Experimental study of the four-body kaonic nuclear state, $\bar{K} N N N$

Tadashi Hashimoto (JAEA ASRC)
for the J-PARC E73/T77/E80 collaboration

" $\bar{K} N N$ " in J-PARC E15

Details in T. Yamaga's talk

$$
I\left(J^{p}\right)=\frac{1}{2}\left(0^{-}\right), I_{z}=+\frac{1}{2}
$$

PLB789(2019)620., PRC102(2020)044002.

- Exclusive measurement of all the final state particles in a wide q region
- We have found a way to effectively observe a kaonic nucleus

Need further investigation
 to establish kaonic nuclei

- Λ (1405) state
- $\bar{K} N$ qusi-bound state as considered?
- Relation between $\bar{K} N$ and $\bar{K} N N$
- Further details of the $\bar{K} \mathbf{N N}$
- Spin and parity of the "K-pp"
- Really compact and dense system?
- Heavier kaonic nuclei
- Mass number dependence
- Interplay between $\bar{K} N \& N N$
- Modification of clustering in core nuclei
-Double kaonic nuclei?
- Much compact and dense system?

$K^{-} p p$

$\bar{K} N N N:$ Theoretical situaion

$$
I\left(J^{p}\right)=0\left(\frac{1}{2}^{-}\right)
$$

Not a complete list. sorry...
AY: PRC65(2002)044005, PLB535(2002)70. WG: PRC79(2009)014001.
BGL: PLB712(2012)132.
OHHMH: PRC95(2017)065202.

Larger binding than $\bar{K} N N$ and similar width are predicted.

$\bar{K} N N N$: Experimental situaion

- Some experimental searches in 2000s. No conclusive result.
- multi-N absorptions hide bound-state signals in Stop-K

Our approach

Use in-flight (K-,n) reaction, just as J-PARC E15

J-PARC E15 vs T77 @ K1.8BR

We already have small dataset with ${ }^{4} \mathrm{He}$ target

J-PARC E15@2015 42G K- on ${ }^{3} \mathrm{He}$

J-PARC T77@2020
 6G K- on ${ }^{4} \mathrm{He}$ only 3 days!

- The same cylindrical detector system
${ }^{4} \mathrm{He}\left(K^{-}, \pi^{0}\right){ }_{\Lambda}^{4} \mathrm{H}$ + forward calorimeter in T77 for lifetime measurements of hypernuclei

$\wedge d n$ event selection

deuteron ID

CDC track curvature \& CDH time of flight

Λ reconstruction
w/ vertex consistency cut
w/ pipd missing mass cut

Missing neutron ID
w/ vertex consistency cut
w/ lambda mass cut

- $\wedge \mathrm{dn}$ final states are identified with a good purity by considering kinematical \& topological consistensies
. $\sim 20 \%$ contamination from $\Sigma^{0} d n / \Sigma^{-} d p$

Preliminary result

E15: $\wedge p$ M(Kpp)

- Two disributions are quite similar
- structure below the threshold, QF-K-, and broad background

Model functions

Quasi-free process

from T. Yamaga's slide
Quasi-free process

- From E15 functions, simply shift the mass by 1 nucleon mass
- Shapes of the "quasi-free" and "broad" distributions are fixed by E15 results.

Preliminary result

" $\bar{K} N N N$ " Breit-Wigner wtih Gaus. form factor

Preliminary result

" $\bar{K} N N N$ " Breit-Wigner wtih Gaus. form factor

Broad BG and QF-K-shape from E15 PRC

Preliminary result

T77 preliminary

- The binding energy is compatible with some theoretical predictions
- " $\bar{K} N N N$ " system might have larger binding than " $\bar{K} N N$ ", although we expect a large systematic error 10~20 MeV.
- Expereimental width is larger than theoretical predictions.

Further studies on $\bar{K} N N N$

- More data to determine binding energy and other parameters to compare with E15 " $\bar{K} N N^{\prime}$ results.
- The isospin of the observed state is uniquely assinged as $I=0$ from the its decay to $\Lambda(I=0) d(I=0)$, but how about spin-parity?
- JP $=1 / 2^{-}$assuming all the consistuents are in S-wave

$$
\bar{K} N N N\left(I=0, J^{p}=1 / 2^{-}\right)
$$

. $\Sigma^{*} N N\left(I=0, J^{p}=3 / 2^{+}\right)$possibility still remains

- Λ spin asymmetry against production-plane might help.
. Comparison with the $\Lambda p n$ decay mode
- peak position, branching ratio,‥
- I=1 component could be contaminated
- Study I=1 state via ($\mathrm{K}^{-}, \mathrm{p}$) reaction
\rightarrow J-PARC E80 with a larger spectrometer

J-PARC E80 with a new spectrometer

- About 10 times volume !!

New spectrometer

Solenoid: Copy of COMET DS CDC:
15-layer DC
CNC:
3-layer 5-cm thick plastic scintillator

- x3 longer CDC: solid angle 59\% \rightarrow 93\%
- 3-layer barrel NC: neutron efficiency 3\% \rightarrow 15\%

Acceptance

- large kinematical-region coverage \& better acceptance

Expected yields

$$
\begin{aligned}
N & =\sigma \times N_{\text {beam }} \times N_{\text {target }} \times \epsilon, \\
\epsilon & =\epsilon_{D A Q} \times \epsilon_{\text {trigger }} \times \epsilon_{\text {beam }} \times \epsilon_{\text {fiducial }} \times \Omega_{C D S} \times \epsilon_{C D S},
\end{aligned}
$$

- $\mathrm{N}_{\text {beam }}=100$ G K- on target
- MR beam power of $\mathbf{9 0} \mathbf{~ k W}$
- 3 weeks data taking (90% up-time)

$$
\begin{gathered}
\sigma\left(K^{-} p p n\right) \cdot \operatorname{Br}(\Lambda d) \sim 5 \mu b \\
\sigma\left(K^{-} p p n\right) \cdot \operatorname{Br}(\Lambda p n) \sim 5 \mu b
\end{gathered}
$$

from the T77 preliminary result and an assumption

- $N(K-p p n \rightarrow \Lambda d) \sim 1.2 \times 10^{4}$
- $\mathrm{N}(\mathrm{K}-\mathrm{ppn} \rightarrow \Lambda \mathrm{pn}) \sim 1.5 \times 10^{3}$
- c.f. 1.7×10^{3} "K-pp" $\rightarrow \Lambda$ p accumulated in E15-2nd (40 G K-)

	$\Lambda \mathbf{d} / \Lambda \mathrm{pn}$
σ (K-ppn)*Br	$5 \mu \mathrm{~b}$
N(K- on target)	100 G X ~20
N(target)	2.56×10^{23}
$\varepsilon($ DAQ)	0.92
ε (trigger)	0.98
ε (beam)	0.72
Ω (CDC)	0.23 / $0.059 \mathrm{x} \sim 2$
$\varepsilon(C D C)$	0.6 / 0.3
N(K-ppn)	$12 \mathrm{k} / 1.5 \mathrm{k}$

$\checkmark \sim 40$ times more Λd events than existing data in T77
\checkmark Similar number of $\Lambda p n$ events to Λp in E15

Expected spectra

@ 3 weeks, 90kW
$\mathrm{K}-\mathrm{t}^{4} \mathrm{He} \rightarrow \Lambda \mathrm{d}+\mathrm{n}$

$\mathrm{K}-\mathbf{+}^{4} \mathrm{He} \rightarrow \Lambda \mathrm{pn}+\mathrm{n}$

\checkmark Clear peak would be observed for both modes

Heavier systems

- Deuteron knock-out reaction has a larger momentum transfer
- \rightarrow We would like test in E80: ${ }^{6 L i}\left(K^{-}, \mathrm{d}\right)$ "K- $\alpha^{\prime \prime}$, ${ }^{4 H e(K-, d) " K 0 b a r n n " ~}$
- Larger decay particle (like α) can not be detected by the CDS. many-particle decay modes are also difficult to reconstruct.
- Forward knocked-out particle spectroscopy at relatively large angle would be an altanative way

Schedule

- We are working hard to be ready at the end of JFY2025 !!

Summary

- Investigation of heavier systems beyond $\bar{K} N N$ has been already started.
- We observed ${ }^{4} \mathrm{He}\left(\mathrm{K}^{-}, \boldsymbol{\Lambda d}\right)$ n events as a by-product
(J-PARC T77: Lifetime measurement of hypernuclei.)
- The observed distribution is similar to that of \wedge p in E15, and would include signals of $\bar{K} N N N$.
\rightarrow further confirmation of the existence of kaonic nuclei
- We are constructing new large solenoid spectrometer for further study of $\bar{K} N N N$ (J-PARC E80) and other kaonic nuclei
- $\sim 4 \pi$ acceptance \& enhanced neutron detection capability
- We hope to start experiments in JFY2025~2026 (before HD-ext)

Collaboration

J-PARC E73/T77 collaboration

T. Akaishi ${ }^{1}$, H. Asano ${ }^{2}$, X. Chen5, A. Clozza ${ }^{7}$, C. Curceanu ${ }^{7}$, R. Del Grande ${ }^{7}$, C. Guaraldo ${ }^{7}$, C. Han 5, T. Hashimoto ${ }^{4}$, M. Iliescu ${ }^{7}$, K. Inoue ${ }^{1}$, S. Ishimoto ${ }^{3}$, K. Itahashi ${ }^{2}$, M. Iwasaki ${ }^{2}$, Y. Ma ${ }^{2}$, M. Miliucci ${ }^{7}$, R. Murayama ${ }^{2}$, H. Noumi ${ }^{1}$, H. Ohnishi ${ }^{10}$ S. Okada ${ }^{2}$, H. Outa ${ }^{2}$, K. Piszicchia ${ }^{7}{ }^{79}$, A. Sakaguchi ${ }^{1}$, F Sakuma ${ }^{2}$, M. Sa:o ${ }^{3}$, A. Scordo ${ }^{7}$, K. Shirotori ${ }^{1}$, D. Sirghi ${ }^{7}{ }^{7,8}$, F. Sirghi ${ }^{78,}$, S. Suzuki ${ }^{3}$ K. Tanida ${ }^{4}$, T. Toca ${ }^{1}$, M. Tokuda ${ }^{1}$, T. Yamaga ${ }^{2}$, X. Yuan ${ }^{5}$, P. Zhang ${ }^{5}$, Y. Zhang ${ }^{5}$, H. Zhang ${ }^{6}$
${ }^{1}$ Osaka University, Toyonaka, 560-0043, Japan
${ }^{2}$ RIKEN, Wako, 351-0198, Japan
${ }^{3}$ High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0301, Japan ${ }^{4}$ Japan Atorric Energy Agency, Ibaraki 319-1195, Japan
${ }^{5}$ Institute of Modern Physics, Gansu 730000, China
${ }^{6}$ School of Nuelear Science and Technology, Lanzhou University, Gansu 730000, China
${ }^{7}$ Laboratori Nazionali di Frascati dell' INTN, I-00044 Frascati, Itzly
${ }^{8}$ Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania ${ }^{9}$ CENTRO FERMI - Museo Storico della Fisica eCentro Studi e Ricerche Enrico Fermi, 00184 Rome,
${ }^{10}$ Tohoku University, 982-C826, Sendai, Japan

J-PARC E80 collaboration

H. Asano K. Itahashi, M. Iwasaki, Y. Ma, R. Murayama, H. Outa, F. Sakuma*, T. Yamaga

RIKEN Cluster for Pioneering Research, RIKEN, Saitama, 351-0198, Japan
K. Inoue, S. Kawasaki, H. Noumi, K. Shirotori

Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-004\%,
Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047,
Japan
RCNP
Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai, 982-0826, Japan
T. Hashimoto
(JAEA)
Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195, Japan
M. Iio, S. Ishimoto, K. Ozawa, S. Suzuki

High Energy Accelerator Research Organization (KEK), Ibaraki, 305-0801, Japan

T. Akaishi

Department of Physics, Osaka University, Osaka, 560-0043, Japan
T. Nagae

Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
H. Fujioka

Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan , T. Yamag
H. Ohnishi, Y. Sada, C. Yoshida
M. Bazzi, A. Clozza, C. Curceanu, C. Guaraldo, M. Iliescu, M. Miliucci, A. Scordo,

Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy
P. Buehler, M. Simon, E. Widmann, J. Zmeskal

Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria

