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DISCLAIMER this will not look like a (piece of) syllabus, nor I will present a talk (lecture)

I will be alluding to both… 

This is intended to provide material for a couple (maybe more) of videos within the 
structure sketched by Mike. There are quite a number of ties to other sections (not a 
problem).
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Algorithms, Physics and Computational Strategies

Ising 2d (h=0)                             YES! … and for very good reasons!

II order phase transitions ... relevant picture is correlation over all length scales ... local VS global algorithms ... 

This is an example of a VIRTUOUS LOOP gluing everything together

Having discussed autocorrelation and integrated autocorrelation time, 
a natural question arises: are there cases in which 

⌧int ! 1 ?
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What’s going on with thimbles …

Thimble regularization: status and prospectsQCD at nonzero baryon density - Moscow, Oct 2017 

Suppose you want to compute the functional integral

with the action

On the real axis the action is in general COMPLEX. Try to change the integration domain, going to the COMPLEX PLANE

Good candidates are curves which are solutions of 

1

Z

Z 1

�1
dxO(x) e�S(x)

x ! z = x+ iy
(
ẋ = �@SR

@x

ẏ = �@SR
@x

S(x) = µx2 + �x4 µ,� 2 C S = SR + SI

along which (because of Cauchy Riemann)                                    … PERFECT!

(
ṠI = 0

ṠR � 0

In particular, let’s take the ones 
which (at infinite time!) go through 
critical points

@xSR|zc = @ySR|zc = 0

For a given choice of parameter …

In practice, we want to integrate the equations of SA
starting in the vicinity of the critical point ϕσ for an
arbitrarily long flow time t. We can do this provided that
the initial condition is chosen correctly: for the stable thimble
this means we leave the critical point along the direction (in
the xy plane) which is given by the eigenvector of positive
eigenvalue of the Hessian (9) computed at the critical point.
Once we have singled out the relevant direction, we can
ascend in two ways (namely, increasing or decreasing x),
both of which we have to take to cover the entire thimble. By
holomorphicity the Hessian has two eigenvalues opposite in
sign. Since SR always increases along the flow, exp ð−SRÞ
goes to 0 as t → þ∞, thus ensuring convergence of the
integrals along the thimble. To obtain the unstable thimble

Kσ , we can repeat the same procedure described above, but
picking up the eigenvector of the Hessian of SR with
negative eigenvalue. Note that the unstable thimble is needed
because the coefficient nσ in our master equation (2) counts
the intersection of such thimbles with the original domain of
integration, which in our case is the real axis (the sign
ambiguity is not resolved just by this definition, but it can be
deduced by means of other considerations). Figures 1 (left
panel) and 2 show the results for the three cases σR > 0,
σR < 0, and σR ¼ 0 (see also [26]).
From Fig. 1, we see that when σR > 0 the unstable

thimbles related to the Higgs vacua do not intersect the real
axis. Therefore these points do not contribute to the
integrals, that is, n% ¼ 0 and n0 ¼ 1. By integrating along

FIG. 1 (color online). Thimbles structure for σ ¼ 0.5þ i0.75, λ ¼ 2 (left panel). In this case only the unstable thimble attached to
z ¼ 0 intersects the real axis and thus only one critical point contributes. On the right we can see how the Langevin simulation correctly
covers the relevant thimble.

FIG. 2 (color online). Thimbles structure for σ ¼ −0.5þ i0.75 (left panel) and σ ¼ i0.75 (right); in both cases λ ¼ 2. For σR < 0 (left)
all three critical points contribute. σR ¼ 0 (right) is an example of a Stokes phenomenon.

THIMBLE REGULARIZATION AT WORK: FROM TOY … PHYSICAL REVIEW D 92, 085030 (2015)

085030-5
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ṠI = 0
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Perfect …There is a very good reason: thimbles always provide a BASIS to decompose any contour!



The SIGN PROBLEM is always nasty…

There are different decompositions as you move in parameter space! 

Yust to mention one tricky point…
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Brownian motion (BM)

m
d
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h⌘i(t) ⌘k(t0)i = 2� �ik �(t� t0)
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dv f(v)P (v, t) with (… solution of Fokker Planck eqn …) P eq ⇠ e�

m↵v2

2�



Langevin algorithms, in a sense Simon’s simulations/computations issue

Brownian motion (BM)

m
d

dt
~v(t) = �↵~v(t) + ~⌘(t) h⌘i(t)i = 0

h⌘i(t) ⌘k(t0)i = 2� �ik �(t� t0)Figura 6.3: Stima del VaR per un paniere di titoli al 95% di confidenza.
Moving window = 125 e numero di iterazioni = 1000.

Figura 6.4: Stima del VaR per un paniere di titoli al 95% di confidenza.
Moving window = 63 e numero di iterazioni = 1000.

53

The main goal is to reliably estimate the Value at Risk (VaR)

h f(v(t)) i =

Z
dv f(v)P (v, t) with (… solution of Fokker Planck eqn …) P eq ⇠ e�

m↵v2

2�

Quite interestingly … (FINANCE) returns (log price change of a security) undergo BM…
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Perhaps less known, but maybe more interestingly, another example of “non-Physics Langevin” is the
TREE CUTTING PROBLEM

i.e.  When is the best time to cut a tree so that its net present value is maximised?

max
t

⇥
e�rt [ pX(t)� c ]

⇤

h f(v(t)) i =

Z
dv f(v)P (v, t) with (… solution of Fokker Planck eqn …) P eq ⇠ e�

m↵v2

2�

X(T) the size of your tree
p the price at which you sell it - c the cost of cutting

r>0 the rate of interest the bank pays to you



max
t

⇥
e�rt [ pX(t)� c ]

⇤
with first order condition X 0(t) = r [X(t)� c/p ]



max
t

⇥
e�rt [ pX(t)� c ]

⇤
with first order condition X 0(t) = r [X(t)� c/p ]

but growth is subject to “noise” … so … dX(t) = f(t) dt+ �dz



Langevin and Stochastic Quantisation



Langevin and Stochastic Quantisation
Stochastic Quantization(Parisi, Wu 1981)

Basic step: enlarging the number of degrees of freedom of a field theory

⟨O[φ]⟩ =

R

Dφ O[φ] e−S[φ]

R

Dφ e−S[φ]
φ(x) #→ φη(x ; t)

t is a stochasic time, in which a Langevin dynamics takes place

dφη(x ; t)
dt

= −
∂S [φ]

∂φη(x ; t)
+ η(x ; t)

η is a random noise, defining stochastic expectation values

⟨η(x , t) η(x ′, t′)⟩η = 2 δ(x − x ′) δ(t − t′) ⟨. . . ⟩η =

R

Dη(z , τ ) . . . e− 1
4

R

dzdτη2(z,τ)

R

Dη(z , τ ) e− 1
4

R

dzdτη2(z,τ)

The main fact:

⟨O[φη(x1; t) . . .φη(xn; t)]⟩η→t→∞⟨O[φ(x1) . . .φ(xn)]⟩

which you can look at as a quantization scheme (not our attitude, actually).

F. Di Renzo, M. Brambilla (UNIPR and INFN) NSPT: a short introduction STRONGnet 2010, August 2010 3 / 19
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What’s going on? From Langevin to Fokker-Plank...

Define a field distribution P[φ, t]

⟨O[φη(t)]⟩η =

R

DηO[φη(t)] e− 1
4

R

dzdτη2(z,τ)

R

Dη e− 1
4

R

dzdτη2(z,τ)
=

Z

Dφ O[φ]P[φ, t]

This obeys an equivalent (integral) equation (Fokker-Plank)

Ṗ [φ, t] =

Z

dx
δ

δφ(x)

„

δS [φ]
δφ(x)

+
δ

δφ(x)

«

P[φ, t]

A flow-chart for the proof of convergence limt→∞ P[φ, t] ≡ Peq[φ] = e−S
R

Dφ exp−S

Expand P[φ, t] =
∑

k=0 g kPk [φ, t]

You can prove that P0[φ, t]→t→∞Peq
0 [φ] = e−S0[φ]

Z0

In a weak sense, Pk [φ, t]→t→∞Peq
k [φ], with the Peq

k [φ]’s satisfying
Schwinger-Dyson equations.
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You have a field theory and you add a degree of freedom

This is a fictitious time in which Langevin evolution takes place

Main assertion is 

Natural expectation 
values are now wrt the 
random (gaussian) noise

A proof can go through the definition 
of a time-dependent probability 

distribution of the fields

for which we can derive the Fokker Planck equation
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A first interesting feature: you can go for complex actions!
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Complex Langevin boundary terms Dénes Sexty

1. Introduction

The notorius sign problem invalidates importance sampling simulations of theories with a
complex measure, e.g. QCD at nonzero chemical potential. A proposed solution to this problem is
the complex Langevin method [1] which complexifies the integration manifold using holomorphy,
and uses the Complex Langevin equation (CLE), to evade the need of interpreting the integration
measure as a probability density. For some complex measure ⇢(x) = exp(�S(x)) depending on the
variable x the CLE is thus written as

@⌧ x = �Re
@S(z)
@z

�����z=x+iy + ⌘⌧, @⌧ y = �Im
@S(z)
@z

�����z=x+iy , (1)

with the drift term K (z) = @S(z)/@z and a Gaussian noise ⌘ satisfying h⌘⌧⌘⌧0i = 2�(⌧ � ⌧0). This
method is succesful in many cases [2], (for gauge theories there is an extra di�culty caused by the
complexification of gauge degrees of freedom, which is cured by gauge cooling[3]). In some cases
however problems remain, leading to convergence to incorrect results. It has been identified that
the problematic cases either have to do with insu�ciently fast decay of the probability density of
the complexified stochastic process at infinity [4] or near zeroes of the measure [5]. In the formal
justifiaction of the Complex Langevin method, this gives rise to certain boundary terms invalidating
the equivalence of the Complex Langevin result to the correct result, which is simply given by
the integral on the original manifold with the complex measure. Here we discuss boundary terms
arising at infinity, for boundary terms around poles, see [6].

2. Boundary terms

The CLE gives rise to a real probability density on the complexified manifold P(x, y, ⌧).
(To keep the notation simple we use a one variable model, generalizations to more variables are
straightforward). The CLE result for a holomorphic observable O(z) is thus

hOiP(t) =

Z
dxdyP(x, y, t)O(x + iy), (2)

whereas the correct result we intend to calculate is

hOi⇢ =
Z

dxO(x)⇢(x) = lim
t!1
hOi⇢(t) = lim

t!1

Z
dxO(x)⇢(x, t) (3)

where we defined a time-dependent complex measure ⇢(x, t) using ⇢(x, t) = exp(L
T
c )⇢0(x), where

⇢0(x) can be some initial distribution on the real axis, and Lc is the complex Fokker-Planck operator
Lc = (@z + K (z))@z . Assuming the uniqueness of the limit ⇢(x, t) ! e

�S(x), one can define an
interpolation function

F (t, ⌧) =
Z

dxdyP(x, y, t � ⌧)O(x, y, ⌧), (4)

using the time evolved observables

O(x, y, t) = e
tLcO(x + iy). (5)
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A first interesting feature: you can go for complex actions!

When the action is complex, Langevin equations amounts to complexifying the degrees of freedom

This amounts to averaging on a manifold which is 
different from the original one, but does not mean we 
are doubling the number of degrees of freedom
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1. Introduction

The notorius sign problem invalidates importance sampling simulations of theories with a
complex measure, e.g. QCD at nonzero chemical potential. A proposed solution to this problem is
the complex Langevin method [1] which complexifies the integration manifold using holomorphy,
and uses the Complex Langevin equation (CLE), to evade the need of interpreting the integration
measure as a probability density. For some complex measure ⇢(x) = exp(�S(x)) depending on the
variable x the CLE is thus written as
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method is succesful in many cases [2], (for gauge theories there is an extra di�culty caused by the
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however problems remain, leading to convergence to incorrect results. It has been identified that
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A first interesting feature: you can go for complex actions!

This amounts to averaging on a manifold which is 
different from the original one, but does not mean we 
are doubling the number of degrees of freedom

The probability distribution of the fields in time now reads

What we are mostly 
interested in reads

The strategy of the proof is formally the same, i.e. going 
through Fokker Planck. In exponential notation this reads

A formal argument for correctness is still there, even if care is needed because we can not rule out 
convergence to a wrong result, but there are progress (at least) in the direction of spotting an incorrect 
convergence.

When the action is complex, Langevin equations amounts to complexifying the degrees of freedom



A second interesting feature: prototype of  Numerical Stochastic Perturbation Theory



1a We can go to high loops (NSPT)

In the Stochastic Quantization framework

∂
∂t
φη(x , t) = −

δS [φ]
δφη(x , t)

+ η(x , t).

lim
t→∞

⟨φ(x1, t) . . .φ(xn, t)⟩η = ⟨φ(x1) . . .φ(xn)⟩.

we expand the solution to Langevin equation

φη(x , t) = φ(0)
η (x , t) +

X

n>0

gnφ(n)
η (x , t)

and compute observables order by order

O

"

X

n

gnφ(n)
η (x , t)

#

=
X

n

gnO (n)(x , t).

Something like a perturbative MonteCarlo

F. Di Renzo (University of Parma and INFN) PT vs non-PT Renormalization Lattice 2010, June 14th 2010 4 / 17

Stochastic Quantization(Parisi, Wu 1981)

Basic step: enlarging the number of degrees of freedom of a field theory

⟨O[φ]⟩ =

R

Dφ O[φ] e−S[φ]

R

Dφ e−S[φ]
φ(x) #→ φη(x ; t)

t is a stochasic time, in which a Langevin dynamics takes place

dφη(x ; t)
dt

= −
∂S [φ]

∂φη(x ; t)
+ η(x ; t)

η is a random noise, defining stochastic expectation values

⟨η(x , t) η(x ′, t′)⟩η = 2 δ(x − x ′) δ(t − t′) ⟨. . . ⟩η =

R

Dη(z , τ ) . . . e− 1
4

R

dzdτη2(z,τ)

R

Dη(z , τ ) e− 1
4

R

dzdτη2(z,τ)

The main fact:

⟨O[φη(x1; t) . . .φη(xn; t)]⟩η→t→∞⟨O[φ(x1) . . .φ(xn)]⟩

which you can look at as a quantization scheme (not our attitude, actually).

F. Di Renzo, M. Brambilla (UNIPR and INFN) NSPT: a short introduction STRONGnet 2010, August 2010 3 / 19

A second interesting feature: prototype of  Numerical Stochastic Perturbation Theory

Since we now formally have a continuous stochastic 
process, we can think the Langevin equation 
solution as a function of the coupling constant of 
the theory and write a formal expansion

which we now have to plug into our Langevin equation
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the theory and write a formal expansion

which we now have to plug into our Langevin equation

The result is a hierarchy of equations of increasing order, which we can exactly truncate at any given one

Perturbative orders for a given observable come 
almost from free: take the appropriate order when 
averaging over the evolution of the resulting process 
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Langevin was the prototype, but one can also play the same game with other stochastic processes, i.e.

Hybrid Molecular Dynamics
Kramer equation

The main advantage is that you can reach much higher orders than you could afford in a standard, 
diagrammatic computation. (Remember: the computer is integrating the system for you)


