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17O+p & 26Al+p REACTIONS IN H-BURNING



AGB STARS: A VERY BRIEF INTRODUCTION

Molecular 
Cloud

Meteorite

Presolar grains

Despite their low masses LMS 
are so numerous to 
contribute for 75% to the 
total mass return from stars 
to the ISM (Sedlmayr 1994);

dysprosium, europium, tungsten, and lead. Refractory elements,
such as aluminum, titanium, vanadium, and zirconium, are
believed to have condensed into SiC (Lodders and Fegley,
1995, 1997, 1999). However, Verchovsky and coworkers
(Verchovsky et al., 2004; Verchovsky and Wright, 2004) argued
on the basis of the grain-size dependence of elemental concen-
trations that implantation played amajor role not only for noble
gases but also for relatively refractory elements, such as strontium
and barium. These authors identified two components with
different implantation energies: the low-energy component is
implanted from the stellar wind and has the composition of
the AGB envelope; the high-energy component is implanted

during the planetary nebula phase from the hot remaining
white dwarf star and has the composition of helium-shell mate-
rial. The 134Xe/130Xe ratio found in the grains confirms their
conclusion that most s-process xenon in SiC originated in the
envelope (Pignatari et al., 2004a).

Carbon, nitrogen, and silicon isotopic, as well as inferred
26Al/27Al ratios in a large number of individual grains
(Figures 3–5), have led to the classification into different popu-
lations (Hoppe and Ott, 1997): mainstream grains (!93% of
the total), minor subtypes AB, C, X, Y, Z, and nova grains. Most
of presolar SiC is believed to have originated from carbon stars,
late-type stars of low mass (1–3 M") in the thermally pulsing
(TP) asymptotic giant branch (AGB) phase of evolution (Iben
and Renzini, 1983). Dust from such stars has been proposed
already one decade prior to identification of SiC to be a minor
constituent of primitive meteorites (Clayton, 1983a; Clayton
and Ward, 1978; Srinivasan and Anders, 1978). Several pieces
of evidence point to such an origin. Mainstream grains have
12C/13C ratios similar to those found in carbon stars (Figure 6),
which are considered to be the most prolific injectors of carbo-
naceous dust grains into the ISM (Ferrarotti and Gail, 2006; Gail
et al., 2009; Tielens, 1990).Many carbon stars show the 11.3 mm
emission feature typical of SiC (Speck et al., 1997; Treffers and
Cohen, 1974). Finally, AGB stars are believed to be the main
source of the s-process (slow neutron-capture nucleosynthesis)
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Figure 3 Nitrogen and carbon isotopic ratios of individual presolar SiC
grains. Because rare grain types were located by automatic ion imaging,
the numbers of grains of different types in the plot do not correspond to
their abundances in the meteorites; these abundances are given in the
legend. The grain plotted as a question mark in this figure and in
Figures 4 and 5 has both nova and SN signatures (Nittler and Hoppe,
2005). The analysis of solar wind implanted into Genesis samples
showed that the Sun’s nitrogen isotopic ratio is different from the
terrestrial ratio (Marty et al., 2011). Both are indicated in the figure.
Source: Presolar database (Hynes and Gyngard, 2009).
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Figure 2 Secondary electron micrographs of (a) presolar SiC, (b)
presolar graphite (cauliflower type), and (c) presolar graphite (onion
type). Photographs courtesy of Sachiko Amari and Scott Messenger.
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dysprosium, europium, tungsten, and lead. Refractory elements,
such as aluminum, titanium, vanadium, and zirconium, are
believed to have condensed into SiC (Lodders and Fegley,
1995, 1997, 1999). However, Verchovsky and coworkers
(Verchovsky et al., 2004; Verchovsky and Wright, 2004) argued
on the basis of the grain-size dependence of elemental concen-
trations that implantation played amajor role not only for noble
gases but also for relatively refractory elements, such as strontium
and barium. These authors identified two components with
different implantation energies: the low-energy component is
implanted from the stellar wind and has the composition of
the AGB envelope; the high-energy component is implanted

during the planetary nebula phase from the hot remaining
white dwarf star and has the composition of helium-shell mate-
rial. The 134Xe/130Xe ratio found in the grains confirms their
conclusion that most s-process xenon in SiC originated in the
envelope (Pignatari et al., 2004a).

Carbon, nitrogen, and silicon isotopic, as well as inferred
26Al/27Al ratios in a large number of individual grains
(Figures 3–5), have led to the classification into different popu-
lations (Hoppe and Ott, 1997): mainstream grains (!93% of
the total), minor subtypes AB, C, X, Y, Z, and nova grains. Most
of presolar SiC is believed to have originated from carbon stars,
late-type stars of low mass (1–3 M") in the thermally pulsing
(TP) asymptotic giant branch (AGB) phase of evolution (Iben
and Renzini, 1983). Dust from such stars has been proposed
already one decade prior to identification of SiC to be a minor
constituent of primitive meteorites (Clayton, 1983a; Clayton
and Ward, 1978; Srinivasan and Anders, 1978). Several pieces
of evidence point to such an origin. Mainstream grains have
12C/13C ratios similar to those found in carbon stars (Figure 6),
which are considered to be the most prolific injectors of carbo-
naceous dust grains into the ISM (Ferrarotti and Gail, 2006; Gail
et al., 2009; Tielens, 1990).Many carbon stars show the 11.3 mm
emission feature typical of SiC (Speck et al., 1997; Treffers and
Cohen, 1974). Finally, AGB stars are believed to be the main
source of the s-process (slow neutron-capture nucleosynthesis)
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Figure 3 Nitrogen and carbon isotopic ratios of individual presolar SiC
grains. Because rare grain types were located by automatic ion imaging,
the numbers of grains of different types in the plot do not correspond to
their abundances in the meteorites; these abundances are given in the
legend. The grain plotted as a question mark in this figure and in
Figures 4 and 5 has both nova and SN signatures (Nittler and Hoppe,
2005). The analysis of solar wind implanted into Genesis samples
showed that the Sun’s nitrogen isotopic ratio is different from the
terrestrial ratio (Marty et al., 2011). Both are indicated in the figure.
Source: Presolar database (Hynes and Gyngard, 2009).
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Figure 2 Secondary electron micrographs of (a) presolar SiC, (b)
presolar graphite (cauliflower type), and (c) presolar graphite (onion
type). Photographs courtesy of Sachiko Amari and Scott Messenger.

Presolar Grains 185

C/O≥1

4-10 3-10 2-10
O16O/17

5-10

4-10

3-10

2-10

O
16

O
/

18

Group 1

Group 2

Group 3

Group 4 C/O<1

Presolar grains from AGB stars



dysprosium, europium, tungsten, and lead. Refractory elements,
such as aluminum, titanium, vanadium, and zirconium, are
believed to have condensed into SiC (Lodders and Fegley,
1995, 1997, 1999). However, Verchovsky and coworkers
(Verchovsky et al., 2004; Verchovsky and Wright, 2004) argued
on the basis of the grain-size dependence of elemental concen-
trations that implantation played amajor role not only for noble
gases but also for relatively refractory elements, such as strontium
and barium. These authors identified two components with
different implantation energies: the low-energy component is
implanted from the stellar wind and has the composition of
the AGB envelope; the high-energy component is implanted

during the planetary nebula phase from the hot remaining
white dwarf star and has the composition of helium-shell mate-
rial. The 134Xe/130Xe ratio found in the grains confirms their
conclusion that most s-process xenon in SiC originated in the
envelope (Pignatari et al., 2004a).

Carbon, nitrogen, and silicon isotopic, as well as inferred
26Al/27Al ratios in a large number of individual grains
(Figures 3–5), have led to the classification into different popu-
lations (Hoppe and Ott, 1997): mainstream grains (!93% of
the total), minor subtypes AB, C, X, Y, Z, and nova grains. Most
of presolar SiC is believed to have originated from carbon stars,
late-type stars of low mass (1–3 M") in the thermally pulsing
(TP) asymptotic giant branch (AGB) phase of evolution (Iben
and Renzini, 1983). Dust from such stars has been proposed
already one decade prior to identification of SiC to be a minor
constituent of primitive meteorites (Clayton, 1983a; Clayton
and Ward, 1978; Srinivasan and Anders, 1978). Several pieces
of evidence point to such an origin. Mainstream grains have
12C/13C ratios similar to those found in carbon stars (Figure 6),
which are considered to be the most prolific injectors of carbo-
naceous dust grains into the ISM (Ferrarotti and Gail, 2006; Gail
et al., 2009; Tielens, 1990).Many carbon stars show the 11.3 mm
emission feature typical of SiC (Speck et al., 1997; Treffers and
Cohen, 1974). Finally, AGB stars are believed to be the main
source of the s-process (slow neutron-capture nucleosynthesis)
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Figure 3 Nitrogen and carbon isotopic ratios of individual presolar SiC
grains. Because rare grain types were located by automatic ion imaging,
the numbers of grains of different types in the plot do not correspond to
their abundances in the meteorites; these abundances are given in the
legend. The grain plotted as a question mark in this figure and in
Figures 4 and 5 has both nova and SN signatures (Nittler and Hoppe,
2005). The analysis of solar wind implanted into Genesis samples
showed that the Sun’s nitrogen isotopic ratio is different from the
terrestrial ratio (Marty et al., 2011). Both are indicated in the figure.
Source: Presolar database (Hynes and Gyngard, 2009).
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Figure 2 Secondary electron micrographs of (a) presolar SiC, (b)
presolar graphite (cauliflower type), and (c) presolar graphite (onion
type). Photographs courtesy of Sachiko Amari and Scott Messenger.
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Oxide grains of AGB origin: HBB or CBP?

Nollett et al. 2003

Iliadis et al 2008

Palmerini et al. 2011

Boothroyd, 
Sackmann &
Wasserburg 1995

SIF2015 S. Palmerini 6



Cool Bottom Process o Hot Bottom Burning
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THE MIXING MECHANISM WE ARE LOOKING HAS TO 
ACCOUNT FOR

1.  the formation of the 13C pocket,
whose resulting s-process nucleosynthesis reproduces 

the isotopic abundances in MS-SiC grains

2. a deep (non convective) mixing  accounting for the  large 
18O depletion and 26Al enrichment found in group 2 oxide 

grains
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dysprosium, europium, tungsten, and lead. Refractory elements,
such as aluminum, titanium, vanadium, and zirconium, are
believed to have condensed into SiC (Lodders and Fegley,
1995, 1997, 1999). However, Verchovsky and coworkers
(Verchovsky et al., 2004; Verchovsky and Wright, 2004) argued
on the basis of the grain-size dependence of elemental concen-
trations that implantation played amajor role not only for noble
gases but also for relatively refractory elements, such as strontium
and barium. These authors identified two components with
different implantation energies: the low-energy component is
implanted from the stellar wind and has the composition of
the AGB envelope; the high-energy component is implanted

during the planetary nebula phase from the hot remaining
white dwarf star and has the composition of helium-shell mate-
rial. The 134Xe/130Xe ratio found in the grains confirms their
conclusion that most s-process xenon in SiC originated in the
envelope (Pignatari et al., 2004a).

Carbon, nitrogen, and silicon isotopic, as well as inferred
26Al/27Al ratios in a large number of individual grains
(Figures 3–5), have led to the classification into different popu-
lations (Hoppe and Ott, 1997): mainstream grains (!93% of
the total), minor subtypes AB, C, X, Y, Z, and nova grains. Most
of presolar SiC is believed to have originated from carbon stars,
late-type stars of low mass (1–3 M") in the thermally pulsing
(TP) asymptotic giant branch (AGB) phase of evolution (Iben
and Renzini, 1983). Dust from such stars has been proposed
already one decade prior to identification of SiC to be a minor
constituent of primitive meteorites (Clayton, 1983a; Clayton
and Ward, 1978; Srinivasan and Anders, 1978). Several pieces
of evidence point to such an origin. Mainstream grains have
12C/13C ratios similar to those found in carbon stars (Figure 6),
which are considered to be the most prolific injectors of carbo-
naceous dust grains into the ISM (Ferrarotti and Gail, 2006; Gail
et al., 2009; Tielens, 1990).Many carbon stars show the 11.3 mm
emission feature typical of SiC (Speck et al., 1997; Treffers and
Cohen, 1974). Finally, AGB stars are believed to be the main
source of the s-process (slow neutron-capture nucleosynthesis)
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Figure 3 Nitrogen and carbon isotopic ratios of individual presolar SiC
grains. Because rare grain types were located by automatic ion imaging,
the numbers of grains of different types in the plot do not correspond to
their abundances in the meteorites; these abundances are given in the
legend. The grain plotted as a question mark in this figure and in
Figures 4 and 5 has both nova and SN signatures (Nittler and Hoppe,
2005). The analysis of solar wind implanted into Genesis samples
showed that the Sun’s nitrogen isotopic ratio is different from the
terrestrial ratio (Marty et al., 2011). Both are indicated in the figure.
Source: Presolar database (Hynes and Gyngard, 2009).
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Figure 2 Secondary electron micrographs of (a) presolar SiC, (b)
presolar graphite (cauliflower type), and (c) presolar graphite (onion
type). Photographs courtesy of Sachiko Amari and Scott Messenger.
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Cool Bottom Process, Bottom-up mixing or Hot Bottom Burning

Low mass AGB stars Low mass AGB stars Intermediate mass AGB stars
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Palmerini et al. MNRAS 467, 1193–1201 (2017)

1.5 M8 Z8
To

 th
e 

st
el

la
r s

ur
fa

ce

Convective envelope

C-O core

TDU

Thermal 
pulse

13C pocket

H-burning sh
ell

FROM THE MHD MODEL 
BY NUCCI & BUSSO 2014 

(APJ,787,141 2014)



From CBP to a Bottom-up mixing (MHD 
and advective) in low mass stars
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From CBP to a Bottom-up mixing (MHD 
and advective) in low mass stars
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17O(p,α)14N  resonances relevant for Astrophysics

wg (eV) Bruno et al. 
2016

Sergi et al.2015
THM 

Iliadis et al. 
2010 NACRE

65 keV 10.0±1.1·10-9 3.4 ± 0.6 10-9 4.7±0.8·10-9 5.5+1.8
-1.0 ·10-9

183 keV 1.66 ± 0.1 10-3 1.16 ± 0.1 10-3 1.66 ± 0.1 10-3 5.8+5.2
-5.8 ·10-5

17O(p,g)18F  resonances relevant for Astrophysics

wg (eV) Piatti NPAX
Ciani NICXVI

Buckner et 
al 2015

Sergi et al.2015
*scaled Iliadis et al. 2010

65 keV 7.8 ± 0.8 10-11 1.6 ± 0.3·10-11 eV 1.18 ± 0.22 10-11 1.64 ±0.28·10-11

At  H-burning temperatures the (p,a) channel 
dominates, being its rate  up to 2 order of 
magnitude  larger than the (p,g) one

17O(p,a)14N
Ciani et. al 2016 

Sergi et. al 2015 
Sergi et. al 2021 



Grains vs B-UP and Grains vs HBB
…of low mass with BUP mixing and 17O(p,a)14N 
rate by Sergi et al 2015

…of intemediate mass with HBB and 17O(p,a)14N 
rate by Bruno et al 2016

RGB

AGB

o Group I grains
o Group II grains

Palmerini et al. 2014 Lugaro et al. 2017
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…of low mass with BUP mixing and 17O(p,a)14N 
rate by Sergi et al 2015

…of intemediate mass with HBB and 17O(p,a)14N 
rate by Bruno et al 2016
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o Group II grains

Palmerini et al. 2014 Lugaro et al. 2017
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O. Straniero et 
al.201: The 
impact of the 
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Grains vs B-UP and Grains vs HBB



MIX OR HBB?
IS THIS A ‘NUCLEAR’  QUESTION?
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Magnetic mixing at play in low mass AGBs
(1.2-1.5M8) provides in any case a match to 
group 2 oxide grains. 

HBB  in intermediate mass AGB models, 
reproduce a fraction of the grain sample only for 
one of the two nuclear data sets.
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Hot Bottom 
Burning

Lugaro et al. 2017

In case of AGB stars affected by HHB, the fit to 
grain abundances can be improved by using  
nuclear data by LUNA, but some dilution effects 
have to be added to have a full overlap between 
models and grains

Palmerini et al. 2022

SILICATE G. + OXIDE G. STARS + OXIDE G.
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two spinel grains with excesses in 25Mg (OC2 and 14-12-7) are highlighted in red.
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Group II oxide
grains: how
massive are 

their AGB star 
progenitors?

Could their 
26Al/27Al relative 
abundances give 
the answer?



26Al in group 2 oxide grains

• A bottom-up mixing mechanism means 
carrying into the envelope materials from 
deeper/hotter stellar layers

• The same effects may come with a more 
efficient rate of the 25Mg(p,g)26Al or a less 
efficient one for the 26Al + p reactions

• In the shown calculations:
• 25Mg(p,g)26Al  -> Straniero et al. 2013
• 26Al(p,g)26Al  -> Iliadis et al. 2010

28Si(p,g)



26Al in group 2 oxide grains

• A bottom-up mixing mechanism means 
carrying into the envelope materials from 
deeper/hotter stellar layers

• The same effects may come with a more 
efficient rate of the 25Mg(p,g)26Al or a less 
efficient one for the 26Al + p reactions

• In the shown calculations:
• 25Mg(p,g)26Al  -> Straniero et al. 2013
• 26Al(p,g)26Al  -> Iliadis et al. 2010

28Si(p,g)

sensitivity studies show that uncertainty of 
26Al+p leads to variations of up to 2 orders of 
magnitude in AGB calculations but…



Laird A. et al 2022 Journal of Physics G 
Progress on nuclear reaction rates affecting
the stellar production of 26Al

26Alg(p,g)27Si @ H-burning T

Iliadis et al 2010
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The 27Al(p,a)24Mg reaction rate from a thm
experiment

Low mass AGB stars Low mass AGB stars Intermediate mass AGB stars0%

25%

50%

75%

100%

0.1 1
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101 27Al(p, α)24Mg

Temperature (GK)

Re
ac

tio
n 

Ra
te

 R
at

io

• The reaction rate is about 3 times lower than presently assumed, at H-burning T

• in LMS the rate effect is not appreciable because the (p,g) channel strongly dominates

Energy in 
cm (keV) Jpi Strength (eV) 

[STARLIB] 
error 
(eV)

Strength
(eV) [THM] error (eV)

71.5 2+ 2.47E-14 up lim 9.28E-15 up lim
84.3 1- 2.60E-13 up lim 1.90E-14 4.7E-15

193.5 2+ 3.74E-07 up lim 2.82E-07 up lim

214.7 3- 1.13E-07 up lim 4.92E-08 up lim
486.74 2+ 0.11 0.05 0.122 0.031
609.49 3- 0.275 0.069 0.282 0.082
705.08 1- 0.52 0.13 0.30 0.10
855.85 3- 0.83 0.21 0.71 0.56

903.54 3- 4.3 0.4 4.3 0.4

1140.88 2+ 79 27 83 21
1316.7 2+ 137 47 142 43
1388.8 1- 54 15 70 18

LA COGNATA ET AL. 2022 PLB

LA COGNATA EL AL APJ 2022



The 27Al(p,a)24Mg Implications for 
Nucleosynthesis 
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Evolution of the temperature at the base of the convective envelope as function of the 
time counted from the beginning of the AGB phase. Stars with 3.5, 4.0, 4.5 and 6.0 M⊙
initial masses and Z⊙

LA COGNATA ET AL. 2022 PLB

More 27Al 
means 
smaller 
26Al/27Al 
values

LA COGNATA EL AL APJ 2022



0%

25%

50%

75%

100%

0.1 1
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101 27Al(p, α)24Mg

Temperature (GK)

Re
ac

tio
n 

Ra
te

 R
at

io

Evolution of the temperature at the base of the convective envelope as function of the 
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Conclusions:

✭ LM AGB stars + bottom-up deep mixing can be progenitors of group 2  
oxide grains 
• the agreement between models and observations becomes better 

or worse according with the nuclear physics input, 
• In any case models provides a match to the majority of the grains. 

✭ IM AGB stars + HBB can also be progenitors of group 2 oxide grains 
• the agreement i between models and grains are good just using 

the more efficient 17O+p reaction rates 
• Dilution effects have to be included to  provides a match to the 

majority of the grains. 

✭ At the moment LM AGB models with a bottom-up advective mixing at 
play provide the most accurate fits to group 2 oxide grain 
composition, well reproducing 26Al/27Al of the majority of the grains. 

✭ the abundances of 17O and 26Al are thermometers of their 
nucleosynthesis environments:
• to well calibrate them and make them accurate we need very 

precise knowledge of the reactions that produce and destroy 
them. 

• 26Al + p and its decay in particular
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Many 
thanks!!!


