Measurement of the ${}^{22}Ne + \alpha$ reactions at LUNA MV ECT* - Trento - KRINA

INFN Naples University of Naples "Federico II"

A. Best (UniNa/INFN-Na)

 $^{22}Ne+\alpha$ at LUNA M

December 14, 2022

b 4 T b

Ancient history

THERMAL PULSES; *p*-CAPTURE, α-CAPTURE, *s*-PROCESS NUCLEOSYNTHESIS; AND CONVECTIVE MIXING IN A STAR OF INTERMEDIATE MASS*

ICKO IBEN, JR.

University of Illinois, Champaign-Urbana Received 1974 June 17; revised 1974 September 16

NEON-22 AS A NEUTRON SOURCE, LIGHT ELEMENTS AS MODULATORS, AND *s*-PROCESS NUCLEOSYNTHESIS IN A THERMALLY PULSING STAR*

ICKO IBEN, JR. University of Illinois, Champaign–Urbana Received 1974 August 21

"A very warm thanks to the referee of the first version of this paper for insisting that: not only can ²²Ne not act as a significant source of neutrons but, even if it does, both it and its progeny will use up all of the emitted neutrons, leaving none for the production of heavier s-process elements."

22 Ne(α , [n, γ]) 25,26 Mg physics case: production of the heavy elements, and more

Figure 10. The same as Fig. 8, but for the *s*-path region close to the *s*-only isotope ${}^{96}Mo$ (red rectangle). While ${}^{93}Zr$ is practically stable on the time-scale of the *s*-process, ${}^{95}Zr$ acts as the main branching point.

- Main source for weak s process
- Effect on branch points in main s
- Formation of early solar system cosmic grains in meteorites
- Mg isotope observations in stellar atmospheres
- We need both n and γ channels
- S. Cristallo's talk

A D N A B N A B N A B N

22 Ne(α , n) 25 Mg cross section

R matrix courtesy of R. J. deBoer, University of Notre Dame/JINA

- Capabilities on surface exhausted (20 years since last direct data)
- Current lowest rate 2 reactions/minute
- Covers one resonance close to Gamow
- 300 keV of upper limits...
- Many states that can contribute
- Need improvement by more than 2 orders of magnitude

Low-energy states

Table 1. Properties of states in ²⁶Mg between the neutron threshold and the 832 keV resonance. Values taken from [15], except for the last row, which is from [14].

E _n [keV]	E _x [keV]	E _α [keV]	Jπ	Neutron width [eV]
19.92	11112	589	2+	2095
72.82	11163	649	2+	5310
79.23	11169	656	3-	1940
187.95	11274	779	2+	410
194.01	11280	786	3-	1810
243.98	11328	843 ?	?	171
235 [14]	11319	832	2+	Total width = 250 eV

- nTOF study of energies and neutron widths (Massimi et al. PLB 768 (2017), 1)
- 832 keV state still a bit unclear w.r.t. n/α channel, energy
- No α widths are known
- Many indirect studies, but discrepancies (Adsley, Talwar, Ota etc)

< □ > < A >

Beam-induced backgrounds

Q-values:

- ▶ ²²Ne = 478 keV
- \blacktriangleright ¹⁰B = 1059 keV
- ▶ $^{11}\mathrm{B} = 158~\mathrm{keV}$
- ▶ $^{13}\text{C} = 2216 \text{ keV}$

What to do?

- Drastic background reduction
- Large beam current increase
- Suppression/identification of beam-induced background

⇒ ▶

Advantages of going underground

- Direct low-energy measurements limited by natural background
- $\bullet~\text{LNGS}\approx3400$ m.w.e. underneath Gran Sasso mountain chain
- Cosmic-ray induced neutrons efficiently shielded against
- Residual flux from (α, n) and fission in rocks
- $\bullet\,$ Neutron flux underground suppressed by ≈ 1000 w.r.t. surface

Background reduction

- Deep underground @ LNGS: Suppression of (thermal) neutron background by > 1000
- Additional clean detector material & PSD
- Extended gas target with enriched ²²Ne
- Coincidence/Anticoincidence
- Total background < 1 count/hour

A. Best (UniNa/INFN-Na)

 22 Ne+ α at LUNA MV

Top-of-the-line accelerator

- Specifically designed to fit nuclear astrophysics needs
- Reaction rates of < 1/hour:
 - Beam current (\approx 5× Jaeger et al.): push signal-noise ratio
 - Current stability: measurements of the order of weeks
 - Energy stability: must not drift over long periods
- 350 3500 kV: cover entire astrophysical energy range
- Installed underground, in final acceptance phase

A. Best (UniNa/INFN-Na)

 22 Ne+ α at LUNA MV

SHADES - detector array

- Need to measure very low event rates
- Require some sort of energy sensitivity
- Hybrid detector array: ³He counters & liquid scintillator
- High efficiency + energy sensitive
- Prototype built & tested

Goals

- Cover from threshold to 3.5 MeV
- > two orders of magnitude improvement
- Comprehensive *R* matrix analysis
- Perform nucleosynthesis calculations with new data

Status I

- 5(+1)-year, since February 2020
- Target+detector assembled
- Target characterisation at CIRCE started
- DAQ development underway
- Assembly at LNGS 2023
- Underground campaign at LUNA MV
- Data evaluation and astrophysical impact - collaboration with M. Pignatari/Budapest

Status II

• Detector background investigated - publication drafted

• Detector characterisation at FRANZ - under analysis

・ロト ・四ト ・ヨト ・ヨト

э

$^{22}{\rm Ne}(lpha,\gamma)^{26}{\rm Mg}$ cross section

- Direct data Wolke et al. 1989 (!)
- Some remeaseurements of 830 keV res (TUNL)
- CASPAR + LUNA few new upper limits
- Vast terra incognita to explore

EAS γ Experimental and Astrophysical Study of ${}^{22}Ne(\alpha, \gamma){}^{26}Mg$

- MUR project started 1. December 2022 4 years
- Synergize with ERC setup
- Small modifications to target
- High-efficiency γ -detection array
- Shielding under investigation
- Map out cross section of (α, γ) channel
- O. Straniero + astro postdoc for stellar analysis

 $^{22}Ne+\alpha$ at LUNA M

Summary + Outlook

- Steady influx of indirect data some cross sections would be nice
- Push direct cross section towards Gamow energy with SHADES and EAS γ
- Installation in 2023, data taking 2023-2024 (n channel)
- Wait for exciting (?) first news in 2025

C. Ananna, A. Best, G. Imbriani, A. di Leva, D. Mercogliano, M. Junker, M. Pignatari, D. Rapagnani, O. Straniero + ???