Handling kinematics in far-forward processes at EIC

C. Weiss (JLab), Tomography of light nuclei at EIC, 09 Nov 2022

Purpose

Describe simple method for connecting variables in "physics frames" and "detector frame"

Uses natural basis vectors, avoids explicit Lorentz transforms

- \rightarrow Analytic expressions
- \rightarrow Uncertainty propagation
- \rightarrow Validation with MC generators

References

W. Cosyn, C. Weiss PRC 102 (2020) 065204 [INSPIRE]

A. Bacchetta, W. Cosyn, C. Weiss, contribution to future update of article J. Adam et al. "Accelerator and beam conditions..." (2021) [ZENODO]

Ch. Hyde, P. Nadel-Turonski, C. Weiss et al., JLab LDRD 2014/15

Outline

Collinear frames

Natural basis vectors

Physics frames \leftrightarrow detector frame

Example: LC variables of final-state hadron \leftrightarrow pseudorapidity

Far-forward processes with nuclei

Physics ↔ detector frame

Physics frames

Usually p, q collinear

Initial state characterized by invariant variables x, y, Q^2

Invariant variables \leftrightarrow momentum components

Detector frame

Crossing angle

Central detector aligned with electron beam axis

Far-forward detector around outgoing ion beam axis

Uncertainties: Beam momentum, detector resolution

Physics frames: Collinear frames

p, **q** collinear → *z*-axis **k**, **k**' plane → *xz*-plane $a^{\pm} \equiv a^{0} \pm a^{z}$ Light-cone components $a^{\mu} = [a^{+}, a^{-}, \mathbf{a}_{T}]$ Notation $ab = \frac{1}{2}(a^{+}b^{-} + a^{-}b^{+}) - \mathbf{a}_{T}\mathbf{b}_{T}$

Initial state

 $\gamma = \frac{2mx}{O}$

$$p = \left[p^+, \frac{m^2}{p^+}, \mathbf{0}_T\right] \qquad q = \left[-\xi p^+, \frac{Q^2}{\xi p^+}, \mathbf{0}_T\right]$$

 $k, k' = [\ldots]$ (involves y)

 $\xi = \frac{2x}{1 + \sqrt{1 + \gamma^2}} = x + \mathcal{O}(\gamma^2)$

Light-cone fraction "removed" by virtual photon

Parameter governing power corrections

Physics frames: Collinear frames

Class of frames

Collinear frames are not single frame, but class of frames related by longitudinal boosts (along *z*-axis) Momentum components are expressed thru p^+ . Its value selects a frame, acts as boost parameter

$$p^+ = m$$
Target rest frameMost physics frames of interest
contained in class of collinear frames $p^+ = Q/\xi$ Breit frame $(q^0 = 0)$ Transitions between them can be effected
simply by changing the value of p^+ $p^+ = \frac{\sqrt{Q^2 + \xi^2 m^2}}{\sqrt{\xi(1-\xi)}}$ Photon-target
CM frame $(x_F \text{ def})$ Transitions between them can be effected
simply by changing the value of p^+

Natural basis vectors

Orthonormal basis 4-vectors constructed from physical momenta

$$e_{0}^{\mu} = \frac{p^{\mu}}{m} \qquad e_{3}^{\mu} = \frac{1}{\sqrt{1+\gamma^{2}}} \left(-\frac{\gamma q^{\mu}}{Q} + \frac{p^{\mu}}{m} \right) \qquad e_{0}^{2} = 1, e_{3}^{2} = -1 \qquad \text{Collinear space (0, 3)}$$
$$e_{1}^{\mu} = \frac{1}{\sqrt{\cdots}} \left[k^{\mu} - (e_{0}k)e_{0}^{\mu} + (e_{3}k)e_{3}^{\mu} \right] \qquad e_{2}^{\mu} = -\frac{1}{\sqrt{\cdots}} \epsilon^{\mu\alpha\beta\gamma} e_{0}^{\alpha} e_{3}^{\beta} e_{1}^{\gamma} \qquad e_{1,2}^{2} = -1 \qquad \text{Transverse space (1, 2)}$$

Light-like basis vectors

$$n_{+}^{\mu} = e_{0}^{\mu} + e_{3}^{\mu}$$
 $n_{-}^{\mu} = e_{0}^{\mu} - e_{3}^{\mu}$ $n_{+}^{2} = n_{-}^{2} = 0$ $n_{+}n_{-} = 2$

$$n_{+} = \left[\frac{2p^{+}}{m}, 0, \mathbf{0}_{T}\right] \qquad n_{-} = \left[0, \frac{2m}{p^{+}}, \mathbf{0}_{T}\right]$$

Components in collinear frame

 n_+ has only "plus" component, n_- only "minus"

Natural basis vectors

Expansion of 4-vector a

$$n_a = \frac{m}{p^+} a^+$$
 $n_a = \frac{p^+}{m} a^ -e_1 a = a^x - e_2 a = a^y$

$$a^{\mu} = \frac{m}{2p^{+}}a^{+}n^{\mu}_{+} + \frac{p^{+}}{2m}a^{-}n^{\mu}_{-} + a^{x}e^{\mu}_{1} + a^{y}e^{\mu}_{2}$$

(1) Collinear frame components of *a* as contractions with basis vectors

(2) Expansion of a in basis vectors

Transition collinear frame \rightarrow detector frame

- Given collinear-frame components a^+, a^-, a_T (in frame with given p^+)
- Take momenta p, q, k in detector frame and form basis vectors $\{n_+, n_-, e_1, e_2\}$
- Obtain detector-frame components of *a* from expansion (2)

Transition detector frame \rightarrow collinear frame

- Given detector-frame components a^{μ}
- Take momenta p, q, k in detector frame and form basis vectors $\{n_+, n_-, e_1, e_2\}$
- Obtain collinear-frame components of *a* from scalar products (1) evaluated using detector-frame components

Example: Hadron LC momenta \leftrightarrow **pseudorapidity**

Given final-state hadron with collinear-frame momentum $p_h^+ = \zeta_h p^+$ and p_{hT}^-

Compute pseudorapidity in detector frame $\eta \equiv -\ln \tan \frac{\theta_h (\det)}{2} \approx -\ln \frac{|p_{hT}| (\det)}{2p_h^z (\det)}$

[Here: zero crossing angle = head-on collision, can be generalized]

Take 4-momenta p, q, k in detector frame (ordinary components)

 $p = (E_p, 0, 0, p_p)$ proton beam in +z direction $k = (k_e, 0, 0, -k_e)$ electron beam in -z direction $q = (q^0, q^x, 0, q^z)$ q-vector

Express components in terms of $x, y, Q^2...$ simple!

Example: Hadron LC momenta \leftrightarrow **pseudorapidity**

Construct basis vectors in detector frame

$$e_0 = \left(\frac{E_p}{m}, 0, 0, \frac{p_p}{m}\right) \qquad e_3 = \left(\cos\alpha\frac{p_p}{m}, -\sin\alpha, 0, \cos\alpha\frac{E_p}{m}\right) \qquad \text{from } p, q$$

$$e_1 = \left(\sin\alpha \frac{p_p}{m}, \cos\alpha, 0, \sin\alpha \frac{E_p}{m}\right) \qquad e_2 = (0, 0, 1, 0) \qquad \text{from } k, p, q$$

$$\sin \alpha = \frac{\gamma \sqrt{1 - y - \gamma^2 y^2 / 4}}{\sqrt{1 + \gamma^2}}$$
 "rotation angle" = $\mathcal{O}(\gamma)$

Represent p_h as expansion in basis vectors

$$p_{h}^{\mu} = \frac{m}{2} \frac{p_{h}^{+}}{p^{+}} (e_{0} + e_{3})^{\mu} + \frac{p^{+}p_{h}^{-}}{2m} (e_{0} - e_{3})^{\mu} + p_{h}^{x} e_{1}^{\mu} + p_{h}^{y} e_{2}^{\mu}$$
Basis vectors given
in detector frame

$$\frac{p_{h}^{+}}{p^{+}} = \zeta_{h} \qquad p^{+}p_{h}^{-} = \frac{M_{h}^{2} + p_{hT}^{2}}{\zeta_{h}}$$
Expansion coefficients
given in physics frame

given in physics frame

8

Example: Hadron LC momenta \leftrightarrow **pseudorapidity**

Read off x, y, z components of p_h in detector frame

$$p_h^z (\det) = \zeta_h p_p + \mathcal{O}(\gamma^2)$$

$$p_h^x (\det) = p_h^x + \frac{M_h^2 + p_{hT}^2 - \zeta_h^2 m^2}{2\zeta_h m} \gamma + \mathcal{O}(\gamma^2)$$

$$p_h^y (\det) = p_h^y$$

Here simplifications:

I) $p_p \gg m$ ultrarelativistic beam II) $Q \gg m$ leading powers

Compute pseudorapidity

$$|p_{hT}| (\det) = |p_{hT}| + A\gamma \cos \phi_h \qquad A = \frac{M_h^2 + p_{hT}^2 - \zeta_h^2 m^2}{2\zeta_h m}$$
$$\eta = -\ln \frac{|p_{hT}| (\det)}{2p_h^z (\det)} = -\ln \frac{|p_{hT}| + A\gamma \cos \phi_h}{2\zeta_h p_p} + \mathcal{O}(\gamma^2)$$

 ϕ_h dependent modulation caused by angle of *q*-vector relative to beam axis, power-suppressed $\mathcal{O}(\gamma)$

Example: $x_F \leftrightarrow$ pseudorapidity

Similarly: $x_F, p_{hT} \leftrightarrow$ pseudorapidity η

$$x_F = \frac{p_h^z}{p_h(\max)}$$
 in collinear frame $\mathbf{q} = -\mathbf{p}$

Use same basis vector technique

EIC Yellow Report (2021)

Far-forward processes

Far-forward processes with nuclei: Breakup/spectator tagging, coherent scattering

Exact geometry essential: Crossing angle, x-y asymmetry in detector and beam

Use variables centered on ion beam, e.g. θ_h, p_h

[Pseudorapidity centered on central detector axis becomes ambiguous]

Initial ion beam momentum uncertain: Beam divergence (optics - focusing) Beam emittance (beam - cooling) Crabbing kick uncertainty (longitudal position) → this workshop, EIC Yellow Report

Basis vector method very useful for: Analytic relations between variables Uncertainty propagation First studies: JLab LDRD 2014/15

Summary

- Natural basis vectors provide simple method for connecting variables in different frames without use of Lorentz transformations
- Many applications
 - Final-state hadrons in central region
 - Far-forward processes, esp. nuclear breakup, coherent scattering
 - Polarization in initial state
- Description to be provided in updated "Beam conditions" note