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Update: Millener, Dover, Gal PRC 38, 2700 (1988)
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OUTLINE
Experimental binding energies of Λ hypernuclei up to Pb

Density-dependent potentials indicated a repulsive ρ2 term
in addition to an attractive dominant one

At ρ0=0.17 fm−3 most ΛN potential models overbind

’Statement of mission’

The optical potential

Results

Discussion
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Statement of mission

The optical potential employed in this work,

V opt
Λ (ρ) = V

(2)
Λ (ρ) + V

(3)
Λ (ρ),

consists of terms representing two-body ΛN and three-body ΛNN
interactions, respectively.

Our aim in the present phenomenological study is to check to what
extent properly chosen Λ hypernuclear binding energy data, with

minimal extra assumptions, imply repulsive V
(3)
Λ (ρ), and how large

it is.
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The optical potential employed is

V
(2)
Λ (ρ) = − 4π

2µΛ
fA CPauli(ρ) b0ρ, V

(3)
Λ (ρ) = + 4π

2µΛ
fA B0

ρ2

ρ0
,

with b0 and B0 in units of fm (ℏ = c = 1). A is the mass number
of the nuclear core, ρ0 = 0.17 fm−3 is nuclear matter density, µΛ is
the Λ-nucleus reduced mass, fA is a kinematical factor transforming
b0 from ΛN c.m. to Λ-nucleus c.m., and CPauli(ρ) for αP = 1 is a
Pauli correlations factor:

fA = 1 + A−1
A

µΛ
mN

, CPauli(ρ) = [1 + αP
3kF
2π (1 + mΛ

mN
)b0]

−1,

with Fermi momentum kF = (3π2ρ/2)1/3.

In another version we replaced (1 + mΛ
mN

) by fA.
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Densities are constrained by experimental charge r.m.s.radii:

V
(2)
Λ (ρ) = − 4π

2µΛ
fA CPauli(ρ) b0ρ, V

(3)
Λ (ρ) = + 4π

2µΛ
fA B0

ρ2

ρ0
.

Use charge densities for ρp throughout. For ρn use the same radial
parameter as for ρp in light and medium-weight nuclei, and slightly
different parameters for ρn in heavy species,
rn − rp = 1.1N−Z

A − 0.04 fm, for r.m.s radii.

What can be expected?
When B0 = 0, b0 is expected to be the ΛN scattering length.

Experimental ΛN spin-averaged scattering length=1.7±0.1 fm
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Use high-quality data for a single species for calibration.
16
ΛN is not too light, single proton hole in the 1p shell.
1st and 3rd peaks from left are 1s and 1p Λ-nucleus states
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Binding energies in MeV, including uncertainties

hypernucleus 1sΛ ± 1pΛ ±
12
ΛB 11.52 0.02 0.54 0.04
13
ΛC 12.0 0.2 1.1 0.2

16
ΛN 13.76 0.16 2.84 0.18

28
ΛSi 17.2 0.2 7.6 0.2
32
ΛS 17.5 0.5 8.2 0.5

51
ΛV 21.5 0.6 13.4 0.6
89
ΛY 23.6 0.5 17.7 0.6

139
ΛLa 25.1 1.2 21.0 0.6

208
ΛPb 26.9 0.8 22.5 0.6

We fit two parameters to the 16
ΛN data. Then we compare

calculations with the rest of the data.
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Method

potential P: fit only b0 to B1s(
16
Λ N) = 13.76± 0.16 MeV

potential P’: as P but with inevitable Pauli correlations (not
shown)

potential Q: fit b0 and B0 to B1s(
16
Λ N) = 13.76± 0.16 MeV

and B1p(
16
Λ N) = 2.84± 0.18 MeV. No Pauli correlations.

potential X: as Q, including Pauli correlations.

potential Y; as X, including ‘core-excess’ correction.
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Strength parameters b0,B0 (fm) in models P,P’,Q plus their

respective potential depths D
(2)
Λ , D

(3)
Λ and sum DΛ (MeV) at

nuclear matter density ρ0 = 0.17 fm−3. Pauli correlations are
switched off (on) using αP = 0 (1).

Model αP b0 B0 D
(2)
Λ D

(3)
Λ DΛ

P 0 0.418 – −34.1 – −34.1
P’ 1 0.908 – −32.3 – −32.3
Q 0 0.706 0.370 −57.6 30.2 −27.4

b0 is attractive; B0 is repulsive.

Experimental ΛN spin-averaged scattering length=1.7±0.1 fm
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Model X is model Q with Pauli correlations
b0 = 1.85 fm, B0 = 0.170fm.
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The observed underbinding while b0 = the free ΛN scattering
length suggests that the ΛNN interaction is oversimplified and too
repulsive for heavy species.

For N >Z medium weight and heavy nuclei one may write
ρ = ρc + ρex where ρc refers to a ‘core’ of Z protons and Z
neutrons in parallel shell-model orbits, and ρex represent the N-Z
excess neutrons.
Expecting that direct three-body ΛNN contributions involving one
‘core’ nucleon and one ‘excess’ nucleon vanish upon summing on
the T=0 ‘core’ closed-shell nucleons, we modify ρ2 by discarding
the bilinear term ρc ρex , replacing ρ2 by

ρ2c + ρ2ex = (2ρp)
2 + (ρn − ρp)

2

in terms of the input densities ρp and ρn.

Model Y is model X with the above expression for ρ2.
In model Y0 fA is used in the Pauli correction.
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A simple model conserving volume integrals and making small
approximations on r.m.s. radii is ρc = 2ρp, ρex = ρn − ρp.

It is easy to show that the volume integral of (ρc)
2 + (ρex)

2 is
smaller than the volume integral of ρ2 by approximately a
suppression factor

F = [4Z 2 + (N-Z )2]/[N + Z ]2.

Applying this factor to ρ2 in the potential leads to results almost
identical to results when the form (ρc)

2 + (ρex)
2 is used.
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Strength parameters b0,B0 (fm) in models P,P’,Q,X,Y plus their

respective potential depths D
(2)
Λ , D

(3)
Λ and sum DΛ (MeV) at

nuclear matter density ρ0 = 0.17 fm−3. Pauli correlations are
switched off (on) using αP = 0 (1).

Model αP b0 B0 D
(2)
Λ D

(3)
Λ DΛ

P 0 0.418 – −34.1 – −34.1
P’ 1 0.908 – −32.3 – −32.3
Q 0 0.706 0.370 −57.6 30.2 −27.4
X,Y 1 1.85 0.170 −41.6 13.9 −27.7

b0 is attractive; B0 is repulsive.

Experimental ΛN spin-averaged scattering length=1.7±0.1 fm

Final values for ρ0 = 0.17fm−3

D
(2)
Λ = −(40.6± 1.0)MeV, D

(3)
Λ = (13.9± 1.4)MeV, and

DΛ = −26.7± 1.7 MeV.
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Discussion

Other calculations do NOT apply the Pauli correction.

Consequently their D
(2)
Λ and D

(3)
Λ come out larger than ours, but

the sum DΛ agrees with our result, within uncertainties.

Quantum Monte Carlo calculations used nuclear r.m.s. radii that
are some 20% smaller than the corresponding charge radii.
Estimating the very large corrections required, their results would
agree with ours.
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Summary
A simple phenomenological optical potential based on nuclear
densities constrained by charge radii and containing ρ and ρ2

terms, where a Pauli correlations effect is applied, is capable of
describing experimental 1s and 1p Λ-nuclear binding energies with
two parameters.

The ρ2 term turns out to be repulsive and larger by a few MeV
than the one leading to the Λ chemical potential to be larger than
the chemical potential for neutrons in pure neutron matter.
(Gerstung, Kaiser and Weise, Eur. Phys. J. A 56,175 (2020)).
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Thanks for your attention!
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Suppressing ρ2 in medium-weight and heavy species

ρ = ρc + ρex .

By definition:∫
ρ2dr⃗ = A

∫
ρ ρ
Adr⃗ = Aρ̄∫

ρ2cdr⃗ = 2Z
∫
ρc

ρc
2Z dr⃗ = 2Z ρ̄c∫

ρ2exdr⃗ = (N − Z )
∫
ρex

ρex
N−Z dr⃗ = (N − Z )ρ̄ex

ρ2 = (ρc + ρex)
2 = ρ2c + ρ2ex + 2ρcρex .

Ignoring the crossed term 2ρcρex and approximating
ρ̄c = 2Z

A ρ̄, ρ̄ex = N−Z
A ρ̄, we get∫

ρ2dr⃗ →
∫
(ρc + ρex)

2dr⃗ = (2Z)2+(N−Z)2

A2

∫
ρ2dr⃗ .

Hence we apply a suppression factor F = (2Z)2+(N−Z)2

A2 to the ρ2

term in the potential.
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