Tomography of light nuclei at an EIC

9-10 November 2022 ECT* (ITALY)

Deeply Virtual Compton Scattering off light nuclei: where do we stand?

Sara Fucini

November 9, 2022

European Research Council Established by the European Commission

The EMC effect

The nuclear medium modifies the structure of bound nucleons

Collinear information led to many models but not yet to a complete explanation (e.g., see Cloët et al. JPG (2018), for a recent report)

Q2: 50 Gev2

Deeply Virtual Compton Scattering off nuclei

• Exclusive electro-production of a real photon \rightarrow clean access to Generalized Parton Distributions

- Two DVCS channels in nuclei:
- ▶ Coherent channel → GPDs of the whole nucleus
- ▶ Incoherent channel → GPDs of the bound nucleon

GPDs from lattice QCD

- Transversity GPDs of the proton from lattice QCD (Alexandrou at al., arXiv:2108.10789 (2021))
- Pion generalized parton distribution from lattice QCD (Chen et al., NPB, 952 (2020))

Deconvolution from CFFs

- The deconvolution problem of DVCS, see Bertone et al., PRD 103 (2021)
- Global fit (Guidal et al., Rept. Prog. Phys. 76 (2013)) and local fit (Dupré et al., PRD 95.1 (2017))

GPDs from lattice QCD

- Transversity GPDs of the proton from lattice QCD (Alexandrou at al., arXiv:2108.10789 (2021))
- Pion generalized parton distribution from lattice QCD (Chen et al., NPB, 952 (2020))

Deconvolution from CFFs

- The deconvolution problem of DVCS, see Bertone et al., PRD 103 (2021)
- Global fit (Guidal et al., Rept. Prog. Phys. 76 (2013)) and local fit (Dupré et al., PRD 95.1 (2017))

All this concerns the free proton!

What about nuclei?

- Position-momentum structure of SRC for ⁴⁰Ca, ⁴⁸Ca, ¹²C (Cosyn et al. ,PLB 820 (2021))
- FSI in DIS off deuteron (Strikman et Weiss, PRC 57 (2018), transversity GPDs (Cosyn et al., PRD 98 (2018))
- NPLQCD collaboration (e.g., PRL 120 (2018)): nuclei with A<5 but unphysical q masses
- Phenomenological models for helium targets (ours or e.g. Liuti et al., PRC 72 (2005))

Incoherent DVCS off light nuclei

Incoherent DVCS off 4 He: S.F., S. Scopetta, M. Viviani, PRC(2021)-PRD(2021)

Incoherent DVCS off 4 He: S.F., S. Scopetta, M. Viviani, PRC(2021)-PRD(2021)

In impulse approximation, for the cross section we get

$$d\sigma_{Incoh}^{\pm} = \int_{exp} dE d\vec{p} \frac{p \cdot k}{p_0 |\vec{k}|} P^{4He}(\vec{p}, E) \qquad d\sigma_b^{\pm}(\vec{p}, E, K)$$

the DVCS cross section off a bound proton_

For the **BSA**

$$\begin{split} A_{LU}^{Incoh}(K) &= \frac{d^4\sigma^+ - d^4\sigma^-}{d^4\sigma^+ + d^4\sigma^-} \approx \frac{\mathcal{I}^{4He}(K)}{T_{BH}^{24He}(K)} = \frac{\int_{\tilde{K}} dE \, d\vec{p} \, P^{4He}(\vec{p}, E) \, g(\vec{p}, E, K) \, \mathcal{I}(\vec{p}, E, K)}{\int_{\tilde{K}} dE \, d\vec{p} \, P^{4He}(\vec{p}, E) \, g(\vec{p}, E, K) T_{BH}^2(\vec{p}, E, K)} \\ \bullet \, \mathcal{I}(\vec{p}, E, K) \propto \Im \mathcal{M}\mathcal{H}(\xi', \Delta^2) = H(\xi', \xi', \Delta^2) - H(-\xi', \xi', \Delta^2), \\ \text{the nucleon GPD } H \text{ is evaluated for } \xi' = \frac{\mathbf{Q}^2}{(\mathbf{p} + \mathbf{p}')(\mathbf{q_1} + \mathbf{q_2})} \end{split}$$

The nuclear ingredient

$$\begin{split} P_{N}^{A}(\vec{p},E) &= \sum_{f_{A-1}} \langle {}^{4}He|f_{A-1}; N\vec{p}\rangle \langle f_{A-1}; N\vec{p}|^{4}He\rangle \delta(E-E_{min}-\epsilon_{A-1}^{*}) \\ \xrightarrow{f_{A-1}} & P_{0}(\vec{p},E) + P_{1}(\vec{p},E) \approx n_{0}(\vec{p})\delta(E-E_{min}) + n_{1}(\vec{p})\delta(E-\bar{E}) \\ \xrightarrow{p} & A_{1} \\ \xrightarrow{f_{He}} & A_{1} \\ \xrightarrow{f_{He}} & A_{1} \\ \xrightarrow{f_{He}} & A_{1} \\ \xrightarrow{f_{He}} & A_{2} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

- the total momentum distribution is $n(p) \propto \int d\vec{r_1} d\vec{r'_1} e^{i\vec{p}\cdot(\vec{r_1}-\vec{r'_1})} \rho_1(\vec{r_1},\vec{r'_1})$
- the ground momentum distribution is $n_0(|\vec{p}|) = |a_0(|\vec{p}|)|^2$ with

$$a_0(|\vec{p}|) \approx \langle \Phi_{^3He/^3H} | \Phi_{^4He} \rangle .$$

- the excited momentum distribution is $\mathbf{n_1}(|\vec{p}|) = n(|\vec{p}|) n_0(|\vec{p}|)$
- n(p), $n_0(p)$ can be evaluated within the Av18 NN interaction (Wiringa et al., PRC (1995)) + UIX 3-body forces (Pudliner et al., PRL (1995))
- $P_1^{\text{our model}}(\vec{p}, E) = N(p) P_{exc}^{\text{Ciofi's model (PRC(1996))}}(\vec{p}, E)$

MESSAGE TO TAKE HOME

- Realistic calculations for light nuclei $A \leq 6$
- Many body calculation accounting for mean field potential for heavier nuclei

Incoherent DVCS: results

Our results compared with the data from EG6 collaboration at JLab (PRL 123 (2019)).

Nuclear effects in A^{Incoh}: S.F., S. Scopetta, M. Viviani PRC(2021)

2

What kind of nuclear effects are we describing? Let us consider the super ratio

$$A_{LU}^{Incoh}/A_{LU}^p = \frac{\mathcal{I}^{4}{}^{He}}{\mathcal{I}{}^{p}} \frac{T_{BH}^{2}}{T_{BH}^{2}} = \frac{R_{\mathcal{I}}}{R_{BH}} \propto \frac{(nucl.eff.)_{\mathcal{I}}}{(nucl.eff.)_{BH}} \,,$$

Is this behaviour due to a modification of the parton structure?

Nuclear effects in A^{Incoh}: S.F., S. Scopetta, M. Viviani PRC(2021)

What kind of nuclear effects are we describing? Let us consider the super ratio

$$A_{LU}^{Incoh}/A_{LU}^p = \frac{\mathcal{I}^{^4He}}{\mathcal{I}^{\,p}} \frac{T_{BH}^{2\,p}}{T_{BH}^{2\,^4He}} = \frac{R_{\mathcal{I}}}{R_{BH}} \propto \frac{(nucl.eff.)_{\mathcal{I}}}{(nucl.eff.)_{BH}} \,,$$

Is this behaviour due to a modification of the parton structure?

- the ratio A_{LU}^{Incoh}/A_{LU}^p for "pointlike" protons
- the "EMC-like" trend

$$R_{EMC-like} = \frac{1}{\mathcal{N}} \frac{\int_{\tilde{K}} dE \, d\vec{p} \, P^{^{4}He}(\vec{p}, E) \, \Im m \, \mathcal{H}(\xi', \Delta^2)}{\Im m \, \mathcal{H}(\xi, \Delta^2)}$$

Incoherent DVCS off unpolarized deuteron

• The nuclear ingredient is easier than for ⁴He: just **momentum distribution** (totally realistic within AV18 potential!)

•
$$\Delta^2_{vertex} = (p_{final} - p_{inner})^2 \implies p_{final} \text{ fixed with } \Delta^2_{exp} \Big|_{\substack{p_{initial}}^{rest}} \dot{a} \text{ la CLAS}$$

•
$$\Delta^2_{vertex} = (p_{final} - p_{rest})^2 \implies p_{final}$$
 fixed with $\Delta^2_{exp} \Big|_{photons}$ à la HERMES

• Experimental data for pDVCS and nDVCS are coming out at JLab using a 12 GeV electron beam.

Analysis under review, see e.g.

https://indico.cern.ch/event/1104299/contributions/5055280/ attachments/2536704/4365938/EuNPC2022_ajh.pdf.

Within our model we can deliver

- Predictions for pDVCS
- Preliminary results for nDVCS

Stay tuned for the comparison with CLAS data!

nDVCS: preliminary results

$$\mathcal{I}(\vec{p}, E, K) \propto Im \left[F_1(\Delta^2) \mathcal{H}(\xi', \Delta^2) - F_2(\Delta^2) \mathcal{E}(\xi', \Delta^2) \left(\frac{\Delta^2}{4M^2} + \frac{\xi'(\Delta^2 - 2M^2 + 2p \cdot p'))}{4M^2} \right) \right]$$

Considering the DD formalism for the GPD E from GK EPJ (2008)

$$e_{val}(x) \propto B(\beta_{val})(1-x)^{\beta_{val}}$$

 $e_s(x) \propto N_s(1-x)^{\beta_s}$

In variant 1-6 $\beta_{val, s}$ and N_s are varied to have still a reasonabe fit to the Pauli FF.

9/14

Incoherent on the deuteron: preliminary results

PDVCS

- Mild nuclear effects \implies scan in x_B for Δ^2 fixed and viceversa
- The contribution $\propto F_2 \mathcal{E}$ is crucial in nDVCS
- Better understanding of the flipped sign for pDVCS and nDVCS \implies insights on the the value of $J_{u,\,d}$
- Include possible FSI

Toward the tomography of ${}^{4}\mathrm{He}$ at the EIC

TOPEG: a Monte Carlo event generator for DVCS off light nuclei

x-section of coherent DVCS off ⁴He (S. F., S.Scopetta, M. Viviani, PRC 98 (2018))

$$\frac{d^4\sigma^{\lambda=\pm}}{dx_A dt dQ^2 d\phi} = \frac{\alpha^3 x_A y^2}{8\pi Q^4 \sqrt{1+\epsilon^2}} \frac{|T_{BH}|^2 + |T_{DVCS}|^2 + I^{\lambda}_{BH-DVCS}}{e^6}$$

$$T_{BH}^2 \propto F_A^2(t); \ T_{DVCS}^2 \propto \Im m \mathcal{H}^2 + \Re e \mathcal{H}^2; \ I_{BH-DVCS}^\lambda \propto F_A(t) \Im m \mathcal{H}$$
$$\mathcal{H}_q(\xi, t) = \int_0^1 dx \left(\frac{1}{x+\xi} + \frac{1}{x-\xi}\right) \left(\mathbf{H}_{\mathbf{q}}^{\mathbf{A}}(\mathbf{x}, \xi, \mathbf{t}) - \mathbf{H}_{\mathbf{q}}^{\mathbf{A}}(\mathbf{x}, -\xi, \mathbf{t})\right)$$

$$\mathbf{H}_{\mathbf{q}}^{\mathbf{A}}(\mathbf{x},\xi,\boldsymbol{\Delta^{2}}) \approx \sum_{N} \int \frac{dz}{z} \int dE d\vec{p} P_{N}^{A}(\vec{p},\vec{p}+\vec{\Delta},E) H_{q}^{N}\left(\frac{x}{z},\frac{\xi}{z},\Delta^{2}\right) \delta\left(z-\frac{\vec{p}^{+}}{\vec{p}^{+}}\right)$$
11/14

Version 1.0 released:

JLab

- · Check for the events generated at the kinematics with 6 GeV electron beam
- Good also for CLAS 12 GeV

► EIC

- · We generated events for the three electron helium-4 beam energy configurations
 - (5x41) GeV
 - (10x110) GeV
 - (18x110) GeV
- These latter results are included in the EIC Yellow Report (Nucl.Phys.A 1026 (2022))
 - the NUCLEAR DVCS can be observed at the EIC
 - TOPEG is a flexible tool to do the GPDs phenomenology
 - Soon arriving the version 1.1

Toward the nuclear tomography

Promising results!!

Our assumptions in doing the fit of the pseudo-data generated with TOPEG

- using the leading order formalism
- 3 different minimum transverse momenta for the Roman pots
- 10 fb⁻¹ integrated luminosity

We conclude that

- · the error is highly correlated to the measurement threshold of the Roman Pots
- · the density profile extraction is anyway doable

► Incoherent DVCS off ⁴He and ²H

- New formalism for ⁴He and the deuteron (in progress)
- Insights for the generalized EMC effect
- Introduction of some final state interaction effects (TBD)
- Study of the A- **dependence** of the average BSA for light nuclei (see *Dupré's talk*)

► TOPEG

- For the **coherent DVCS** off ⁴He
 - Nuclear DVCS can be performed at the EIC: toward the 3D imaging of nuclei
 - Constrain the calculation of the nuclear spectral function with the help of tagged measuments
- TOPEG is a suitable phenomenological tool to study light nuclei at the EIC.

Backup slides

Incoherent channel

- · Nuclear part: momentum distribution (it is exact: instant form or light front)
- · Key study also for heavier nuclei

Coherent channel

- 9 quark GPDs
- Formalism already developed and established (see Cano, Pire EPJA (2004))
- there is a connection between the light-cone wave function of the deuteron (helicity amplitudes → GPDs) in terms of light-cone coordinates and the ordinary (instant-form) relativistic wave function that fulfills a Schrödinger type equation (we can update the potential)
- · we can compute

$$\chi(\vec{k};\mu_{1},\mu_{2}) = \sum_{L;m_{L};m_{S}} \langle \frac{1}{2} \frac{1}{2} 1 | \mu_{1},\mu_{2},m_{S} \rangle \langle L11 | m_{L}m_{S}\lambda \rangle Y_{L,M_{L}}(\hat{k}) u_{L}(k)$$

with AV18 and perform a Melosh rotation to relate the spin in the light-front with the spin in the instant-form frame of the dynamics

(18 x 110) GeV: analysis

Is it possible to study the region around the first diffraction minimum in the ^4He FF (t_{dif.min} = -0.48 GeV²)? YES, we can!

- 99%+ electrons and photons are in the acceptance of the detector matrix
- · This is true for all energy configurations

Electrons and photons appear in easily accessible kinematics according to the detector matrix requirements (exceptions for small angles photons)

- · Acceptance at low -t will be cut passing through the detectors
 - t_{min} is set by the detector features
 - t_{max} is fixed by the luminosity (billion of events to generate)

From left to right, the kinematical distributions of the final particles: electron, photon and ⁴He

From Hobart's talk

https://indico.cern.ch/event/1104299/contributions/5055280/ attachments/2536704/4365938/EuNPC2022_ajh.pdf

