Result of *KNN* search at J-PARC and future projects

Takumi Yamaga (RIKEN)

ECT* workshop 2022.10.17 – 21

The lightest \bar{K} -nucleus

$$(\bar{K}[NN]^{I=1})^{I=1/2}$$
$$J^{\pi} = 0^{-1}$$
$$\sqrt{\frac{3}{4}}[\bar{K}N]^{I=0}N + \sqrt{\frac{1}{4}}[\bar{K}N]^{I=1}N$$

ground state

$$I_z = +1/2$$
 K

$$I_z = -1/2 \quad K^- pn - \bar{K}^0 nn$$

shallow bound? N. Shevchenko, Few-Body syst. **61** (2020) 27

J-PARC E15

Cylindrical detector system

J-PARC E15

- Selecting $\Lambda p + n_{\text{miss}}$ final state $\rightarrow n_{\text{miss}}$ ID by missing mass technique
- Measuring Λp invariant-mass

& momentum transfer

 \rightarrow

Fit result

The whole 2D distribution is well reproduced.

40

quasi-free

20

80

broad hat we observed

The peak position does not depend on q.

$0.3 < q_x \leq 96$ field be resonance.

data

QF-K absorption total cess is clearly observed.

Intermediate K exist during the reaction. $\underbrace{KNN \rightarrow \Sigma^{0} p}{KNN \rightarrow \Sigma^{0} p}$

The peak position is below the $M_{\bar{K}NN}$. \rightarrow We interpreted it as \overline{KNN} signal.

 $BE = 42 \pm 3$ (stat.) $^{+3}_{-4}$ (syst.) MeV

 $\Gamma \cong 100 \pm 7 \text{ (stats)} + 19 \text{ (syst.) MeV}$ > 0.9 GeV/c obtained as peak position & width of simple Breit-Wigner

Compare to theoretical calculation

Theoretical calculation supports that the observed peak is KNN signal.

T. Sekihara, E. Oset, and A. Ramos, JPSCP 26 (2019) 023009 $m_{\bar{K}} + 2m_N$ Theory (A) Theory (B) Exp. (all - BG)**Calculated spectra** E15 data 2.35 2.4 2.45 2.55 2.5 26 $M_{\Lambda p}$ [GeV]

Fig.4: The ratio R as a function of relative density, calculated using the free-space and Pauli blocked amplitudes for $B_{K^-} = 0$ MeV and $B_{K^-} = 50$ MeV. Color bands denote the uncertainty due to different cut-off values $\Lambda_c = 800 - 1200$ MeV. 14

0

0.2

0.4

 ρ/ρ_0

0.6

0.8

0.2

 $--B_{K} = 50 \text{ MeV}$

0.6

 ρ/ρ_0

0.8

0.2

0.4

2.8

absorption to total absorption.

T. Sekihara et al., Phys. Rev. C 86 (2012) 065205

FIG. 13. Fractions of mesonic, sum of $(\pi \Sigma)^0$, and nonmesonic

Mesonic channels

$$I_{z} = + 1/2$$

$$\pi^{+}\Lambda n + n_{\text{miss}}$$

$$\pi^{-}\Sigma^{+}p + n_{\text{miss}}$$

$$\pi^{+}\Sigma^{-}p + n_{\text{miss}}$$

Non-mesonic

Event selection for mesonic decay

In the case of

 $\pi^{-}\Lambda pp)_{\pi^{-}\Sigma^{+}se} lected as (\pi^{+}\Lambda nn) \overset{\times}{\aleph}$ $\rightarrow \pi^{-}(\pi^{+}\hbar)\hbar$ $\frac{m(p\pi)}{CD} (GeV(c^2))$ GeV/c^2

Event selection for mesonic decay

Cylindrical detector system

In the case of

$$\pi^{-}\Sigma^{+}p + n_{\text{miss}}$$
$$\rightarrow \pi^{-}(\pi^{+}n)p$$

Detected with CDS

 $\Lambda(1405)$ + Phase space

 $\Sigma(1385)^+$ + Phase space

 \rightarrow The reaction could be understood as \overline{KNN} production & quasi-free process

Similar to $\Lambda p + n_{\text{miss}}$

19

QF

Cross section of $\overline{K}NN$

Statistical error only Preliminary

 $85.4 \pm 21.2 \ \mu b$

Preliminary $43.8 \pm 9.6 \ \mu b$

Preliminary $83.6 \pm 12.0 \ \mu b$

 $9.3 \pm 0.8^{+1.4}_{-1.0} \ \mu b$

 Γ_{mesonic} would be $\mathcal{O}(10)$ times larger than $\Gamma_{\text{non-mesonic}}$.

But, other mesonic channels should be measured to conclude the exact ratio.

Theoretical works

T. Sekihara et. al., PRC 86, 065205 (2012).

 $\Gamma_{\rm non-mesonic} \sim \Gamma_{\rm mesonic}/2$ @ nuclear dens. (depending on density)

To be compared in more detailed

Remaining questions

Is the observed resonance really what we expected?

Other possibilities such as Σ^*N ?

Does \overline{K} really keep it particle identity?

We need further systematic measurements to answer the questions & to robustly confirm \bar{K} -nuclei.

Precise study for $\bar{K}NN$

Search for heavier \bar{K} -nuclei

Future projects

Conceptual design of new CDS

>90% solid angle coverage

Neutron detection capability

Sensitivity for proton polarization

Construction has been started (Completed in 2025)

Programs for *K*-nuclei

$\bar{K}NN$ system J^{π} determination

- To confirm the existence more robustly
- Measuring $d\sigma/dq \& \alpha_{\Lambda p}$
- Search for $(\bar{K}NN)^{I_z=-1/2}$
- Isospin partner of observed $\bar{K}NN$
 - $\bar{K}NN
 ightarrow \Lambda n$ decay

Decay branch

Mesonic $\pi\Lambda N, \pi\Sigma N$

Heavier system

 $\bar{K}NNN$ system Door to heavier system ${}^{4}\text{He}(K^{-}, N)$ reaction $K^{-}ppn - \bar{K}^{0}pnn$ (I=0)

 $\bar{K}NNNN$ systemExpected large B.E. & high density $^{6}Li(K^{-}, d)$ reaction $K^{-}-\alpha$ $\bar{K}^{0}-\alpha$

J-PARC P89

$\bar{K}NN$ production by ³He(K^- , N) reaction

 $K^{-}n \rightarrow K^{-}n \& K^{-}p \rightarrow \overline{K}^{0}n$ 4.7 mb/sr
2.4 mb/sr

 $K^-p \rightarrow K^-p$

1.8 mb/sr

Production cross sections

27

The relative yield of $I_z = \pm 1/2$ states is also a good indicator for J^{π}

8 weeks \otimes 90 kW

2.8

Expected spectra of $(\bar{K}NN)^{I_z=-1/2}$ ($J^{\pi}=0^-$)

So far, J-PARC E15-100 $0.3 < q_x \le 0.6 \ GeV/c$ $V(c^{2}))$ $m_{\bar{K}} + 2m_N$ *qo/dm* (nb/(Me) ⁰⁰ 20 $\bar{K}NN \rightarrow \Lambda p$ QF- \overline{K} absorption $\bar{K}NN \rightarrow \Sigma^0 p$ BG m_{χ} (GeV/ c^2) We observed a signal of $\bar{K}NN^{(I_z=+1/2)} \rightarrow \Lambda p$

Future ──J-PARC P89 _____ new CDS @ modified K.18BR (8 weeks ⊗ 90 kW)

We will measure,

Spin-spin correlation of Λp to determine J^{π}

(*m*, *q*) distributions of $\Lambda n \& \Sigma^- p$ pairs to search for $\bar{K}NN^{(I_z=-1/2)}$

Thank you for your attention!

= J-PARC E15 collaboration =

S. Ajimura¹, H. Asano², G. Beer³, C. Berucci⁴, H. Bhang⁵, M. Bragadireanu⁶, P. Buehler⁴, L. Busso^{7,8}, M. Cargnelli⁴, S. Choi⁵, C. Curceanu⁹, S. Enomoto¹⁰, H. Fujioka¹¹, Y. Fujiwara¹², T. Fukuda¹³, C. Guaraldo⁹, T. Hashimoto¹⁴, R. S. Hayano¹², T. Hiraiwa¹, M. Iio¹⁰, M. Iliescu⁹, K. Inoue¹, Y. Ishiguro¹⁵, T. Ishikawa¹², S. Ishimoto¹⁰, K. Itahashi², M. Iwasaki^{2,11},^{*} K. Kanno¹², K. Kato¹⁵, Y. Kato², S. Kawasaki¹, P. Kienle¹⁶,[†] H. Kou¹¹, Y. Ma², J. Marton⁴, Y. Matsuda¹², Y. Mizoi¹³, O. Morra⁷, T. Nagae¹⁵, H. Noumi¹, H. Ohnishi^{17,2}, S. Okada², H. Outa², K. Piscicchia⁹, Y. Sada¹, A. Sakaguchi¹, F. Sakuma²,[‡] M. Sato¹⁰, A. Scordo⁹, M. Sekimoto¹⁰, H. Shi⁹, K. Shirotori¹, D. Sirghi^{9,6}, F. Sirghi^{9,6}, K. Suzuki⁴, S. Suzuki¹⁰, T. Suzuki¹², K. Tanida¹⁴, H. Tatsuno¹⁸, M. Tokuda¹¹, D. Tomono¹, A. Toyoda¹⁰, K. Tsukada¹⁷, O. Vazquez Doce^{9,16}, E. Widmann⁴, T. Yamaga^{2,1},[§] T. Yamazaki^{12,2}, Q. Zhang², and J. Zmeskal⁴ ¹ Osaka University, Osaka, 567-0047, Japan ² RIKEN, Wako, 351-0198, Japan ³ University of Victoria, Victoria BC V8W 3P6, Canada ⁴ Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria ⁵ Seoul National University, Seoul, 151-742, South Korea ⁶ National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele, Romania INFN Sezione di Torino, 10125 Torino, Italy ⁸ Universita' di Torino, Torino, Italy ⁹ Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy ¹⁰ High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan Tokyo Institute of Technology, Tokyo, 152-8551, Japan ¹² The University of Tokyo, Tokyo, 113-0033, Japan ¹³ Osaka Electro-Communication University, Osaka, 572-8530, Japan ¹⁴ Japan Atomic Energy Agency, Ibaraki 319-1195, Japan ¹⁵ Kyoto University, Kyoto, 606-8502, Japan ¹⁶ Technische Universität München, D-85748, Garching, Germany ¹⁷ Tohoku University, Sendai, 982-0826, Japan and ¹⁸ Lund University, Lund, 221 00, Sweden

Thank you for your attention!

= Collaboration =

T. Hashimoto, K. Tanida

Theorists	
Tokyo Tech D. Jido	
T. Sekihara	