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DISCLAIMER this will not look like a (piece of) syllabus, nor | will present a talk (lecture)
| will be alluding to both...

This is intended to provide material for a couple (maybe more) of videos within the
structure sketched by Mike. There are quite a number of ties to other sections (not a
problem).
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Ising 2d (h=0) YES! ... and for very good reasons!
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Il order phase transitions ... relevant picture is correlation over all length scales ... local VS global algorithms ...

This is an example of a VIRTUOUS LOOP gluing everything together
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Meron-Cluster Solution of Fermion Sign Problems

Shailesh Chandrasekharant and Uwe-Jens Wiese?
' Department of Physics, Box 90305, Duke University, Durham, NC 27708, U.S.A.

Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

(February 10, 1999)

We present a general strategy to solve the notorious fermion sign problem using cluster algorithms.
The method applies to various sysiems 1in the nuovara model tamily as weu as o relativistic
fermions. Here it is illustrated for non-relativistic lattice fermions. A configuration of fermion
world-lines is decomposed into clusters that contribute independently to the fermion permutation
sign. A cluster whose flip changes the sign is referred to as a meron. Configurations containing
meron-clusters contribute 0 to the path integral, while all other configurations contribute 1. The
cluster representation describes the partition function as a gas of clusters in the zero-meron sector.

... i.e. living without a probability distribution ...

YES!

The QCD phase diagram according to the center group

Ydalia Delgado Mercado®, Hans Gerd Evertz?, Christof Gattringer®

@Institut fir Physik, Karl-Franzens Universitit, Graz, Austria
® Institute for Theoretical and Computational Physics, Technische Universitit Graz, Austria

We study an effective theory for QCD at finite temperature and density which contains the
leading center symmetric and center symmetry breaking terms. The effective theory is studied in a
flux representation where the complex phase problem is absent and the model becomes accessible to
Monte Carlo techniques also at tinite chemical potential. We simulate the system using a generalized
Prokof’ev-Svistunov worm algorithm and compare the results to a low temperature expansion. The
phase diagram is determined as a function of temperature, chemical potential and quark mass.
Shape and quark mass dependence of the phase boundaries are as expected for QCD. The transition
into the deconfined phase is smooth throughout, without any discontinuities or critical points.
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Still, you will see quite a number approaches to taming/evading/mitigating the SIGN
PROBLEM and they can (to a certain extent) enable (finite density QCD) computations!

~ Density of states
© Lefschetz Thimbles / holomorphic flow / sign-optimised manifolds

> complex Langevin
~ tensor networks

> Imaginary chemical potential simulations
> Taylor expansions at zero chemical potential

... with (analytic) continuation, (various) summation schemes needed (with Pade coming
back to popularity...)
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- : : : : — — unstable thimble
15k .. ot ...... \ .......... .......... ........... ....... O critical pOint

In particular, let's take the ones 1
which (at infinite time!) go through
critical points 0

For a given choice of parameter ...

Perfect ... There is a very good reason: thimbles always provide a BASIS to decompose any contour!



The SIGN PROBLEM is always nasty...

There are different decompositions as you move in parameter space!

Yust to mention one tricky point...
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3 4 “ Brownian motion (BM)
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Quite interestingly ... (FINANCE) returns (log price change of a security) undergo BM...
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P&L

The main goal is to reliably estimate the Value at Risk (VaR)
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3 4 Brownian motion (BM)
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(f(u(?)) = / dv f(v) P(v,t) with (... solution of Fokker Planck eqn ...) P ~ e~ "2

Quite interestingly ... (FINANCE) returns (log price change of a security) undergo BM...

Perhaps less known, but maybe more interestingly, another example of “non-Physics Langevin” is the
TREE CUTTING PROBLEM

i.e. When is the best time to cut a tree so that its net present value is maximised?

—rt X(T) the size of your tree
mtax [ € [p X(t) —C H p the price at which you sell it - ¢ the cost of cutting
r>0 the rate of interest the bank pays to you



max [e_rt [p X (t) — CH with first order condition X’(t) =7 | X(t) —c/p]




max [e_rt [p X (t) — CH with first order condition X’(t) =7 | X(t) —c/p]

but growth is subject to “noise” ... so ... dX (t) = f(t)dt + odz
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[ D¢ O[] e >l

(Olo]) = Do e d(x) — dn(x; t) You have a field theory and you add a degree of freedom
This is a fictitious time in which Langevin evolution takes place dn(x; t) - — 05[9] + n(x; t)
dt Opn(x; t)
Natural expectation Dr(z. 7Y ... e &/ dzdmn?(z,7)
values are now wrt the (n(x,t) n(x',t')), =26(x =x")o(t—t) (...), = J Dnfz.7)

— L [ dzdrn2(z,7)
random (gaussian) noise J Dn(z,7)e"%
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distribution of the fields (Olontol, [ Dpe=3/J d=drni(zm) ? Olel Plo, 1]

for which we can derive  P[¢, t] = /dx 5¢(zx) (g;([g + 5qz55(x)) Pl¢, t] the Fokker Planck equation
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lim;_ oo P[¢7 t] = PGQ[¢] ~ fDCZ;XP—S
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When the action is complex, Langevin equations amounts to complexifying the degrees of freedom

0:x = —Re 95(2) + 1.
0z z=x+iy This amounts to averaging on a manifold which is
different from the original one, but does not mean we
By = -1 05(z) are doubling the number of degrees of freedom
0z




A first interesting feature: you can go for complex actions!

When the action is complex, Langevin equations amounts to complexifying the degrees of freedom

0S
9.x = —Re 201 .
0z Z=X+iy This amounts to averaging on a manifold which is
different from the original one, but does not mean we
0.y = —I dS8(z) are doubling the number of degrees of freedom
_y =
(9Z Z=x+iy

The probability distribution of the fields in time now reads (O)Ypr) = fdxdyP(x, »1HO(x +1y)

O3 = [ dx0wp = im (O} = lim [ dr0(0px1

The strategy of the proof is formally the same, i.e. going
through Fokker Planck. In exponential notation this reads p(x,?) = eXp(Lg)po(x)

What we are mostly
interested in reads

A formal argument for correctness is still there, even if care is needed because we can not rule out
convergence to a wrong result, but there are progress (at least) in the direction of spotting an incorrect

convergence.
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Since we now formally have a continuous stochastic
process, we can think the Langevin equation

solution as a function of the coupling constant of (0) o ()
the theory and write a formal expansion Pn(Xx, t) = ¢y (X, t) + Z g ¢y (x,1t)
n>0

dy(x; t) _ 0S|4]

dt - Opn(x; t) +n(x 1)

which we now have to plug into our Langevin equation
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+ n(x; t)

The result is a hierarchy of equations of increasing order, which we can exactly truncate at any given one

Perturbative orders for a given observable come
almost from free: take the appropriate order when O [Z g”gb%’”(x, t)] — Zg”O(”)(x, t)
averaging over the evolution of the resulting process n n
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The result is a hierarchy of equations of increasing order, which we can exactly truncate at any given one

Perturbative orders for a given observable come
almost from free: take the appropriate order when O [Z g”qb%”(x, t)] — Zg”O(”)(x, t)
averaging over the evolution of the resulting process n n

Langevin was the prototype, but one can also play the same game with other stochastic processes, i.e.

> Hybrid Molecular Dynamics
- Kramer equation

The main advantage is that you can reach much higher orders than you could afford in a standard,
diagrammatic computation. (Remember: the computer is integrating the system for you)



