EICUG: Second Detector Working Group 30 September 2022

DVCS on Nuclei with a 2nd EIC Detector

Charles Hyde Old Dominion University

Ostello di Trento ("Trint"), watercolour, 19.8 x 27.7, painted by A. Dürer on his wayback from Venice (1405)

British Museum, Londor

DVCS Bin Migration Comparison

- α(e,e'γ)α:
 - (10 GeV)x(137.5 GeV/u)
 - $Q^2 \in [12,36] \text{ GeV}^2$
 - Orsay-Perugia (TOPEG) Generator
 - PbWO₄: $1\% \oplus \frac{2\%}{\sqrt{E}} \oplus \frac{1\%}{E}$
 - EMCal: $\frac{12\%}{\sqrt{E}}$
- Bin Migration grows with x_B and strongly depends on EMCal resolution.

DVCS on Nuclei at EIC

Coherent DVCS on light nuclei. Unfolding the Bin Migration

TOPEG event generator DELPHES FastMC

- Systematic uncertainty in reconstructed cross section estimated by varying PbWO₄ resolution event-byevent ±10%
- Error bars from uncertainty of bin-migration remain small.

Comment on Diffractive Minima in Nuclear

- Sharp diffractive minima in (e,e') Form Factors
 - In heavy nuclei, these minima are smoothed out in the (e,e') cross section by Coulomb effects in the Dirac Equation (DWBA, not PWBA).
- DVCS & BH amplitudes interfere in Z(e,e'γ)Z
 - Even for light nuclei, the diffractive patterns have different minima: Charge distribution \neq Mass distribution: $q - \overline{q} \neq q + \overline{q}$
 - Diffractive minima will wash out in phi-averaged cross sections.
 - Diffractive minima of both BH & DVCS amplitudes should be visible in DVCS*BH interference terms, such as electron helicity difference $\overrightarrow{d\sigma} - \overleftarrow{d\sigma}$

Example Azimuthal Distributions: $\alpha(e, e'\lambda)\alpha$

- (10 GeV)x(137.5 GeV/u)
- $y \in [0.62, 0.90]$
- $\langle x_B \rangle \approx 0.004$
- Projected counts at 10/fb/nucleus
- Error bars are MC, (not data) statistics!
- Fits are simple Fourier, not |BH+DVCS|²

9/30/2022

Example Azimuthal Distributions: $\alpha(e, e'\lambda)\alpha$

- (10 GeV)x(137.5 GeV/u)
- $y \in [0.06, 0.32]$
- $\langle x_B \rangle \approx 0.012$
- Projected counts at 10/fb/nucleus
- Error bars are MC, (not data) statistics!
- Fits are simple Fourier, not |BH+DVCS|²

9/30/2022

• $\langle x_B \rangle \approx 0.012$

9/30/2022

- Projected counts at
- Error bars are MC, (not data)
- Fits are simple Fourier, not

Next Steps

- Extend MC & Simulation to higher $-\Delta^2$
 - Cross sections shown are large!
- Simulate |BH|² to obtain DVCS signal(s)
- Figure out how to include Real part of Compton Form Factor in a finite amount of computation time (<1 week on JLab farm)
- Three energy settings: 10x137.5, 10x100, 5x41 GeV²
 - Higher x_B at lower s and/or higher Q^2 ?
 - Evaluate separation of $|DVCS|^2$ and $\mathcal{R}e[DVCS^*BH]$ via *s*-dependence

Conclusions

- High Resolution EMCal in full range $\eta < 0$ is an enabling technology for nuclear DVCS
 - Combining DVCS and Deep Virtual ϕ or J/ ψ allows separation of gluon and quark distributions in light nuclei
- Need event generators for heavier nuclei (e.g. ¹⁶O), even approximate