EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

Equation of state for hot hyperonic neutron star matter

UNIVERSITAT DE BARCELONA

GOBIERNO DE ESPAÑA

MINISTERIO DE CIENCIA E INNOVACIÓN

Hristijan Kochankovski Laura Tolos Angels Ramos

EXOTICO workshop 2022 Trento, Italy 17-21 October 2022

ICCUB

OUTLINE

- Motivation. Structure of Neutron Stars (NS)
- Brief introduction to FSU2H* model
- Equation of State (EoS) and composition of hot neutron star core
- Thermal index of neutron star core
- Summary

Motivation. Structure of NS

Remnant of supernovae processes: high density – several times ρ₀

Motivation. Structure of NS

- $\rho_B \approx \beta \text{stable matter made of nucleons, leptons and}$ $(10^{-4} 10^{-2}) \text{ fm}^{-3}$ β stable matter made of nucleons, leptons and possibly exotic particles (HYPERONS)
 - First stage of the evolution: proto neutron star (lepton rich and hot object) – Finite temperature treatement is needed
 - There is no experimental data of the nuclear matter at high densities ($\rho > 3\rho_0$)

Remnant of supernovae processes: high density – several times ρ₀

Motivation. Structure of NS

Remnant of supernovae processes: high density – several times ρ₀

- $\rho_B \approx \beta$ stable matter made of nucleons, leptons and possibly exotic particles (**HYPERONS**)
 - First stage of the evolution: proto neutron star (lepton rich and hot object) – Finite temperature treatement is needed
 - There is no experimental data of the nuclear matter at high densities ($ho > 3
 ho_0$)

new frontier of gravitational waves.

Nature

Miller, M.C.,

Yunes,

Ζ

But there are new astrophysical measurements!

OUTLINE

- Motivation. Structure of Neutron Stars (NS)
- The FSU2H* model
- Equation of State (EoS) and composition of hot neutron star core
- Thermal index of neutron star core
- Summary

OUTLINE Motivation. Structure (٠ • The FSU2H* model • Equation of State (EoS) core • Thermal index of neutr

• Summary

https://arxiv.org/abs/2206.11266

QR code and link of the paper where the results are published

 Belongs to the broad group of relativistic mean field approaches

 $\mathcal{L} = \sum_b \mathcal{L}_b + \mathcal{L}_m + \sum_l \mathcal{L}_l,$ $\mathcal{L}_b = ar{\Psi}_b (i \gamma_\mu \partial^\mu - q_b \gamma_\mu A^\mu - m_b)$ $+ g_{\sigma b}\sigma + g_{\sigma * b}\sigma^* - g_{\omega b}\gamma_{\mu}\omega^{\mu} - g_{\rho,b}\gamma_{\mu}\vec{I}_b\vec{\rho}^{\mu})\Psi_b,$ $\mathcal{L}_m = \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - \frac{1}{2} m_\sigma^2 \sigma^2 - \frac{\kappa}{2!} (g_{\sigma b} \sigma)^3 - \frac{\lambda}{4!} (g_{\sigma b})^4$ $+\frac{1}{2}\partial_{\mu}\sigma^{*}\partial^{\mu}\sigma^{*}-\frac{1}{2}m_{\sigma^{*}}^{2}\sigma^{*2}$ $-\frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu}+\frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu}+\frac{\zeta}{4!}(g_{\omega b}\omega_{\mu}\omega^{\mu})^{4}$ $-\frac{1}{4}\vec{R}^{\mu\nu}\vec{R}_{\mu\nu}+\frac{1}{2}m_{\rho}^{2}\vec{\rho}_{\mu}\vec{\rho}^{\mu}+\Lambda_{\omega}g_{\rho b}^{2}\vec{\rho}_{\mu}\vec{\rho}^{\mu}g_{\omega b}^{2}\omega_{\mu}\omega^{\mu}$ $-rac{1}{4}P^{\mu
u}P_{\mu
u}+rac{1}{2}m_{\phi}^{2}\phi_{\mu}\phi^{\mu}-rac{1}{4}F^{\mu
u}F_{\mu
u},$ $\mathcal{L}_l = \bar{\Psi}_l \left(i \gamma_\mu \partial^\mu - q_l \gamma_\mu A^\mu - m_l \right) \Psi_l,$

 Belongs to the broad group of relativistic mean field approaches

 $\mathcal{L} = \sum_b \mathcal{L}_b + \mathcal{L}_m + \sum_l \mathcal{L}_l,$ $\mathcal{L}_b = \bar{\Psi}_b (i \gamma_\mu \partial^\mu - q_b \gamma_\mu A^\mu - m_b)$ $+ g_{\sigma b}\sigma + g_{\sigma * b}\sigma^* - g_{\omega b}\gamma_{\mu}\omega^{\mu} - g_{\rho,b}\gamma_{\mu}\vec{I}_b\vec{\rho}^{\mu})\Psi_b,$ $\mathcal{L}_m = \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - \frac{1}{2} m_\sigma^2 \sigma^2 - \frac{\kappa}{2!} (g_{\sigma b} \sigma)^3 - \frac{\lambda}{4!} (g_{\sigma b})^4$ $+\frac{1}{2}\partial_{\mu}\sigma^{*}\partial^{\mu}\sigma^{*}-\frac{1}{2}m_{\sigma^{*}}^{2}\sigma^{*2}$ $-\frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu}+\frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu}+\frac{\zeta}{4!}(g_{\omega b}\omega_{\mu}\omega^{\mu})^{4}$ $-\frac{1}{4}\vec{R}^{\mu\nu}\vec{R}_{\mu\nu}+\frac{1}{2}m_{\rho}^{2}\vec{\rho}_{\mu}\vec{\rho}^{\mu}+\Lambda_{\omega}g_{\rho b}^{2}\vec{\rho}_{\mu}\vec{\rho}^{\mu}g_{\omega b}^{2}\omega_{\mu}\omega^{\mu}$ $-\frac{1}{4}P^{\mu\nu}P_{\mu\nu}+\frac{1}{2}m_{\phi}^{2}\phi_{\mu}\phi^{\mu}-\frac{1}{4}F^{\mu\nu}F_{\mu\nu},$ $\mathcal{L}_l = \bar{\Psi}_l \left(i \gamma_\mu \partial^\mu - q_l \gamma_\mu A^\mu - m_l \right) \Psi_l,$

- Euler eqs. of motion
- RMF approximation
- β equilibrium
- Charge neutrality
- Conservation of baryon and
 - lepton numbers

 Belongs to the broad group of relativistic mean field approaches

 $\mathcal{L} = \sum_b \mathcal{L}_b + \mathcal{L}_m + \sum_l \mathcal{L}_l,$ $\mathcal{L}_b = \bar{\Psi}_b (i \gamma_\mu \partial^\mu - q_b \gamma_\mu A^\mu - m_b)$ $+ g_{\sigma b}\sigma + g_{\sigma * b}\sigma^* - g_{\omega b}\gamma_{\mu}\omega^{\mu} - g_{\rho,b}\gamma_{\mu}\vec{I}_b\vec{\rho}^{\mu})\Psi_b,$ $\mathcal{L}_m = rac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - rac{1}{2} m_\sigma^2 \sigma^2 - rac{\kappa}{3!} (g_{\sigma b} \sigma)^3 - rac{\lambda}{4!} (g_{\sigma b})^4$ $+\frac{1}{2}\partial_{\mu}\sigma^{*}\partial^{\mu}\sigma^{*}-\frac{1}{2}m_{\sigma^{*}}^{2}\sigma^{*2}$ $-\frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu}+\frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu}+\frac{\zeta}{4!}(g_{\omega b}\omega_{\mu}\omega^{\mu})^{4}$ $-\frac{1}{4}\vec{R}^{\mu\nu}\vec{R}_{\mu\nu}+\frac{1}{2}m_{\rho}^{2}\vec{\rho}_{\mu}\vec{\rho}^{\mu}+\Lambda_{\omega}g_{\rho b}^{2}\vec{\rho}_{\mu}\vec{\rho}^{\mu}g_{\omega b}^{2}\omega_{\mu}\omega^{\mu}$ $-\frac{1}{4}P^{\mu\nu}P_{\mu\nu}+\frac{1}{2}m_{\phi}^{2}\phi_{\mu}\phi^{\mu}-\frac{1}{4}F^{\mu\nu}F_{\mu\nu},$ $\mathcal{L}_l = \bar{\Psi}_l \left(i \gamma_\mu \partial^\mu - q_l \gamma_\mu A^\mu - m_l \right) \Psi_l,$

$$\rho_{i}(\rho_{B}) \quad m_{i}^{*}(\rho_{B}) \quad \mu_{i}^{*}(\rho_{B})$$
Euler eqs. of motion
RMF approximation
 β – equilibrium
Charge neutrality
Conservation of baryon and
lepton numbers

 Belongs to the broad group of relativistic mean field approaches

 $\mathcal{L} = \sum_b \mathcal{L}_b + \mathcal{L}_m + \sum_l \mathcal{L}_l,$ ${\cal L}_b = ar{\Psi}_b (i \gamma_\mu \partial^\mu - q_b \gamma_\mu A^\mu - m_b)$ $+ g_{\sigma b}\sigma + g_{\sigma * b}\sigma^* - g_{\omega b}\gamma_{\mu}\omega^{\mu} - g_{\rho,b}\gamma_{\mu}\vec{I}_b\vec{\rho}^{\mu})\Psi_b,$ $\mathcal{L}_m = \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - \frac{1}{2} m_\sigma^2 \sigma^2 - \frac{\kappa}{2!} (g_{\sigma b} \sigma)^3 - \frac{\lambda}{4!} (g_{\sigma b})^4$ $+\frac{1}{2}\partial_{\mu}\sigma^{*}\partial^{\mu}\sigma^{*}-\frac{1}{2}m_{\sigma^{*}}^{2}\sigma^{*2}$ $-\frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu}+\frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu}+\frac{\zeta}{4!}(g_{\omega b}\omega_{\mu}\omega^{\mu})^{4}$ $-\frac{1}{4}\vec{R}^{\mu\nu}\vec{R}_{\mu\nu}+\frac{1}{2}m_{\rho}^{2}\vec{\rho}_{\mu}\vec{\rho}^{\mu}+\Lambda_{\omega}g_{\rho b}^{2}\vec{\rho}_{\mu}\vec{\rho}^{\mu}g_{\omega b}^{2}\omega_{\mu}\omega^{\mu}$ $-\frac{1}{4}P^{\mu\nu}P_{\mu\nu}+\frac{1}{2}m_{\phi}^{2}\phi_{\mu}\phi^{\mu}-\frac{1}{4}F^{\mu\nu}F_{\mu\nu},$ $\mathcal{L}_l = \bar{\Psi}_l \left(i \gamma_\mu \partial^\mu - q_l \gamma_\mu A^\mu - m_l \right) \Psi_l,$

 Belongs to the broad group of relativistic mean field approaches

 $\mathcal{L} = \sum_b \mathcal{L}_b + \mathcal{L}_m + \sum_l \mathcal{L}_l,$ $\mathcal{L}_b = \bar{\Psi}_b (i \gamma_\mu \partial^\mu - q_b \gamma_\mu A^\mu - m_b)$ $+ g_{\sigma b}\sigma + g_{\sigma * b}\sigma^* - g_{\omega b}\gamma_{\mu}\omega^{\mu} - g_{\rho,b}\gamma_{\mu}\vec{I}_b\vec{\rho}^{\mu})\Psi_b,$ $\mathcal{L}_m = \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - \frac{1}{2} m_\sigma^2 \sigma^2 - \frac{\kappa}{2!} (g_{\sigma b} \sigma)^3 - \frac{\lambda}{4!} (g_{\sigma b})^4$ $+\frac{1}{2}\partial_{\mu}\sigma^{*}\partial^{\mu}\sigma^{*}-\frac{1}{2}m_{\sigma^{*}}^{2}\sigma^{*2}$ $-\frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu}+\frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu}+\frac{\zeta}{4!}(g_{\omega b}\omega_{\mu}\omega^{\mu})^{4}$ $-\frac{1}{4}\vec{R}^{\mu\nu}\vec{R}_{\mu\nu}+\frac{1}{2}m_{\rho}^{2}\vec{\rho}_{\mu}\vec{\rho}^{\mu}+\Lambda_{\omega}g_{\rho b}^{2}\vec{\rho}_{\mu}\vec{\rho}^{\mu}g_{\omega b}^{2}\omega_{\mu}\omega^{\mu}$ $-rac{1}{4}P^{\mu
u}P_{\mu
u}+rac{1}{2}m_{\phi}^{2}\phi_{\mu}\phi^{\mu}-rac{1}{4}F^{\mu
u}F_{\mu
u},$ $\mathcal{L}_l = \bar{\Psi}_l \left(i \gamma_\mu \partial^\mu - q_l \gamma_\mu A^\mu - m_l \right) \Psi_l,$

Values of parameters in the model											
m_{σ} (MeV)	m_ω (MeV)	$m_{ ho}$ (MeV)	m_{σ^*} (MeV)	$m_{\phi} \ ({ m MeV})$	$g_{\sigma N}^2$	$g^2_{\omega N}$	$g^2_{ ho N}$	$rac{\kappa}{({ m MeV})}$	λ	ζ	Λ_{ω}
497.479	782.500	763.000	980.000	1020.000	102.72	169.53	197.27	4.00014	-0.0133	0.008	0.045

Values of parameters in the model											
m_{σ} (MeV)	$m_\omega \ ({ m MeV})$	$m_{ ho}$ (MeV)	m_{σ^*} (MeV)	m_{ϕ} (MeV)	$g_{\sigma N}^2$	$g^2_{\omega N}$	$g^2_{ ho N}$	$rac{\kappa}{({ m MeV})}$	λ	ζ	Λ_{ω}
497.479	782.500	763.000	980.000	1020.000	102.72	169.53	197.27	4.00014	-0.0133	0.008	0.045

• The properties of the model at T = 0 are listed in the table

Values of parameters in the model											
m_{σ} (MeV)	$m_\omega \ ({ m MeV})$	$m_{ ho}$ (MeV)	m_{σ^*} (MeV)	$m_{\phi} \ ({ m MeV})$	$g_{\sigma N}^2$	$g^2_{\omega N}$	$g^2_{ ho N}$	$rac{\kappa}{({ m MeV})}$	λ	ζ	Λ_{ω}
497.479	782.500	763.000	980.000	1020.000	102.72	169.53	197.27	4.00014	-0.0133	0.008	0.045

• The properties of the model at T = 0 are listed in the table

ρ ₀ (fm ⁻³)	E/A (MeV)	K (MeV)	${m_N^*/m_N \over (ho_0)}$	$E_{sym}(ho_0)$ (MeV)	L (MeV)	K _{sym} (MeV)
0.1505	-16.28	238.0	0.593	30.5	44.5	86.4

Consistent with the majority of the calculations, variety of nuclear data from terrestrial experiments, astrophysical observations...

Values of the parameters in the model related to hyperons

Y	$R_{\sigma Y}$	$R_{\omega Y}$	$R_{\rho Y}$	R_{σ^*Y}	$R_{\phi Y}$
$\Lambda \Sigma$	$0.6613 \\ 0.4673$	$\frac{2}{3}$	$0 \\ 2$	$0.2812 \\ 0.2812$	$-\sqrt{2}/3 -\sqrt{2}/3$
Ξ	0.3305	1'/3	1	0.5624	$-2\sqrt{2}/3$

$$R_{iY} = \frac{g_{iY}}{g_{iN}}; i = (\sigma, \omega, \rho); R_{\sigma^*Y} = \frac{g_{\sigma^*Y}}{g_{\sigma Y}}; R_{\phi Y} = \frac{g_{\phi Y}}{g_{\omega N}}$$

Flavour SU(6) symmetry, the vector dominance model, and ideal mixing for the physical ω and ρ fields

Values of the parameters in the model related to hyperons

Y	$R_{\sigma Y}$	$R_{\omega Y}$	$R_{\rho Y}$	R_{σ^*Y}	$R_{\phi Y}$
Λ	0.6613	$\frac{2}{3}$	$\begin{array}{c} 0\\ 2\\ 1\end{array}$	0.2812	$-\sqrt{2}/3$
Σ	0.4673	$\frac{2}{3}$		0.2812	$-\sqrt{2}/3$
Ξ	0.3305	$\frac{1}{3}$		0.5624	$-2\sqrt{2}/3$

$$U_{i} = -g_{\sigma i}\bar{\sigma} - g_{\sigma i}\bar{\sigma}^{*} + g_{\omega i}\bar{\omega} + g_{\rho i}I_{3i}\bar{\rho} + g_{\phi i}\bar{\phi}$$

$$R_{iY} = \frac{g_{iY}}{g_{iN}}; i = (\sigma, \omega, \rho); R_{\sigma^*Y} = \frac{g_{\sigma^*Y}}{g_{\sigma Y}}; R_{\phi Y} = \frac{g_{\phi Y}}{g_{\omega N}}$$

Flavour SU(6) symmetry, the vector dominance model, and ideal mixing for the physical ω and ρ fields

Values of the parameters in the model related to hyperons

Y	$R_{\sigma Y}$	$R_{\omega Y}$	$R_{\rho Y}$	R_{σ^*Y}	$R_{\phi Y}$
$egin{array}{c} \Lambda \ \Sigma \ \Xi \end{array}$	$0.6613 \\ 0.4673 \\ 0.3305$	$2/3 \\ 2/3 \\ 1/3$	$\begin{array}{c} 0 \\ 2 \\ 1 \end{array}$	$0.2812 \\ 0.2812 \\ 0.5624$	$-\sqrt{2}/3 \\ -\sqrt{2}/3 \\ -2\sqrt{2}/3$

$$R_{iY} = \frac{g_{iY}}{g_{iN}}; i = (\sigma, \omega, \rho); R_{\sigma^*Y} = \frac{g_{\sigma^*Y}}{g_{\sigma Y}}; R_{\phi Y} = \frac{g_{\phi Y}}{g_{\omega N}}$$

Flavour SU(6) symmetry, the vector dominance model, and ideal mixing for the physical ω and ρ fields

Potential felt by a hyperon *i* in matter is given by

$$U_{i} = -g_{\sigma i}\bar{\sigma} - g_{\sigma i}\bar{\sigma}^{*} + g_{\omega i}\bar{\omega} + g_{\rho i}I_{3i}\bar{\rho} + g_{\phi i}\bar{\phi}$$

$$U_{\Lambda}^{(N)}(\rho_0) = -28 \text{ MeV};$$

 $U_{\Sigma}^{(N)}(\rho_0) = 30 \text{ MeV};$
 $U_{\Xi}^{(N)}(\rho_0) = -24 \text{ MeV};$

Hyperon potentials in SNM

 $\Delta B_{\Lambda\Lambda} \left({}^{6}_{\Lambda\Lambda} \text{He} \right) = 0.67 \text{ MeV}$

 $\Lambda\Lambda$ interaction energy

OUTLINE

- Motivation. Structure of Neutron Stars (NS)
- Brief introduction to FSU2H* model
- Equation of State (EoS) and composition of hot neutron star core
- Thermal index of neutron star core
- Summary

• The finite temperature EoS depends on three parameters (ρ_B , T, Y_e)

Wide range of values to account for conditions in PNS and NS mergers:

$$\rho_B = (0.5 - 10)\rho_0$$

$$Y_e = (0 - 0.4); \nu$$
 free case

$$T = 5$$
 MeV and $T = 50$ MeV

and two different lepton situations:

$$Y_e = 0.4$$
 and ν free matter

Solid lines – core without hyperons Dashed lines – core with hyperons

Solid lines – core without hyperons Dashed lines – core with hyperons

Main effects:

Hyperons make the matter more isospin symmetric

Solid lines – core without hyperons Dashed lines – core with hyperons

Main effects:

- Hyperons make the matter more isospin , symmetric
- Hyperons replace the negative leptons in order charge neutrality to be fulfilled.

Solid lines – core without hyperons Dashed lines – core with hyperons

Main effects:

- Hyperons make the matter more isospin 1 symmetric
- Hyperons replace the negative leptons in order charge neutrality to be fulfilled.
- Hyperons increase the neutrino abundance when they are trapped in the core

Solid lines – core without hyperons Dashed lines – core with hyperons

Main effects:

- Hyperons make the matter more isospin 1 symmetric
- Hyperons replace the negative leptons in order charge neutrality to be fulfilled.
- Hyperons increase the neutrino abundance when they are trapped in the core
- At high temperature hyperons are inside the core at any density

- Hyperons induce significant softening of the EoS
- When neutrinos are trapped, the EoS becomes stiffer

- Hyperons induce significant softening of the EoS
- When neutrinos are trapped, the EoS becomes stiffer
- At low temperatures their production changes the slope of the curve

- Hyperons induce significant softening of the EoS
- When neutrinos are trapped, the EoS becomes stiffer
- At low temperatures their production changes the slope of the curve

- Hyperons have strong influence on the entropy per particle
- The effect is more important in ν free matter
- At low temperatures can even break the monotonous behavior of the curve

- Important for stars with isentropic profile
- Flattening the temperature profile in wide range of the core

OUTLINE

- Motivation. Structure of Neutron Stars (NS)
- Brief introduction to FSU2H* model
- Equation of State (EoS) and Composition of hot neutron star core
- Thermal index of neutron star core
- Summary

Thermal index - introduction

• Useful in complicated simulations in order to reproduce thermal effects on the EoS

$$\Gamma(\rho_B, T) \equiv 1 + \frac{P_{\text{th}}}{\epsilon_{\text{th}}} \quad P_{\text{th}} = P(\rho_B, T) - P(\rho_B, T = 0)$$

$$\epsilon_{\text{th}} = \epsilon(\rho_B, T) - \epsilon(\rho_B, T = 0)$$

- One decomposes the energy density and the pressure to a zero-temperature contribution and a thermal correction
- Simulation uses Γ that is constant, so $P(\epsilon)$ relation can be found only knowing T = 0 EoS:

$$\mathbf{P} = P(T=0) + (\Gamma - 1)(\boldsymbol{\epsilon} - \boldsymbol{\epsilon}(T=0))$$

• The parameter that is evolving with the time in simulations is the energy density, so the equation above is from a special interest

However, this approach can be inaccurate!

In all models on the graph, nucleons are the only baryons considered

16

Thermal effects are more emphasized when hyperons are included

16

 $\Gamma = 5/3$

- - T = 10 N

- - T = 20 N

- - T = 30 N

- - T = 50 N

0.6

-T = 10 YN

-T = 20 YN

-T = 30 YN

-T = 50 YN

-T = 100 N

- - T = 100 YN

0.8

- Thermal effects are more emphasized when hyperons are included
- Significant effect on the thermal pressure can be ^[4]
 lower than 0!

- Thermal index is directly affected by the behavior of p_{th}

 $P_{th} = (\Gamma - 1)\epsilon_{th}$

$$P_{th} = (\Gamma - 1)\epsilon_{th}$$

Thermal effects calculated with constant Γ index are not accurate!

NEUTRINOLESS NUCLEONS ONLY CASE

• We assume that the thermal index has the following functional dependence:

$$\Gamma(\rho_B, T) = a_1 + b_1 e^{-c(T)\rho_B^2} + d_1 e^{-e(T)\rho_B}$$
$$c(T) = c_1 T + c_2$$
$$e(T) = e_1 T + e_2$$

• The values of the parameters:

	a_i	b_i	Ci	d_i	ei
2	1.37	6.89 × 10 ⁻¹	1.69×10^{-3}	1.47	-1.41×10^{-1}
	/	/	6.59	/	20.29

NEUTRINOLESS HYPERONIC CASE

• We assume that the thermal index has the following functional dependence:

$$\begin{split} \Gamma(\rho_B, T) &= \frac{a(T)\rho_B + b(T)}{(\rho_B - \rho_{B_c})^2 + c(T)\rho_B + d(T)} \\ &+ e(T)\rho_B + f(T)\sqrt{\rho_B} + g(T) \end{split}$$

$$a(T) &= a_1 T + a_2 \\ b(T) &= b_1 T + b_2 \\ c(T) &= c_1 T^2 + c_2 T + c_3 \\ d(T) &= d_1 T^2 + d_2 T + d_3 \qquad \rho_{Bc} = 0.3715 \text{ fm}^{-3} \\ e(T) &= e_1 T^2 + e_2 T + e_3 \\ f(T) &= f_1 T + f_2 \\ g(T) &= g_1 T^2 + g_2 T + g_3 \end{split}$$

NEUTRINOLESS HYPERONIC CASE

• We assume that the thermal index has the following functional dependence:

				$\Gamma(\rho_B,T)$	$=\frac{a(T)}{(\rho_B-\rho_{B_c})}$	$\frac{r}{\rho_B} + b(T)}{c^2 + c(T)\rho_B} - \frac{b(T)}{c(T)\rho_B}$	+ d(T)		
				$+ e(T)\rho_B + f(T)\sqrt{\rho_B} + g(T)$					
				$a(T) = a_1$	$T + a_2$				
				$b(T) = b_1$	$T + b_2$				
				$c(T) = c_1 Z$	$T^2 + c_2T + c_3$				
i	a _i	b_i	Ci	d_i	ei	fi	gi		
1	-2.02×10^{-4}	1.98×10^{-2}	-1.71×10^{-5}	1.24×10^{-5}	1.11×10^{-4}	3.21×10^{-2}	-6.64×10^{-5}		
2	-6.14×10^{-2}	-1.26×10^{-4}	1.83×10^{-3}	-6.22×10^{-4}	-3.63×10^{-2}	2.60×10^{-1}	-5.13×10^{-3}		
3	/	/	1.56×10^{-2}	-4.83×10^{-3}	7.15×10^{-2}	/	1.48		

-5

3

2

NEUTRINOLESS HYPERONIC CASE

• We assume that the thermal index has the following functional dependence:

$\Gamma(\rho_B, T)$	$\Gamma(\rho_B, T) = \frac{a(T)\rho_B + b(T)}{(\rho_B - \rho_{B_c})^2 + c(T)\rho_B + d(T)} + e(T)\rho_B + f(T)\sqrt{\rho_B} + g(T)$							
$a(T) = a_1 T$	$T + a_2$							
$b(T) = b_1 T$	$T + b_2$							
$c(T) = c_1 T$	$T^2 + c_2 T + c_3$	i						
d_i	ei	fi	gi					
1.24×10^{-5}	1.11×10^{-4}	3.21×10^{-2}	-6.64×10^{-5}					
-6.22×10^{-4}	-3.63×10^{-2}	2.60×10^{-1}	-5.13×10^{-3}					
-4.83×10^{-3}	7.15×10^{-2}	/	1.48					
			19					

- We extended the FSU2H hyper-nucleonic model to finite temperature, constructing the new so-called FSU2H* model, in order to be used in early stages of NS evolution and in NS mergers.
- The model satisfies the major constraints that come from nuclear experiments and astrophysical measurements.
- In order to get the properties of the matter computed within the framework of our model, we performed calculations for β stable matter at different temperatures and different lepton fractions.
- The composition patterns and the EoS are strongly affected by the introduction of hyperons.
- Thermal effects in the star cannot be reproduced with high accuracy with the so-called Γ-law, and that is
 especially important when hyperons are considered in the core.
- A simple parametrization is constructed to account for the strong dependence of the thermal index in ν-less beta stable matter.

Thank you for your attention

UNIVERSITAT DE BARCELONA

MINISTERIO DE CIENCIA E INNOVACIÓN

Hristijan Kochankovski Laura Tolos Angels Ramos

EXOTICO workshop 2022 Trento, Italy 17-21 October 2022

ICCUB

Backup slides

UNIVERSITAT DE BARCELONA

RMF model extended I

$$(i\gamma_{\mu}\partial^{\mu} - m_{b}^{*} - g_{\omega b}\gamma_{0}\omega^{0} - g_{\phi b}\gamma_{0}\phi^{0} - g_{\rho b}I_{3b}\gamma_{0}\rho_{3}^{0})\Psi_{b} = 0,$$

$$(i\gamma_{\mu}\partial^{\mu} - q_{l}\gamma_{\mu}A^{\mu} - m_{l})\psi_{l} = 0,$$

Baryon's and lepton's equations of motions

$$\begin{split} m_{\sigma}^{2}\bar{\sigma} &+ \frac{\kappa}{2}g_{\sigma b}^{3}\bar{\sigma}^{2} + \frac{\lambda}{3!}g_{\sigma b}^{4}\bar{\sigma}^{3} = \sum_{b}g_{\sigma b}\rho_{b}^{s}, \\ m_{\sigma^{*}}^{2}\bar{\sigma}^{*} &= \sum_{b^{*}}g_{\sigma b^{*}}\rho_{b}^{s} \\ m_{\omega}^{2}\bar{\omega} &+ \frac{\zeta}{3!}g_{\omega b}^{4}\bar{\omega}^{3} + 2\Lambda_{\omega}g_{\rho,b}^{2}g_{\omega,b}^{2}\bar{\omega}\bar{\rho}^{2} = \sum_{b}g_{\omega b}\rho_{b}, \\ m_{\rho}^{2}\bar{\rho} &+ 2\Lambda_{\omega}g_{\rho,b}^{2}g_{\omega,b}^{2}\bar{\omega}^{2}\bar{\rho} = \sum_{b}g_{\rho b}I_{3b}\rho_{b}, \\ m_{\phi}^{2}\bar{\phi} &= \sum_{b}g_{\phi b}\rho_{b}, \end{split}$$

$$\begin{split} \rho_b &= <\bar{\Psi}_b \gamma^0 \Psi_b > = \frac{\gamma_b}{2\pi^2} \int_0^\infty dk \, k^2 \, f_b(k,T), \\ \rho_b^s &= <\bar{\Psi}_b \Psi_b > = \frac{\gamma_b}{2\pi^2} \int_0^\infty dk \, k^2 \, \frac{m_b^*}{\sqrt{k^2 + m_b^{*2}}} f_b(T,k) \end{split}$$

Scalar and baryonic density

$$f_b(k,T) = \left[1 + exp\left(\frac{\sqrt{k^2 + m_b^{*2}} - \mu_b^*}{T}\right)\right]^{-1}$$

Fermi – dirac distribution

$$\mu_b^* = \mu_b - g_{b\omega}\bar{\omega} - g_{b\rho}\bar{\rho} - g_{b\phi}\bar{\phi}.$$
$$m_b^* = m_b - g_{\sigma b}\sigma - g_{\sigma^* b}\sigma^*,$$

Effective chemical potential and charge neutrality

Meson's equation of motion in RMF approximation

RMF model extended II

$$\mu_{b^{0}} = \mu_{n},$$

$$\mu_{b^{-}} = 2\mu_{n} - \mu_{p},$$

$$\mu_{b^{+}} = \mu_{p},$$

$$\mu_{n} - \mu_{p} = \mu_{e} - \mu_{\nu_{e}},$$

$$\mu_{e} = \mu_{\mu} + \mu_{\nu_{e}} - \mu_{\bar{\nu}_{\mu}},$$

$$\beta \text{ equilibrium}$$

$$\rho_{B} = \sum_{b} \rho_{b},$$

$$Y_{l} \cdot \rho_{B} = \rho_{l} + \rho_{\nu_{l}}$$

Conservation of baryon and lepton numbers

$$T_{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\Phi_{\alpha})} \partial^{\mu}\Phi_{\alpha} - \eta_{\mu\nu}\mathcal{L},$$

Energy-momentum tensor

$$\begin{split} \epsilon &= < T_{00} > \\ &= \frac{1}{2\pi^2} \sum_b \gamma_b \int_0^\infty dk k^2 \sqrt{k^2 + m_b^{*2}} f_b(k,T) \\ &+ \frac{1}{2\pi^2} \sum_l \gamma_l \int_0^\infty dk k^2 \sqrt{k^2 + m_l^2} f_l(k,T) \\ &+ \frac{1}{2} (m_\omega^2 \bar{\omega}^2 + m_\rho^2 \bar{\rho}^2 + m_\phi^2 \bar{\phi}^2 + m_\sigma^2 \bar{\sigma}^2 + m_{\sigma^*}^2 \bar{\sigma}^{*2}) \\ &+ \frac{\kappa}{3!} (g_\sigma \bar{\sigma})^3 + \frac{\lambda}{4!} (g_\sigma \bar{\sigma})^4 + \frac{\zeta}{8} (g_\omega \bar{\omega})^4 + 3\Lambda_\omega (g_\rho g_\omega \bar{\rho} \bar{\omega})^2, \\ P &= \frac{1}{3} < T_{jj} > \\ &= \frac{1}{6\pi^2} \sum_b \gamma_b \int_0^\infty dk \frac{k^4}{\sqrt{k^2 + m_b^{*2}}} f_b(k,T) \\ &+ \frac{1}{6\pi^2} \sum_l \gamma_l \int_0^\infty dk \frac{k^4}{\sqrt{k^2 + m_l^2}} f_l(k,T) \\ &+ \frac{1}{2} (m_\omega^2 \bar{\omega}^2 + m_\rho^2 \bar{\rho}^2 + m_\phi^2 \bar{\phi}^2 - m_\sigma^2 \bar{\sigma}^2 - m_\sigma^2 \cdot \bar{\sigma}^{*2}) \\ &- \frac{\kappa}{3!} (g_\sigma \bar{\sigma})^3 - \frac{\lambda}{4!} (g_\sigma \bar{\sigma})^4 + \frac{1}{24} \zeta (g_\omega \bar{\omega})^4 + \Lambda_\omega (g_\rho g_\omega \bar{\rho} \bar{\omega})^2, \end{split}$$

$$s = \frac{1}{T} \left(\epsilon + P - \sum_{i} \mu_{i} \rho_{i} \right)$$
$$f = \sum_{i} \mu_{i} \rho_{i} - P.$$

Thermodynamic quantities

Thermal index for different lepton fractions

Speed of sound (T = 0)

