LaVA MEETING @ECT*

23/02/2023
Algorithms (2)
presented by
Francesco Di Renzo (University of Parma \& INFN)

STR®NG
20

DISCLAIMER this will not look like a (piece of) syllabus, nor I will present a talk (lecture)
I will be alluding to both...
This is intended to provide material for a couple (maybe more) of videos within the structure sketched by Mike. There are quite a number of ties to other sections (not a problem).

Algorithms, Physics and Computational Strategies

Algorithms, Physics and Computational Strategies

Having discussed autocorrelation and integrated autocorrelation time, a natural question arises: are there cases in which

$$
\tau_{i n t} \rightarrow \infty \quad ?
$$

Algorithms, Physics and Computational Strategies

Having discussed autocorrelation and integrated autocorrelation time, a natural question arises: are there cases in which

$$
\tau_{i n t} \rightarrow \infty \quad ?
$$

$$
\text { Ising 2d }(\mathrm{h}=0) \quad \text { YES! } \ldots \text { and for very good reasons! }
$$

II order phase transitions ... relevant picture is correlation over all length scales ... local VS global algorithms ...

This is an example of a VIRTUOUS LOOP gluing everything together

SIGN PROBLEMS: the tough problem par excellence

$$
Z(\beta, \mu)=\int[D \phi] \mathrm{e}^{-\beta S[\phi]+i \mu Q[\phi]} \quad \ldots \text { i.e. living without a probability distribution } \ldots
$$

\ldots and we know that $\quad\left\langle\mathrm{e}^{i \mu Q}\right\rangle=\frac{Z(\beta, \mu)}{Z(\beta, 0)}=\mathrm{e}^{-V \Delta F}$

SIGN PROBLEMS: the tough problem par excellence
$Z(\beta, \mu)=\int[D \phi] \mathrm{e}^{-\beta S[\phi]+i \mu Q[\phi]} \quad \ldots$ i.e. living without a probability distribution \ldots
\ldots and we know that $\left\langle\mathrm{e}^{i \mu Q}\right\rangle=\frac{Z(\beta, \mu)}{Z(\beta, 0)}=\mathrm{e}^{-V \Delta F}$
Any possible VIRTUOUS LOOP like before?

$Z(\beta, \mu)=\int[D \phi] \mathrm{e}^{-\beta S[\phi]+i \mu Q[\phi]}$
 ... i.e. living without a probability distribution ...

\ldots and we know that $\quad\left\langle\mathrm{e}^{i \mu Q}\right\rangle=\frac{Z(\beta, \mu)}{Z(\beta, 0)}=\mathrm{e}^{-V \Delta F}$
Any possible VIRTUOUS LOOP like before? YES!

Abstract

Meron-Cluster Solution of Fermion Sign Problems Shailesh Chandrasekharan ${ }^{\dagger}$ and Uwe-Jens Wiese ${ }^{\ddagger}$ ${ }^{\dagger}$ Department of Physics, Box 90305, Duke University, Durham, NC 27708, U.S.A. ${ }^{\ddagger}$ Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A. (February 10, 1999) We present a general strategy to solve the notorious fermion sign problem using cluster algorithms. The method applies to various systems in the nuvdara model family as wen as to relativistic fermions. Here it is illustrated for non-relativistic lattice fermions. A configuration of fermion world-lines is decomposed into clusters that contribute independently to the fermion permutation sign. A cluster whose flip changes the sign is referred to as a meron. Configurations containing meron-clusters contribute 0 to the path integral, while all other configurations contribute 1 . The cluster representation describes the partition function as a gas of clusters in the zero-meron sector.

The QCD phase diagram according to the center group

Ydalia Delgado Mercado ${ }^{a}$, Hans Gerd Evertz ${ }^{b}$, Christof Gattringer ${ }^{a}$
${ }^{a}$ Institut für Physik, Karl-Franzens Universität, Graz, Austria
${ }^{b}$ Institute for Theoretical and Computational Physics, Technische Universität Graz, Austria

We study an effective theory for QCD at finite temperature and density which contains the leading center symmetric and center symmetry breaking terms. The effective theory is studied in a flux representation where the complex phase problem is absent and the model becomes accessible to Monte Carlo techniques also at tinite chemical potential. We simulate the system using a generalized Prokof'ev-Svistunov worm algorithm and compare the results to a low temperature expansion. The phase diagram is determined as a function of temperature, chemical potential and quark mass. Shape and quark mass dependence of the phase boundaries are as expected for QCD. The transition into the deconfined phase is smooth throughout, without any discontinuities or critical points.

SIGN PROBLEMS: the tough problem par excellence
$Z(\beta, \mu)=\int[D \phi] \mathrm{e}^{-\beta S[\phi]+i \mu Q[\phi]} \quad \ldots$ i.e. living without a probability distribution \ldots
\ldots and we know that $\quad\left\langle\mathrm{e}^{i \mu Q}\right\rangle=\frac{Z(\beta, \mu)}{Z(\beta, 0)}=\mathrm{e}^{-V \Delta F}$
Any possible VIRTUOUS LOOP like before? YES! but NOT ALWAYS!!
$Z(\beta, \mu)=\int[D \phi] \mathrm{e}^{-\beta S[\phi]+i \mu Q[\phi]} \quad \ldots$ i.e. living without a probability distribution \ldots
\ldots and we know that $\left\langle\mathrm{e}^{i \mu Q}\right\rangle=\frac{Z(\beta, \mu)}{Z(\beta, 0)}=\mathrm{e}^{-V \Delta F}$
Any possible VIRTUOUS LOOP like before? YES! but NOT ALWAYS!!

Still, you will see quite a number approaches to taming/evading/mitigating the SIGN PROBLEM and they can (to a certain extent) enable (finite density QCD) computations!

- Density of states
- Lefschetz Thimbles / holomorphic flow / sign-optimised manifolds
- complex Langevin
- tensor networks
- Imaginary chemical potential simulations
- Taylor expansions at zero chemical potential
... with (analytic) continuation, (various) summation schemes needed (with Padè coming back to popularity...)
$Z(\beta, \mu)=\int[D \phi] \mathrm{e}^{-\beta S[\phi]+i \mu Q[\phi]} \quad \ldots$ i.e. living without a probability distribution \ldots
\ldots and we know that $\left\langle\mathrm{e}^{i \mu Q}\right\rangle=\frac{Z(\beta, \mu)}{Z(\beta, 0)}=\mathrm{e}^{-V \Delta F}$
Any possible VIRTUOUS LOOP like before? YES! but NOT ALWAYS!!

Still, you will see quite a number approaches to taming/evading/mitigating the SIGN PROBLEM and they can (to a certain extent) enable (finite density QCD) computations!

- Density of states
- Lefschetz Thimbles / holomorphic flow / sign-optimised manifolds
- complex Langevin
- tensor networks
- Imaginary chemical potential simulations
- Taylor expansions at zero chemical potential
... with (analytic) continuation, (various) summation schemes needed (with Padè coming back to popularity...)

SIGN PROBLEMS: the tough problem par excellence
$Z(\beta, \mu)=\int[D \phi] \mathrm{e}^{-\beta S[\phi]+i \mu Q[\phi]} \quad \ldots$ i.e. living without a probability distribution \ldots
\ldots and we know that $\left\langle\mathrm{e}^{i \mu Q}\right\rangle=\frac{Z(\beta, \mu)}{Z(\beta, 0)}=\mathrm{e}^{-V \Delta F}$
Any possible VIRTUOUS LOOP like before? YES! but NOT ALWAYS!!

Still, you will see quite a number approaches to taming/evading/mitigating the SIGN PROBLEM and they can (to a certain extent) enable (finite density QCD) computations!

- Density of states
- Lefschetz Thimbles / holomorphic flow / sign-optimised manifolds
- complex Langevin
- tensor networks
- Imaginary chemical potential simulations
- Taylor expansions at zero chemical potential
... with (analytic) continuation, (various) summation schemes needed (with Padè coming back to popularity...)

What's going on with thimbles ...

Suppose you want to compute the functional integral $\frac{1}{Z} \int_{-\infty}^{\infty} \mathrm{d} x O(x) e^{-S(x)}$
with the action $\quad S(x)=\mu x^{2}+\lambda x^{4} \quad \mu, \lambda \in \mathbb{C} \quad S=S_{R}+S_{I}$
On the real axis the action is in general COMPLEX. Try to change the integration domain, going to the COMPLEX PLANE

$$
x \quad \rightarrow \quad z=x+i y
$$

What's going on with thimbles ...

Suppose you want to compute the functional integral $\frac{1}{Z} \int_{-\infty}^{\infty} \mathrm{d} x O(x) e^{-S(x)}$
with the action $\quad S(x)=\mu x^{2}+\lambda x^{4} \quad \mu, \lambda \in \mathbb{C} \quad S=S_{R}+S_{I}$
On the real axis the action is in general COMPLEX. Try to change the integration domain, going to the COMPLEX PLANE
Good candidates are curves which are solutions of $\begin{aligned} & x \rightarrow z=x+i y \\ & \begin{array}{l}\dot{x}=-\frac{\partial S_{R}}{x} \\ \dot{y}=-\frac{\partial S_{R}}{\partial x}\end{array} \\ & \text { along which (because of Cauchy Riemann) } \begin{array}{l}\dot{S}_{I}=0 \\ \dot{S}_{R} \geq 0\end{array} \quad \ldots \text { PERFECT! }\end{aligned}$

What's going on with thimbles ...

Suppose you want to compute the functional integral $\frac{1}{Z} \int_{-\infty}^{\infty} \mathrm{d} x O(x) e^{-S(x)}$
with the action

$$
S(x)=\mu x^{2}+\lambda x^{4}
$$

$\mu, \lambda \in \mathbb{C}$
$S=S_{R}+S_{I}$

On the real axis the action is in general COMPLEX. Try to change the integration domain, going to the COMPLEX PLANE

In particular, let's take the ones which (at infinite time!) go through critical points

For a given choice of parameter ..

What's going on with thimbles ...

Suppose you want to compute the functional integral

$$
\frac{1}{Z} \int_{-\infty}^{\infty} \mathrm{d} x O(x) e^{-S(x)}
$$

with the action

$$
S(x)=\mu x^{2}+\lambda x^{4}
$$

$$
\mu, \lambda \in \mathbb{C}
$$

$$
S=S_{R}+S_{I}
$$

On the real axis the action is in general COMPLEX. Try to change the integration domain, going to the COMPLEX PLANE

In particular, let's take the ones which (at infinite time!) go through critical points

For a given choice of parameter ...

The SIGN PROBLEM is always nasty...

There are different decompositions as you move in parameter space!

Yust to mention one tricky point...
$Z(\beta, \mu)=\int[D \phi] \mathrm{e}^{-\beta S[\phi]+i \mu Q[\phi]} \quad \ldots$ i.e. living without a probability distribution \ldots
\ldots and we know that $\left\langle\mathrm{e}^{i \mu Q}\right\rangle=\frac{Z(\beta, \mu)}{Z(\beta, 0)}=\mathrm{e}^{-V \Delta F}$
Any possible VIRTUOUS LOOP like before? YES! but NOT ALWAYS!!

Still, you will see quite a number approaches to taming/evading/mitigating the SIGN PROBLEM and they can (to a certain extent) enable (finite density QCD) computations!

- Density of states
- Lefschetz Thimbles / holomorphic flow / sign-optimised manifolds
- complex Langevin
- tensor networks
- Imaginary chemical potential simulations
- Taylor expansions at zero chemical potential
... with (analytic) continuation, (various) summation schemes needed (with Padè coming back to popularity...)
$Z(\beta, \mu)=\int[D \phi] \mathrm{e}^{-\beta S[\phi]+i \mu Q[\phi]} \quad \ldots$ i.e. living without a probability distribution \ldots
\ldots and we know that $\left\langle\mathrm{e}^{i \mu Q}\right\rangle=\frac{Z(\beta, \mu)}{Z(\beta, 0)}=\mathrm{e}^{-V \Delta F}$
Any possible VIRTUOUS LOOP like before? YES! but NOT ALWAYS!!

Still, you will see quite a number approaches to taming/evading/mitigating the SIGN PROBLEM and they can (to a certain extent) enable (finite density QCD) computations!

- Density of states
- Lefschetz Thimbles / holomorphic flow / sign-optimised manifolds
- complex Langevin
- tensor networks
- Imaginary chemical potential simulations
- Taylor expansions at zero chemical potential
... with (analytic) continuation, (various) summation schemes needed (with Padè coming back to popularity...)
$Z(\beta, \mu)=\int[D \phi] \mathrm{e}^{-\beta S[\phi]+i \mu Q[\phi]} \quad \ldots$ i.e. living without a probability distribution \ldots
\ldots and we know that $\left\langle\mathrm{e}^{i \mu Q}\right\rangle=\frac{Z(\beta, \mu)}{Z(\beta, 0)}=\mathrm{e}^{-V \Delta F}$
Any possible VIRTUOUS LOOP like before? YES! but NOT ALWAYS!!

Still, you will see quite a number approaches to taming/evading/mitigating the SIGN PROBLEM and they can (to a certain extent) enable (finite density QCD) computations!

- Density of states
- Lefschetz Thimbles / holomorphic flow / sign-optimised manifolds
- complex Langevin
- tensor networks
- Imaginary chemical potential simulations
- Taylor expansions at zero chemical potential
... with (analytic) continuation, (various) summation schemes needed (with Padè coming back to popularity...)

SIGN PROBLEMS: the tough problem par excellence
$Z(\beta, \mu)=\int[D \phi] \mathrm{e}^{-\beta S[\phi]+i \mu Q[\phi]} \quad \ldots$ i.e. living without a probability distribution \ldots
\ldots and we know that $\left\langle\mathrm{e}^{i \mu Q}\right\rangle=\frac{Z(\beta, \mu)}{Z(\beta, 0)}=\mathrm{e}^{-V \Delta F}$
Any possible VIRTUOUS LOOP like before? YES! but NOT ALWAYS!!

Still, you will see quite a number approaches to taming/evading/mitigating the SIGN PROBLEM and they can (to a certain extent) enable (finite density QCD) computations!

- Density of states
- Lefschetz Thimbles / holomorphic flow / sign-optimised manifolds
- complex Langevin
- tensor networks
- Imaginary chemical potential simulations
- Taylor expansions at zero chemical potential
... with (analytic) continuation, (various) summation schemes needed (with Padè coming back to popularity...)
$Z(\beta, \mu)=\int[D \phi] \mathrm{e}^{-\beta S[\phi]+i \mu Q[\phi]} \quad \ldots$ i.e. living without a probability distribution \ldots
\ldots and we know that $\left\langle\mathrm{e}^{i \mu Q}\right\rangle=\frac{Z(\beta, \mu)}{Z(\beta, 0)}=\mathrm{e}^{-V \Delta F}$
Any possible VIRTUOUS LOOP like before? YES! but NOT ALWAYS!!

Still, you will see quite a number approaches to taming/evading/mitigating the SIGN PROBLEM and they can (to a certain extent) enable (finite density QCD) computations!

- Density of states
- Lefschetz Thimbles / holomorphic flow / sign-optimised manifolds
- complex Langevin
- tensor networks
- Imaginary chemical potential simulations
- Taylor expansions at zero chemical potential
... with (analytic) continuation, (various) summation schemes needed (with Padè coming back to popularity...)

Langevin algorithms, in a sense Simon's simulations/computations issue

Langevin algorithms, in a sense Simon's simulations/computations issue

$$
\begin{array}{ll}
\text { Brownian motion (BM) } \\
m \frac{d}{d t} \vec{v}(t)=-\alpha \vec{v}(t)+\vec{\eta}(t) & \left\langle\eta_{i}(t)\right\rangle=0 \\
\langle f(v(t))\rangle=\int d v f(v) P(v, t) \text { with }(\ldots \text { solution of Fokker Planck eqn } \ldots) \quad P^{e q} \sim \eta^{-\frac{m a v^{2}}{2 \lambda}}
\end{array}
$$

Langevin algorithms, in a sense Simon's simulations/computations issue

Brownian motion (BM)

$$
\begin{array}{ll}
m \frac{d}{d t} \vec{v}(t)=-\alpha \vec{v}(t)+\vec{\eta}(t) \quad & \left\langle\eta_{i}(t)\right\rangle=0 \\
& \left\langle\eta_{i}(t) \eta_{k}\left(t^{\prime}\right)\right\rangle=2 \lambda \delta_{i k} \delta\left(t-t^{\prime}\right)
\end{array}
$$

$$
\langle f(v(t))\rangle=\int d v f(v) P(v, t) \quad \text { with }(\ldots \text { solution of Fokker Planck eqn } \ldots) \quad P^{e q} \sim \mathrm{e}^{-\frac{m \alpha v^{2}}{2 \lambda}}
$$

Quite interestingly ... (FINANCE) returns (log price change of a security) undergo BM...

The main goal is to reliably estimate the Value at Risk (VaR)

Langevin algorithms, in a sense Simon's simulations/computations issue

$$
\begin{aligned}
& \text { Brownian motion (BM) } \\
& m \frac{d}{d t} \vec{v}(t)=-\alpha \vec{v}(t)+\vec{\eta}(t) \quad\left\langle\eta_{i}(t)\right\rangle=0 \\
& \langle f(v(t))\rangle=\int d v f(v) P(v, t) \quad \text { with }(\ldots \text { solution of Fokker Planck eqn } \ldots) \quad P^{e q} \sim \mathrm{e}^{-\frac{m a v^{2}}{2 \lambda}}
\end{aligned}
$$

Quite interestingly ... (FINANCE) returns (log price change of a security) undergo BM...

Perhaps less known, but maybe more interestingly, another example of "non-Physics Langevin" is the TREE CUTTING PROBLEM
i.e. When is the best time to cut a tree so that its net present value is maximised?

$$
\max _{t}\left[\mathrm{e}^{-r t}[p X(t)-c]\right] \quad \begin{gathered}
X(\mathrm{~T}) \text { the size of your tree } \\
p \text { the price at which you sell it }-c \text { the cost of cutting } \\
r>0 \text { the rate of interest the bank pays to you }
\end{gathered}
$$

$$
\max _{t}\left[\mathrm{e}^{-r t}[p X(t)-c]\right]
$$

$$
X^{\prime}(t)=r[X(t)-c / p]
$$

$$
\max _{t}\left[\mathrm{e}^{-r t}[p X(t)-c]\right]
$$

$$
X^{\prime}(t)=r[X(t)-c / p]
$$

$$
d X(t)=f(t) d t+\sigma d z
$$

Langevin and Stochastic Quantisation

Langevin and Stochastic Quantisation
$\langle O[\phi]\rangle=\frac{\int D \phi O[\phi] e^{-S[\phi]}}{\int D \phi e^{-S[\phi]}} \quad \phi(x) \mapsto \phi_{\eta}(x ; t) \quad$ You have a field theory and you add a degree of freedom This is a fictitious time in which Langevin evolution takes place $\quad \frac{d \phi_{\eta}(x ; t)}{d t}=-\frac{\partial S[\phi]}{\partial \phi_{\eta}(x ; t)}+\eta(x ; t)$

Natural expectation values are now wrt the random (gaussian) noise

$$
\left\langle\eta(x, t) \eta\left(x^{\prime}, t^{\prime}\right)\right\rangle_{\eta}=2 \delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) \quad\langle\ldots\rangle_{\eta}=\frac{\int D \eta(z, \tau) \ldots e^{-\frac{1}{4} \int d z d \tau \eta^{2}(z, \tau)}}{\int D \eta(z, \tau) e^{-\frac{1}{4} \int d z d \tau \eta^{2}(z, \tau)}}
$$

Langevin and Stochastic Quantisation

$$
\langle O[\phi]\rangle=\frac{\int D \phi O[\phi] e^{-S[\phi]}}{\int D \phi e^{-S[\phi]}} \quad \phi(x) \mapsto \phi_{\eta}(x ; t) \quad \text { You have a field theory and you add a degree of freedom }
$$

This is a fictitious time in which Langevin evolution takes place $\quad \frac{d \phi_{\eta}(x ; t)}{d t}=-\frac{\partial S[\phi]}{\partial \phi_{\eta}(x ; t)}+\eta(x ; t)$

Natural expectation values are now wrt the random (gaussian) noise

$$
\left\langle\eta(x, t) \eta\left(x^{\prime}, t^{\prime}\right)\right\rangle_{\eta}=2 \delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) \quad\langle\ldots\rangle_{\eta}=\frac{\int D \eta(z, \tau) \ldots e^{-\frac{1}{4} \int d z d \tau \eta^{2}(z, \tau)}}{\int D \eta(z, \tau) e^{-\frac{1}{4} \int d z d \tau \eta^{2}(z, \tau)}}
$$

Main assertion is

$$
\left\langle O\left[\phi_{\eta}\left(x_{1} ; t\right) \ldots \phi_{\eta}\left(x_{n} ; t\right)\right]\right\rangle_{\eta} \rightarrow t \rightarrow \infty\left\langle O\left[\phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)\right]\right\rangle
$$

A proof can go through the definition
of a time-dependent probability distribution of the fields

$$
\left\langle O\left[\phi_{\eta}(t)\right]\right\rangle_{\eta}=\frac{\int D \eta O\left[\phi_{\eta}(t)\right] e^{-\frac{1}{4} \int d z d \tau \eta^{2}(z, \tau)}}{\int D \eta e^{-\frac{1}{4} \int d z d \tau \eta^{2}(z, \tau)}}=\int D \phi O[\phi] P[\phi, t]
$$

for which we can derive $\quad \dot{P}[\phi, t]=\int d x \frac{\delta}{\delta \phi(x)}\left(\frac{\delta S[\phi]}{\delta \phi(x)}+\frac{\delta}{\delta \phi(x)}\right) P[\phi, t] \quad$ the Fokker Planck equation

Langevin and Stochastic Quantisation

$$
\langle O[\phi]\rangle=\frac{\int D \phi O[\phi] e^{-S[\phi]}}{\int D \phi e^{-S[\phi]}} \quad \phi(x) \mapsto \phi_{\eta}(x ; t) \quad \text { You have a field theory and you add a degree of freedom }
$$

This is a fictitious time in which Langevin evolution takes place $\quad \frac{d \phi_{\eta}(x ; t)}{d t}=-\frac{\partial S[\phi]}{\partial \phi_{\eta}(x ; t)}+\eta(x ; t)$

Natural expectation values are now wrt the random (gaussian) noise

$$
\left\langle\eta(x, t) \eta\left(x^{\prime}, t^{\prime}\right)\right\rangle_{\eta}=2 \delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) \quad\langle\ldots\rangle_{\eta}=\frac{\int D \eta(z, \tau) \ldots e^{-\frac{1}{4} \int d z d \tau \eta^{2}(z, \tau)}}{\int D \eta(z, \tau) e^{-\frac{1}{4} \int d z d \tau \eta^{2}(z, \tau)}}
$$

Main assertion is

$$
\left\langle O\left[\phi_{\eta}\left(x_{1} ; t\right) \ldots \phi_{\eta}\left(x_{n} ; t\right)\right]\right\rangle_{\eta} \rightarrow t \rightarrow \infty\left\langle O\left[\phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)\right]\right\rangle
$$

A proof can go through the definition
of a time-dependent probability distribution of the fields

$$
\left\langle O\left[\phi_{\eta}(t)\right]\right\rangle_{\eta}=\frac{\int D \eta O\left[\phi_{\eta}(t)\right] e^{-\frac{1}{4} \int d z d \tau \eta^{2}(z, \tau)}}{\int D \eta e^{-\frac{1}{4} \int d z d \tau \eta^{2}(z, \tau)}}=\int D \phi O[\phi] P[\phi, t]
$$

$$
\lim _{t \rightarrow \infty} P[\phi, t] \equiv P^{e q}[\phi]=\frac{e^{-s}}{\int D \phi \exp -S}
$$

A first interesting feature: you can go for complex actions!

A first interesting feature: you can go for complex actions!

When the action is complex, Langevin equations amounts to complexifying the degrees of freedom

$$
\begin{aligned}
& \partial_{\tau} x=-\left.\operatorname{Re} \frac{\partial S(z)}{\partial z}\right|_{z=x+i y}+\eta_{\tau} \\
& \partial_{\tau} y=-\left.\operatorname{Im} \frac{\partial S(z)}{\partial z}\right|_{z=x+i y}
\end{aligned}
$$

This amounts to averaging on a manifold which is different from the original one, but does not mean we are doubling the number of degrees of freedom

A first interesting feature: you can go for complex actions!

When the action is complex, Langevin equations amounts to complexifying the degrees of freedom

$$
\begin{aligned}
& \partial_{\tau} x=-\left.\operatorname{Re} \frac{\partial S(z)}{\partial z}\right|_{z=x+i y}+\eta_{\tau} \\
& \partial_{\tau} y=-\left.\operatorname{Im} \frac{\partial S(z)}{\partial z}\right|_{z=x+i y}
\end{aligned}
$$

This amounts to averaging on a manifold which is different from the original one, but does not mean we are doubling the number of degrees of freedom

The probability distribution of the fields in time now reads

$$
\langle O\rangle_{P(t)}=\int d x d y P(x, y, t) O(x+i y)
$$

What we are mostly interested in reads

$$
\langle O\rangle_{\rho}=\int d x O(x) \rho(x)=\lim _{t \rightarrow \infty}\langle O\rangle_{\rho(t)}=\lim _{t \rightarrow \infty} \int d x O(x) \rho(x, t)
$$

The strategy of the proof is formally the same, i.e. going through Fokker Planck. In exponential notation this reads $\rho(x, t)=\exp \left(L_{c}^{T}\right) \rho_{0}(x)$

A formal argument for correctness is still there, even if care is needed because we can not rule out convergence to a wrong result, but there are progress (at least) in the direction of spotting an incorrect convergence.

A second interesting feature: prototype of Numerical Stochastic Perturbation Theory

A second interesting feature: prototype of Numerical Stochastic Perturbation Theory

Since we now formally have a continuous stochastic process, we can think the Langevin equation solution as a function of the coupling constant of the theory and write a formal expansion
which we now have to plug into our Langevin equation

$$
\phi_{\eta}(x, t)=\phi_{\eta}^{(0)}(x, t)+\sum_{n>0} g^{n} \phi_{\eta}^{(n)}(x, t)
$$

$$
\frac{d \phi_{\eta}(x ; t)}{d t}=-\frac{\partial S[\phi]}{\partial \phi_{\eta}(x ; t)}+\eta(x ; t)
$$

A second interesting feature: prototype of Numerical Stochastic Perturbation Theory

Since we now formally have a continuous stochastic process, we can think the Langevin equation solution as a function of the coupling constant of the theory and write a formal expansion
which we now have to plug into our Langevin equation

$$
\phi_{\eta}(x, t)=\phi_{\eta}^{(0)}(x, t)+\sum_{n>0} g^{n} \phi_{\eta}^{(n)}(x, t)
$$

$$
\frac{d \phi_{\eta}(x ; t)}{d t}=-\frac{\partial S[\phi]}{\partial \phi_{\eta}(x ; t)}+\eta(x ; t)
$$

The result is a hierarchy of equations of increasing order, which we can exactly truncate at any given one

Perturbative orders for a given observable come almost from free: take the appropriate order when averaging over the evolution of the resulting process

$$
O\left[\sum_{n} g^{n} \phi_{\eta}^{(n)}(x, t)\right]=\sum_{n} g^{n} O^{(n)}(x, t)
$$

A second interesting feature: prototype of Numerical Stochastic Perturbation Theory

Since we now formally have a continuous stochastic process, we can think the Langevin equation solution as a function of the coupling constant of the theory and write a formal expansion
which we now have to plug into our Langevin equation

$$
\phi_{\eta}(x, t)=\phi_{\eta}^{(0)}(x, t)+\sum_{n>0} g^{n} \phi_{\eta}^{(n)}(x, t)
$$

$$
\frac{d \phi_{\eta}(x ; t)}{d t}=-\frac{\partial S[\phi]}{\partial \phi_{\eta}(x ; t)}+\eta(x ; t)
$$

The result is a hierarchy of equations of increasing order, which we can exactly truncate at any given one
Perturbative orders for a given observable come almost from free: take the appropriate order when averaging over the evolution of the resulting process

$$
O\left[\sum_{n} g^{n} \phi_{\eta}^{(n)}(x, t)\right]=\sum_{n} g^{n} O^{(n)}(x, t)
$$

Langevin was the prototype, but one can also play the same game with other stochastic processes, i.e.

- Hybrid Molecular Dynamics
- Kramer equation

The main advantage is that you can reach much higher orders than you could afford in a standard, diagrammatic computation. (Remember: the computer is integrating the system for you)

