# proton-deuteron femtoscopy in pp collisions

L. Fabbietti (TUM) **O. Vazquez Doce (LNF-INFN)** 





This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754496

EXOTICO workshop @ECT\*, October 20th, 2022. Trento.



### proton-deuteron (p-d) interaction

• p-d interaction is well constrained from the scattering experiments

### <u>Three body forces</u>

- Fundamental to **explain the nuclear structure**, might become more important at higher densities
- Fundamental ingredient for the Equation of State (EoS) of dense nuclear matter
- Theory currently anchored to properties of nuclei, hypernuclei and scattering data

 $\Rightarrow$  p-d correlations in pp collisions at the LHC provide a new way to explore the interaction of a three body system at short distances





### **Production mechanism of light nuclei not understood:**

- Models: Thermal emission or Coalesence
- What can final-state interaction studies say about the formation of deuterons (antideuterons)?



## Motivation

Stanislaw Mrowczynski @EXOTICO







# ALICE data pp collisions @13TeV, High-Multiplicity

Fabbietti, Vázquez Doce



# pp collisions @13TeV, High-Multiplicity

- Run 2 High-multiplicity data set with  $\sim 1 \times 10^9$  events
- Particles are selected in momentum range:
  - (anti)protons:  $0.5 < p_{T} < 4$  GeV/c
  - (anti)deuterons:  $0.4 < p_{\tau} < 2.3$  GeV/c

 $p-d \oplus p-d$  correlation

 $\Rightarrow$  All particles tracked and identified by TPC+TOF purities >98%  $\Rightarrow$  High-Multiplicity sample enhances number of pairs **p**-d⊕**p**-d **p**airs k\*<200 MeV/c = 3851







## p-d experimental correlation function



### **Data corrected for:**

• Finite resolution

corrected using resolution matrices from MC

## **Theoretical correlation function corrected for:**

Feed-down

• Lambda parameters for genuine interaction:  $\lambda_{pd} = 82\%$ • All contributions including feed-down to protons considered as  $C(k^*) = 1$ .

Non-Femtoscopy effects • Baseline fitted with pol-2 (flat at  $k^*=0$ )







Fabbietti, Vázquez Doce

Determination of the source size via  $m_{\tau}$  scaling + effect of resonances

p-d femtoscopy



7

# Common baryon source as a function of $< m_{\tau} >$

Source size is determined via traditional femtoscopy analysis (known interaction)

- fit p-p correlation function ⇒ extract gaussian source radius
- differential  $< m_{\tau} >$  fit  $\Rightarrow$  "map" of source size
- take into account effect of strong decaying resonances







## Source size for pd via m<sub>-</sub> scaling + resonances

- Assume for pd the universal  $m_{\tau}$  scaling
- "Core" radius:

| Source<br>size           | pd           |
|--------------------------|--------------|
| <b>r</b> <sub>core</sub> | 0.99±0.05 fm |







## Source size for pd via $m_{\tau}$ scaling + **resonances**

The source radius is effectively increased by short-lived strongly decaying resonances ( $CT \approx r_{core}$ )



Increase of the source size (long distance tails)

| Source<br>size | pd           |  |
|----------------|--------------|--|
| ۲<br>core      | 0.99±0.05 fm |  |
| ۲<br>eff       | 1.08±0.06 fm |  |









# Theoretical model comparison Lednicky model: pointlike deuterons

Fabbietti, Vázquez Doce



## Lednicky model

### • For distinguishable particles

- Ο
- considers Coulomb effects

$$\psi_{-k^*}(r^*) = e^{i\delta_c} \sqrt{A_c(\eta)} \left[ e^{-ik^*r^*} F\left(-i\eta, 1, i\zeta\right) + f_c(k^*) \frac{\tilde{G}(\rho, \eta)}{r^*} \right]$$

- $f_c$ : Coulomb normalised scattering amplitude for strong interaction Ο
- $\circ$  F(-i\eta, 1, i\zeta) : confluent hypergeometric function
- wavefunction

 $\Rightarrow$  to obtain two-particle correlation we can use Koonin-Pratt formula

starting from the scattering parameters  $\Rightarrow$  define the s-wave two-particle relative wave function

Coulomb-corrected wave function for final-state interactions (Lednicky): <u>arxiv.org/abs/nucl-th/0501065</u>

 $\circ \tilde{G}(\rho,\eta)$ : combination of singular and regular Coulomb function, describes asymptotic behaviour of













# Lednicky model: How accurate is it?

- **Benchmark:** compare correlations with Lednicky model with calculations using
  - pp from AV18 potential
  - K<sup>+</sup>p from Jülich model

| System                   | $f_0(\text{fm})$ | <i>r</i> <sub>0</sub> (fm) | References        |
|--------------------------|------------------|----------------------------|-------------------|
| pp (S=0)                 | 7.806            | 2.788                      | R. Wiringa et al. |
| K <sup>+</sup> p (S=1/2) | -0.316           | 0.373                      | M. Hoffmann et a  |

- Correlations are well reproduced by Lednicky approach
  - even with no anti-symmetrization for pp case!

Convention sign: In this presentation positive (negative)  $f_0$  means attractive (repulsive) interaction



p-d femtoscopy



14

### • Some examples

Lednicky-Luboshits approach vs ALICE data 0









### • Some examples

Lednicky-Luboshits approach vs ALICE data Ο









### • Some examples

Lednicky-Luboshits approach vs ALICE data









# Lednicky model: How accurate is it?

### Some examples

Lednicky-Luboshits approach vs ALICE data







## Lednicky model: pointlike deuterons

### ⇒ pd scattering parameters from fits to pd scattering data

| S = 1/2 |                                 | S = 3/2                         |                          |                                 |                           |
|---------|---------------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------|
|         | $f_0(\mathrm{fm})$              | $r_0(\mathrm{fm})$              | $f_0(\mathrm{fm})$       | $r_0(\mathrm{fm})$              |                           |
|         | $-1.30^{+0.20}_{-0.20}$         |                                 | $-11.40^{+1.80}_{-1.20}$ | $2.05\substack{+0.25 \\ -0.25}$ | Van Oers et al. Nucl. Ph  |
|         | $-2.73_{-0.10}^{+0.10}$         | $2.27\substack{+0.12 \\ -0.12}$ | $-11.88^{+0.40}_{-0.10}$ | $2.63\substack{+0.01 \\ -0.02}$ | J.Arvieux et al. Nucl. Ph |
|         | -4.0                            |                                 | -11.1                    |                                 | E.Huttel et al. Nucl. Phy |
|         | -0.024                          |                                 | -13.7                    |                                 | A.Kievsky et al. Phys. L  |
|         | $0.13\substack{+0.04 \\ -0.04}$ |                                 | $-14.70^{+2.30}_{-2.30}$ |                                 | T. C. Black Phys. Lett, I |

Assumption: Deuteron as point like particle

nys. A 561 (1967)

nys. A92 221 (1973)

/s. A406 443 (1983)

ett, B406 292 (1997)

B471 103 (1999)





## Lednicky model: pointlike deuterons

### ⇒ pd scattering parameters from fits to pd scattering data

| S = 1/2                         |                                 | S = 3/2                  |                                 |                            |
|---------------------------------|---------------------------------|--------------------------|---------------------------------|----------------------------|
| $f_0(\mathrm{fm})$              | $r_0(\mathrm{fm})$              | $f_0(\mathrm{fm})$       | $r_0(\mathrm{fm})$              |                            |
| $-1.30^{+0.20}_{-0.20}$         |                                 | $-11.40^{+1.80}_{-1.20}$ | $2.05\substack{+0.25 \\ -0.25}$ | Van Oers et al. Nucl. Ph   |
| $-2.73^{+0.10}_{-0.10}$         | $2.27\substack{+0.12 \\ -0.12}$ | $-11.88_{-0.10}^{+0.40}$ | $2.63_{-0.02}^{+0.01}$          | J.Arvieux et al. Nucl. Ph  |
| -4.0                            |                                 | -11.1                    |                                 | E.Huttel et al. Nucl. Phys |
| -0.024                          |                                 | -13.7                    |                                 | A.Kievsky et al. Phys. Le  |
| $0.13\substack{+0.04 \\ -0.04}$ |                                 | $-14.70^{+2.30}_{-2.30}$ |                                 | T. C. Black Phys. Lett, E  |

Assumption: Deuteron as point like particle

### pd data not described

Model and data disagree for source size r = 1.08 fm

➡ Model does not account for p-(p-n) interaction

⇒ pd can't be treated as effective two-body system







# Pisa model: pd as three-body system

Fabbietti, Vázquez Doce





## p-d correlation with d as composite object

Model under construction: Three-body dynamics calculation by PISA theory group: M. Viviani, A. Kievsky, L. Marcucci

- Two-body interaction Argonne V18 potential
- Three-body interaction Urbana XI potential
- **Deuteron wave-function** from AV18 NN interaction
- Deuteron is formed at the same time as the proton

## Full calculation of a three-body p-p-n system projected into the p-d final state







## p-d correlation with d as composite object

### • Three-body full p-d wave function $\Psi_{m_2,m_1}(x,y)$ describing three body dynamics, anchored to p-d scattering observables.

- $\circ$  x = distance of p-n system within the deuteron
- $\circ$  y = p-d distance
- $\circ$  m<sub>2</sub> and m<sub>1</sub> deuteron and proton spin
- $\Psi_{m_2,m_1}(x,y)$  projected to obtain an effective proton-deuteron wave function:  $\Psi_{m'_2,m'_1,m_2,m_1}(k,\mathbf{y}) = \int d^3x \left[ \phi_{m'_2}(1,2)(\mathbf{x}) \chi_{m'_1}(k,\mathbf{y}) \right] d^3x \left[ \phi_{m'_2}(1,2)(\mathbf{x}) \chi_{m'_2}(k,\mathbf{y}) \right] d^3x \left[ \phi_{m'_2}(k,\mathbf{y}) \chi_{m'_2}(k,\mathbf{y}) \right] d^3x \left[ \phi$

with  $\varphi_{m_2}$ ,  $\chi_{m_1}$  the deuteron and proton wave-functions

• The correlation function is defined as

$$C_{pd}(k) = 3 \times \frac{1}{6} \sum_{m_2, m_1} \sum_{m'_2, m'_1} \int d^3 y S_R(y) |\psi_{m'_2, m'_1}|^2$$

$$(3) \Big]^{\mathsf{T}} \Psi_{m_2,m_1}(\mathbf{x},\mathbf{y}) \; .$$

 $|m_{2,m_1}(k, \mathbf{y})|^2$ .









# Pisa model vs ALICE data

## **WORK IN PROGRESS:**

Preliminary Model including NN and NNN interactions in s+d-wave agrees much better with data









# Pisa model vs ALICE data

## **WORK IN PROGRESS:**

Preliminary Model including NN and NNN interactions in s+d-wave agrees much better with data

- ...everything seems to be "back to normal":
- Coulomb interaction not strong enough to describe the data
- Data sensitive to inclusion of d-wave
- Source size =  $1.08 \pm 0.06$  fm  $\Rightarrow$  fully formed deuteron present assuming small source







# Conclusions and outlook

Fabbietti, Vázquez Doce





# Conclusions

# Three-particle systems can be accessed and studied at the LHC in pp collisions with a novel technique

### Proton-deuteron femtoscopy

- Cannot be treated as effective two-body system: assumption of pointlike and distinguishable particles does not work
- Deuteron described as composite object interacting with a proton: model considering p(pn) three-body dynamics reproduce the data
  - Source size extracted from the 'universal'  $m_{T}$  scaling.
  - Small distance probes short range NNN interaction
  - Measured correlation function sensitive to inclusion of higher partial waves
- More statistics = more physics: A  $m_T$  dependent study would enable access to shorter distances for the three body system in the near future.



