"EXOTIc atoms meet nuclear COllisions for a new frontier precision era in low-energy strangeness nuclear physics"

Experimental study of the four-body kaonic nuclear state, $\bar{K}NNN$

Tadashi Hashimoto (JAEA ASRC) for the J-PARC E73/T77/E80 collaboration

October 21st, 2022

- · Exclusive measurement of all the final state particles in a wide q region
- We have found a way to effectively observe a kaonic nucleus

Need further investigation

to establish kaonic nuclei

• ∧(1405) state

- $\bar{K}N$ qusi-bound state as considered?
- Relation between $ar{K}N$ and $ar{K}NN$

• Further details of the $ar{K}NN$

- Spin and parity of the "K-pp"
- Really compact and dense system?

• Heavier kaonic nuclei

- Mass number dependence
- Interplay between $\bar{K}N$ & NN
- Modification of clustering in core nuclei
- Double kaonic nuclei?
 - Much compact and dense system?

KNNN: Theoretical situaion

 $I(J^p) = 0(\frac{1}{2})$

Not a complete list. sorry…

AY: PRC65(2002)044005, PLB535(2002)70. WG: PRC79(2009)014001. BGL: PLB712(2012)132. OHHMH: PRC95(2017)065202.

Larger binding than $\bar{K}NN$ and similar width are predicted.

KNNN: Experimental situaion

- Some experimental searches in 2000s. No conclusive result.
- multi-N absorptions hide bound-state signals in Stop-K

Use in-flight (K⁻,n) reaction, just as J-PARC E15

• The same cylindrical detector system ${}^{4}\text{He}(K^{-}, \pi^{0})^{4}_{\Lambda}\text{H}$ + forward calorimeter in T77 for lifetime measurements of hypernuclei

Adn event selection

deuteron ID

CDC track curvature & CDH time of flight

Λ reconstruction

w/ vertex consistency cutw/ pipd missing mass cut

Missing neutron ID

w/ vertex consistency cutw/ lambda mass cut

- Adn final states are identified with a good purity by considering kinematical & topological consistensies
- . ~20% contamination from $\Sigma^0 dn / \Sigma^- dp$

- Two disributions are quite similar
- structure below the threshold, QF-K⁻, and broad background

Model functions

- From E15 functions, simply shift the mass by 1 nucleon mass
- Shapes of the "quasi-free" and "broad" distributions are fixed by E15 results.

Preliminary result

Preliminary result

Preliminary result

- The binding energy is compatible with some theoretical predictions
- " $\bar{K}NN$ " system might have larger binding than " $\bar{K}NN$ ", although we expect a large systematic error 10~20 MeV.
- Experimental width is larger than theoretical predictions.

Further studies on *K*NNN

- More data to determine binding energy and other parameters to compare with E15 " $\bar{K}NN$ " results.
- The isospin of the observed state is uniquely assinged as I = 0 from the its decay to $\Lambda(I = 0) d(I = 0)$, but how about spin-parity?
 - JP=1/2- assuming all the consistuents are in S-wave $\bar{K}\!N\!NN~(I=0,~J^p=1/2^-)$
 - . $\Sigma^*NN \ (I = 0, J^p = 3/2^+)$ possibility still remains
 - Λ spin asymmetry against production-plane might help.
- . Comparison with the Λpn decay mode
 - peak position, branching ratio, \cdots
 - I=1 component could be contaminated
- Study I=1 state via (K⁻, p) reaction

\rightarrow J-PARC E80 with a larger spectrometer

J-PARC E80 with a new spectrometer

About 10 times volume !!

New spectrometer

- x3 longer CDC: solid angle 59%→93%
- 3-layer barrel NC: neutron efficiency 3%→15%

Acceptance

large kinematical-region coverage & better acceptance

Expected yields

 $N = \sigma \times N_{beam} \times N_{target} \times \epsilon,$ $\epsilon = \epsilon_{DAQ} \times \epsilon_{trigger} \times \epsilon_{beam} \times \epsilon_{fiducial} \times \Omega_{CDS} \times \epsilon_{CDS},$

- N_{beam} = **100 G** K- on target
 - MR beam power of 90 kW
 - 3 weeks data taking (90% up-time)

 $\sigma(K^-ppn) \bullet Br(\Lambda d) \sim 5 \ \mu b$ $\sigma(K^{-}ppn) \bullet Br(\Lambda pn) \sim 5 \ \mu b$

from the T77 preliminary result and an assumption

- N(K-ppn $\rightarrow \Lambda d$) ~ 1.2 x 10⁴
- N(K-ppn $\rightarrow \Lambda$ pn) ~ 1.5 x 10³
 - c.f. 1.7 x 10³ "K-pp" $\rightarrow \Lambda p$ accumulated in E15-2nd (40 G K⁻)

	Λ d / Λpn
σ (K-ppn)*Br	5 μb
N(K ⁻ on target)	100 G x ~20
N(target)	2.56 x 10 ²³
ε (DAQ)	0.92
ε (trigger)	0.98
ε (beam)	0.72
Ω(CDC)	0.23 / 0.059 x ~2
ε (CDC)	0.6 / 0.3
N(K-ppn)	12 k / 1.5 k

 $\checkmark \sim 40$ times more Λd events than existing data in T77

 \checkmark Similar number of Λpn events to Λp in E15

Expected spectra

@ 3 weeks, 90kW

✓ Clear peak would be observed for both modes

Heavier systems

- Deuteron knock-out reaction has a larger momentum transfer
 - \rightarrow We would like test in E80: ⁶Li(K⁻,d)"K⁻ α ", ⁴He(K⁻,d)"K^{0bar}nn"
- Larger decay particle (like α) can not be detected by the CDS. many-particle decay modes are also difficult to reconstruct.
 - Forward knocked-out particle spectroscopy at relatively large angle would be an altanative way

-1.0 GeV/c

Schedule

·			Ó																
	FY2022			FY2023			FY2024				FY2025					0000~			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q 1	Q2	Q3	Q4		2026~	
SC Solenoid	De	sign		chase Wire)			Co	nstruct	tion				stallatio Test		ы	ning	Run		
NC	De	esign		chase sinti.)		Assembly				Test & Commissioning					Integration	ommissioning	sics	Analysis & Pblication	
CDC	Design				Construction				Test & Commissioning						Int	Com	Phy		
K1.8BR Beam Line	E73(CDC) -> E72(HypTPC) Experiments								Upgrade E80					E80	Experir	ment			

Aiming to complete detector construction in 4 years.

- Superconducting solenoid magnet
- CDC (cylindrical drift chamber)
- CNC (cylindrical neutron counter)
- K1.8BR area modification
- We are working hard to be ready at the end of JFY2025 !!

Summary

- Investigation of heavier systems beyond $\bar{K}NN$ has been already started.
- We observed 4He(K-, Ad)n events as a by-product (J-PARC T77: Lifetime measurement of hypernuclei.)
 - The observed distribution is similar to that of Λp in E15, and would include signals of $\overline{K}NNN$. \rightarrow further confirmation of the existence of kaonic nuclei
- We are constructing **new large solenoid spectrometer** for further study of $\bar{K}NNN$ (J-PARC E80) and other kaonic nuclei
 - ~4 π acceptance & enhanced neutron detection capability
 - We hope to start experiments in JFY2025~2026 (before HD-ext)

Collaboration

J-PARC E73/T77 collaboration

T. Akaishi¹, H. Asano², X. Chen⁵, A. Clozza⁷, C. Curceanu⁷, R. Del Grande⁷, C. Guaraldo⁷, C. Han⁵, T. Hashimoto⁴, M. Iliescu⁷, K. Inoue¹, S. Ishimoto³, K. Itahashi², M. Iwasaki², Y. Ma², M. Miliucci⁷, R. Murayama², H. Noumi¹, H. Ohnishi¹⁰ S. Okada², H. Outa², K. Piscicchia^{7,9}, A. Sakaguchi¹, F. Sakuma², M. Sato³, A. Scordo⁷, K. Shirotori¹, D. Sirghi^{7,8}, F. Sirghi^{7,8}, S. Suzuki³ K. Tanida⁴, T. Toda¹, M. Tokuda¹, T. Yamaga², X. Yuan⁵, P. Zhang⁵, Y. Zhang⁵, H. Zhang⁶

¹Osaka University, Toyonaka, 560-0043, Japan ²RIKEN, Wako, 351-0198, Japan ³High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan ⁴Japan Atomic Energy Agency, Ibaraki 319-1195, Japan ⁵Institute of Modern Physics, Gansu 730000, China ⁶School of Nuclear Science and Technology, Lanzhou University, Gansu 730000, China ⁷Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy ⁸Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania ⁹CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, 00184 Rome, Italy

¹⁰Tohoku University, 982-0826, Sendai, Japan

J-PARC E80 collaboration

RIKEN

H. Asano K. Itahashi, M. Iwasaki, Y. Ma, R. Murayama, H. Outa, F. Sakuma*, T. Yamaga RIKEN Cluster for Pioneering Research, RIKEN, Saitama, 351-0198, Japan

K. Inoue, S. Kawasaki, H. Noumi, K. Shirotori Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047 Japan

Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai,

T. Hashimoto Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195, Japan

M. Iio, S. Ishimoto, K. Ozawa, S. Suzuki High Energy Accelerator Research Organization (KEK), Ibaraki, 305-0801, Japan

T. Akaishi Department of Physics, Osaka University, Osaka, 560-0043, Japan

T. Nagae

Department of Physics, Kyoto University, Kyoto, 606-8502, Japan

H. Fujioka Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan

KEK

M. Bazzi, A. Clozza, C. Curceanu, C. Guaraldo, M. Iliescu, M. Miliucci, A. Scordo, D. Sirghi, F. Sirghi Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy

P. Buehler, M. Simon, E. Widmann, J. Zmeskal Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria

