>thermal motion</u>

 $H = J \sum_{j} \left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)} + \hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)} \right] + m \sum_{j} (-1)^{j} \hat{M}_{j} + g^{2} \sum_{j} \hat{C}_{j}$

 $H = J \sum_{j} \left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)} + \hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)} \right] + m \sum_{j} (-1)^{j} \hat{M}_{j} + g^{2} \sum_{j} \hat{C}_{j}$

Diagonal matrices: single qudit operations

Decomposed in MS **qubit** gates with **only direct transitions**

Decomposed in MS **qubit** gates with **only direct transitions**

32 MS gates necessary...

...but fidelity bad after 10 MS

Generalized MS gate for qudits: simultaneously drive 4 transitions

$$H = J \sum_{j} \left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)} + \hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)} \right] + m \sum_{j} (-1)^{j} \hat{M}_{j} + g^{2} \sum_{j} \hat{C}_{j}$$

Generalized MS gate for qudits: simultaneously drive 4 transitions

$$H = J \sum_{j} \left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)} + \hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)} \right] + m \sum_{j} (-1)^{j} \hat{M}_{j} + g^{2} \sum_{j} \hat{C}_{j}$$
$$H_{\rm MS} \simeq \frac{(\eta \Omega)^{2}}{2(\nu - \delta)} \left[\hat{A}_{j}^{(1)} + \hat{B}_{j+1}^{(1)} \right]^{2}$$

Generalized MS gate for qudits: simultaneously drive 4 transitions

$$H = J \sum_{j} \left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)} + \hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)} \right] + m \sum_{j} (-1)^{j} \hat{M}_{j} + g^{2} \sum_{j} \hat{C}_{j}$$
$$H_{\rm MS} \simeq \frac{(\eta \Omega)^{2}}{2(\nu - \delta)} \left[\hat{A}_{j}^{(1)} + \hat{B}_{j+1}^{(1)} \right]^{2}$$

Price to pay: unwanted single qudit rotations

 $(\hat{A}_{i}^{(1)})^{2} \quad (\hat{B}_{i+1}^{(1)})^{2}$

Generalized MS gate for qudits: simultaneously drive 4 transitions

$$H = J \sum_{j} \left[\hat{A}_{j}^{(1)} \hat{B}_{j+1}^{(1)} + \hat{A}_{j}^{(2)} \hat{B}_{j+1}^{(2)} \right] + m \sum_{j} (-1)^{j} \hat{M}_{j} + g^{2} \sum_{j} \hat{C}_{j}$$
$$H_{\rm MS} \simeq \frac{(\eta \Omega)^{2}}{2(\nu - \delta)} \left[\hat{A}_{j}^{(1)} + \hat{B}_{j+1}^{(1)} \right]^{2}$$

Price to pay: unwanted single qudit rotations

$$(\hat{A}_{j}^{(1)})^{2} \quad (\hat{B}_{j+1}^{(1)})^{2}$$

Just diagonal matrices!

Digital simulation of the model

Suzuki-Trotter
 evolution

$$U(t) \simeq \left(\Pi_j e^{iH_j t_f/n} \right)^n$$

n Trotter steps

Digital simulation of the model

- Suzuki-Trotter $U(t) \simeq$

$$(t) \simeq \left(\Pi_j e^{iH_j t_f/n} \right)^n$$

n Trotter steps

Circuit decomposition

Digital simulation of the model

• Suzuki-Trotter $U(t) \simeq \left(\begin{array}{c} t \\ t \end{array} \right)$

$$(t) \simeq \left(\Pi_j e^{iH_j t_f/n} \right)^n$$

n Trotter steps

Circuit decomposition

• Full simulation with vibrational mode

Comments and limitations

Higher use of control resources and <u>calibration problems</u>

Intermediate protocol with two simultaneously driven transitions

Larger circuit depth (8 MS)

Comments and limitations

Higher use of control resources and <u>calibration problems</u>

Intermediate protocol with two simultaneously driven transitions

Larger circuit depth (8 MS)

Check link parity constrain with post selection

Comments and limitations

Higher use of control resources and <u>calibration problems</u>

Intermediate protocol with two simultaneously driven transitions

Larger circuit depth (8 MS)

Check link parity constrain with post selection

Effect of magnetic field fluctuations.

Even if mitigated by magnetic shielding

 Include other source of errors: off-resonant driving, imperfect cooling, photon scattering,...

Conclusions

- Convenient rishon representation for 1D SU(2) model restricted to 6 dimensions
- Efficient encoding with ions qudit involving only direct transitions
- Shallow circuit for digital simulation using simultaneous MS gates

Conclusions

- Convenient rishon representation for 1D SU(2) model restricted to 6 dimensions
- Efficient encoding with ions qudit involving only direct transitions
- Shallow circuit for digital simulation using simultaneous MS gates

