

Binding energy studies for nuclear astrophysics

Maxime Mougeot University of Jyväskylä

KRINA Workshop 2022 - ECT* Trento – 12 December 2022

Outline

- Introduction :ISOLTRAP@ISOLDE@CERN
- Neutron-rich Cadmium isotopes
- Neutron-deficient Indium isotopes
- Projects at IGISOL/University of Jyväskylä
- Conclusion

INTRODUCTION

ISOLDE@CERN

ISOLTRAP@ISOLDE

The Penning trap

Important relation : $\nu_c = \nu_+ + \nu_- = \frac{q\nu}{2\pi m_{ion}}$

The Penning trap

Important relation : $\nu_c = \nu_+ + \nu_- =$

Where is the Ion of Interest?

00

The MRToF-MS

KRINA Workshop 2022 - Trento

The ToF-ICR technique

Neutron-rich Cadmium isotopes

r-process

- neutron capture
- photodisintegration (γ, n)
- **β-decay**

collapse supernova, n-star merger, ...)

- **High temperatures: GK**
- Densities ~ 300 g/cm³
- Timescales ~ ms-µs

Slide courtesy J. Karthein

Strength of N = 82 gap ?

D. Atanasov *et al.*, Phys. Rev. Lett. **115**, 232501 (2015)

12 December 2022

N=82

Impact on the abundance pattern

• Neutron star mergers scenario :

• Core-collapse supernova scenario :

D. Atanasov et al., Phys. Rev. Lett. 115, 232501 (2015).

A > 130 isotopes

- Confirms previous MRToF result.
- Three-fold improvement of the uncertainty.

- Clean spectrum
- Unambiguously identified
- First mass measurement !

V. Manea, J. Karthein et al., Phys. Rev. Lett. 124, 092502 (2020)

r-process impact?

Courtesy V. Manea, A. Arcones

 R-process simulations are not specifically sensitive to the new masses –> fission recycling

12 December 2022

KRINA Workshop 2022 - Trento

Strength of N = 82 gap ?

 $\Delta_{2n}(N,Z) = S_{2n}(N,Z) - S_{2n}(N+2,Z)$

What about A < 130?

Recently measure at ISOLTRAP N=82

^{127,129}Cd : Isomeric separation

Recently measured at ISOLTRAP N=82

^{127,129}Cd : Isomeric separation

Recently measured at ISOLTRAP N=82

^{129g,m}Cd isomeric separation

- Resolving power > 10^6 in ~ 100 ms
- ^{129m}Cd excitation energy measured for the first time
- COLLAPS: ratio $(11/2^{-})/(3/2^{+}) = 2.4(2)$
- ISOLTRAP: ratio $(11/2^{-})/(3/2^{+}) = 2.2(2)$

D. Yordanov *et al.*, Phys. Rev. Lett. **110**, 192501 (2013)
D. Atanasov *et al.*, Phys. Rev. Lett. **115**, 232501 (2015).

V. Manea, J. Karthein *et al.*, Phys. Rev. Lett. **124**, 092502 (2020)

Technique of particular interest for astromer studies -> G. W. Misch *et al.*, Astron. Journ. Lett. **913 1** (2021)

12 December 2022

KRINA Workshop 2022 - Trento

^{127-129g,m}Cd : State inversion

V. Manea, J. Karthein et al., Phys. Rev. Lett. 124, 092502 (2020)

Evolution of the *N*=82 gap for *Z*<50

V. Manea, J. Karthein et al., Phys. Rev. Lett. 124, 092502 (2020)

Neutron-deficient Indium isotopes

The ¹⁰⁰Sn region

	<i>Z</i> =50	Sn 99 5.0 ms	Sn 100 1.1 s	Sn 101 ^{3 s}	Sn 102 ^{4.6 s}	Sn 103 7 s	Sn 104 ^{20.8 s}
	In 97	In 98	In 99	In 100	In 101	In 102	In 103
	5.0 ms	1.7 s 45 ms	1.0 s 3.1 s	5.9 s	10 s 15.1 s	22 s	34 s 1.000 m
Cd 95	Cd 96	Cd 97	Cd 98	Cd 99	Cd 100	Cd 101	Cd 102
5.0 ms	1.0 s	2.8 s	9.2 s	^{16 s}	49.1 s	1.36 m	5.5 m

N=50

Opportunistic mass measurement

	<i>Z</i> =50	Sn 99 5.0 ms	Sn 100 ^{1.1 s}	Sn 101 ^{3 s}	Sn 102 ^{4.6 s}	Sn 103 7 s	Sn 104 ^{20.8 s}
	In 97	In 98	In 99	In 100	In 101	In 102	In 103
	5.0 ms	1.7 s 45 ms	1.0 s 3.1 s	5.9 s	10 s 15.1 s	22 s	34 s 1.000 m
Cd 95	Cd 96	Cd 97	Cd 98	Cd 99	Cd 100	Cd 101	Cd 102
5.0 ms	1.0 s	2.8 s	9.2 s	^{16 s}	^{49.1 s}	1.36 m	5.5 m

N=50

• 3 isotopes in 3 days with 3 different techniques ! Recently measured at ISOLTRAP

Evolution of the *N*=82 gap for *Z*<50

	<i>Z</i> =50	Sn 99 5.0 ms	Sn 100 1.1 s	Sn 101 ^{3 s}	Sn 102 _{4.6 s}	Sn 103 7 s	Sn 104 ^{20.8 s}
	In 97	In 98	In 99	In 100	In 101	In 102	In 103
	5.0 ms	1.7 s 45 ms	1.0 s 3.1 s	5.8 s	10 s 15.1 s	22 s	34 s 1.000 m
Cd 95	Cd 96	Cd 97	Cd 98	Cd 99	Cd 100	Cd 101	Cd 102
5.0 ms	1.0 s	2.8 s	9.2 s	16 s	49.1 s	1.36 m	5.5 m

N=50

• 3 isotopes in 3 days with 3 different techniques ! Recently measured at ISOLTRAP

¹⁰¹In PI-ICR separation

- Resolving power >10⁶ in $t_{acc} = 65ms$
- Uncertainty < 10 keV
- Agrees with and improve on previous measurements

X. Xu *et al.*, Phys. Rev. C 100(5), 051303(R) (2019) C. Hornung *et al.*, Phys. lett. B 802, 135200 (2020) M. Mougeot et al., Nature Physics 17, 1099–1103 (2021)

⁹⁹In MRToF-MS measurement

M. Mougeot et al., Nature Physics 17, 1099–1103 (2021)

¹⁰⁰In ToF-ICR measurement

1.1 s

In 99

3.1 s

1.0 s

3 s

ln 100

5.9 s

- ~ keV precision (90 times more precise)
- 2 resonances
- PI-ICR study -> No long lived isomers
- Direct link to ¹⁰⁰Sn !

M. Mougeot et al., Nature Physics 17, 1099–1103 (2021)

Journey towards N = Z = 50

• Important input for phenomenological shell-model

A closer look at ¹⁰⁰Sn

M. Mougeot et al., Nature Physics 17, 1099–1103 (2021) C. B. Hinke *et al.*, Nature 486, 343 (2012) D. Lubos *et al.*, Phys. Rev. Lett. 122, 222502 (2019)

Testing *ab initio* theories

12 December 2022

KRINA Workshop 2022 - Trento

Impact on the rp-process:

Courtesy of Wei Jia Ong

The 2021 campaign

MR-ToF MS measurements of full neutron deficient indium chain

- 11 Ground states and 7 isomers for physics and systematic studies
- First isomeric separation of ^{99g.s,m}In

Unprecedented MR-ToF mass resolving power at ISOLTRAP enables measurements of isomers along the chain

L. Nies *et al*, in preparation

Perspectives

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 771036 (ERC CoG MAIDEN).

Perspectives: IGISOL-4

The IGISOL production technique

Future campaigns at IGISOL 1/2

I284: Mass measurements in the vicinity of 78Ni for nuclear astrophysics and nuclear structure studies

In the vicinity of Z = 28 and N = 50 closed shells for

- 1. Study of abundances origin
 - Understanding the residual solar abundances associated to the *r*-process
 - Better constrain theoretical models with precise mass measurements
- 2. Nuclear structure studies
 - Is the Z = 28 shell gap modified for neutron rich nuclei?
 - Contradictory experimental observations \rightarrow possible shape coexistence
 - Subshell gap N = 40 exhibits doubly magic features in ⁶⁸Ni, but not in ⁶⁹Co \rightarrow shape coexistence ?
 - Nuclear mass can provide an experimental estimation of the gaps

L. Canete et al., Phys. Rev. C **101**, 041304 (2020) S. Giraud, et al., PLB, **833**, 137309 (2022)

Project lead by A. De Roubin Slide courtesy of A. De Roubin

12 December 2022

KRINA Workshop 2022 - Trento

Utilization of two experimental techniques:

- The double Penning traps with the **PI**-**ICR** technique for high precision measurements
- The new **MR-TOF MS** for beam purification and fast mass measurements

11 allocated days:

- First part from 17th to 23rd of October this year
- Second part during Spring next year, to be schedule

Future campaigns at IGISOL 2/2

Nov 2021, SW Si, 270mbar, 33pnA, 62min, no foils, ¹³⁶Xe+²⁰⁹Bi

Counts / 32 keV

Conclusion

Summary

High-precision mass measurements for nuclear astrophysics:

- Key to guide nuclear astrophysical modelling
- Particularly challenging measurements but ion manipulation techniques always more performant
- New projects/upgrades at existing facilites (MNT at IGISOL, EPIC at ISOLDE)

Acknowledgement:

ENSAR/ ENSAR2

Neutron-rich Copper isotopes

The neighbouring of 78Ni?

• ⁷⁸Ni seems to have a doubly-magic character but shell-model requires cross-shell excitations (proton and neutron) to describe the properties of neighbouring nuclides.

F. Nowacki, A. Poves, E. Caurier, B. Bounthong, Phys. Rev. Lett. 117, 272501 (2016).

Mass Measurement of 75-79Cu

• Masses of ⁷⁵⁻⁷⁸Cu were determined with the precision Penning trap, of ^{78,79}Cu with the MR-TOF MS.

A glimpse at the nature of 78Ni

• The trend of S_{2N} in the copper chain before N = 50 behaves as if we are approaching a doubly-magic ⁷⁸Ni.

Is 79Cu present in Neutron Star Crust ?

