ΛNN content of Λ -nucleus potential

E. Friedman, A. Gal

Racah Institute of Physics, Hebrew University, Jerusalem

ECT* workshop: EXOTICO

EXOTIC ATOMS MEET NUCLEAR COLLISIONS FOR A NEW FRONTIER PRECISION ERA IN LOW-ENERGY

STRANGENESS NUCLEAR PHYSICS

Trento, October 2022

Woods-Saxon V = 30.05 MeV, r = 1.165 fm, a = 0.6 fm

A hypernuclei: binding energies and Woods-Saxon fits, 2016

□ ▶ < ⓓ ▶ < 팉 ▶ < 팉 ▶ 팉 < 의 < 은 2/22

OUTLINE

- \bullet Experimental binding energies of Λ hypernuclei up to Pb
- \bullet Density-dependent potentials indicated a repulsive ρ^2 term in addition to an attractive dominant one

・ロト ・ 日 ・ 王 ト ・ 王 ・ りへで

- At $\rho_0=0.17 \text{ fm}^{-3} \text{ most } \Lambda N$ potential models overbind
- 'Statement of mission'
- The optical potential
- Results
- Discussion

Statement of mission

The optical potential employed in this work, $V_{\Lambda}^{\text{opt}}(\rho) = V_{\Lambda}^{(2)}(\rho) + V_{\Lambda}^{(3)}(\rho)$, consists of terms representing two-body ΛN and three-body ΛNN interactions, respectively.

Our aim in the present phenomenological study is to check to what extent properly chosen Λ hypernuclear binding energy data, with minimal extra assumptions, imply repulsive $V_{\Lambda}^{(3)}(\rho)$, and how large it is.

The optical potential employed is

$$V^{(2)}_{\Lambda}(\rho) = -rac{4\pi}{2\mu_{\Lambda}} f_{A} C_{\mathrm{Pauli}}(\rho) b_{0}\rho, \ V^{(3)}_{\Lambda}(\rho) = +rac{4\pi}{2\mu_{\Lambda}} f_{A} B_{0} rac{
ho^{2}}{
ho_{0}},$$

with b_0 and B_0 in units of fm ($\hbar = c = 1$). A is the mass number of the nuclear core, $\rho_0 = 0.17$ fm⁻³ is nuclear matter density, μ_{Λ} is the Λ -nucleus reduced mass, f_A is a kinematical factor transforming b_0 from ΛN c.m. to Λ -nucleus c.m., and $C_{\text{Pauli}}(\rho)$ for $\alpha_P = 1$ is a Pauli correlations factor:

$$f_A = 1 + rac{A-1}{A} rac{\mu_A}{m_N}, \quad C_{ ext{Pauli}}(
ho) = [1 + lpha_P rac{3k_F}{2\pi} (1 + rac{m_A}{m_N}) b_0]^{-1},$$

with Fermi momentum $k_F = (3\pi^2 \rho/2)^{1/3}$.

In another version we replaced $(1 + \frac{m_{\Lambda}}{m_{N}})$ by f_{A} .

Densities are constrained by experimental charge r.m.s.radii:

$$V^{(2)}_{\Lambda}(\rho) = -rac{4\pi}{2\mu_{\Lambda}} f_{A} C_{\mathrm{Pauli}}(\rho) b_{0} \rho, \ V^{(3)}_{\Lambda}(\rho) = +rac{4\pi}{2\mu_{\Lambda}} f_{A} B_{0} rac{
ho^{2}}{
ho_{0}}.$$

Use charge densities for ρ_p throughout. For ρ_n use the same radial parameter as for ρ_p in light and medium-weight nuclei, and slightly different parameters for ρ_n in heavy species, $r_n - r_p = 1.1 \frac{N-Z}{A} - 0.04$ fm, for r.m.s radii.

What can be expected? When $B_0 = 0$, b_0 is expected to be the ΛN scattering length.

Experimental ΛN spin-averaged scattering length=1.7 \pm 0.1 fm

Use high-quality data for a single species for calibration. ${}^{16}_{\Lambda}$ N is not too light, single proton hole in the 1p shell. 1st and 3rd peaks from left are 1s and 1p Λ -nucleus states

¹⁶O($e, e'K^+$), F. Garibaldi *et. al.* PRC99 (2019) 054309

Binding energies in MeV, including uncertainties

hypernucleus	$1s_{\Lambda}$	±	$1 p_{\Lambda}$	±
¹² _A B	11.52	0.02	0.54	0.04
¹³ _A C	12.0	0.2	1.1	0.2
	13.76	0.16	2.84	0.18
²⁸ Si	17.2	0.2	7.6	0.2
³² / _A S	17.5	0.5	8.2	0.5
51 ^V	21.5	0.6	13.4	0.6
89 A	23.6	0.5	17.7	0.6
¹³⁹ La	25.1	1.2	21.0	0.6
²⁰⁸ Pb	26.9	0.8	22.5	0.6

We fit two parameters to the $^{16}_{\ \Lambda}N$ data. Then we compare calculations with the rest of the data.

<u>Method</u>

- potential P: fit only b_0 to $B_{1s}(^{16}_{\Lambda}\text{N}) = 13.76 \pm 0.16 \text{ MeV}$
- potential P': as P but with inevitable Pauli correlations (not shown)
- potential Q: fit b_0 and B_0 to $B_{1s}({}^{16}_{\Lambda}N) = 13.76 \pm 0.16$ MeV and $B_{1p}({}^{16}_{\Lambda}N) = 2.84 \pm 0.18$ MeV. No Pauli correlations.

- potential X: as Q, including Pauli correlations.
- potential Y; as X, including 'core-excess' correction.

Strength parameters b_0 , B_0 (fm) in models P,P',Q plus their respective potential depths $D_{\Lambda}^{(2)}$, $D_{\Lambda}^{(3)}$ and sum D_{Λ} (MeV) at nuclear matter density $\rho_0 = 0.17$ fm⁻³. Pauli correlations are switched off (on) using $\alpha_P = 0$ (1).

Model	α_{P}	b 0	B_0	$D^{(2)}_{\Lambda}$	$D^{(3)}_{\Lambda}$	D_{Λ}
Р	0	0.418	_	-34.1	_	-34.1
Ρ'	1	0.908	-	-32.3	-	-32.3
Q	0	0.706	0.370	-57.6	30.2	-27.4
ho is attractive: Bo is repulsive						

Experimental ΛN spin-averaged scattering length=1.7 \pm 0.1 fm

Experimental ΛN spin-averaged scattering length=1.7 \pm 0.1 fm

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

The observed underbinding while b_0 = the free ΛN scattering length suggests that the ΛNN interaction is oversimplified and too repulsive for heavy species.

For N >Z medium weight and heavy nuclei one may write $\rho = \rho_c + \rho_{ex}$ where ρ_c refers to a 'core' of Z protons and Z neutrons in parallel shell-model orbits, and ρ_{ex} represent the N-Z excess neutrons.

Expecting that direct three-body ΛNN contributions involving one 'core' nucleon and one 'excess' nucleon vanish upon summing on the T=0 'core' closed-shell nucleons, we modify ρ^2 by discarding the bilinear term $\rho_c \rho_{ex}$, replacing ρ^2 by

$$\rho_c^2 + \rho_{ex}^2 = (2\rho_p)^2 + (\rho_n - \rho_p)^2$$

in terms of the input densities ρ_p and ρ_n .

Model Y is model X with the above expression for ρ^2 . In model Y0 f_A is used in the Pauli correction.

A simple model conserving volume integrals and making small approximations on r.m.s. radii is $\rho_c = 2\rho_p, \ \rho_{ex} = \rho_n - \rho_p.$

It is easy to show that the volume integral of $(\rho_c)^2 + (\rho_{ex})^2$ is smaller than the volume integral of ρ^2 by approximately a suppression factor

 $F = [4Z^2 + (N-Z)^2]/[N+Z]^2.$

Applying this factor to ρ^2 in the potential leads to results almost identical to results when the form $(\rho_c)^2 + (\rho_{ex})^2$ is used.

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

Strength parameters b_0 , B_0 (fm) in models P,P',Q,X,Y plus their respective potential depths $D_{\Lambda}^{(2)}$, $D_{\Lambda}^{(3)}$ and sum D_{Λ} (MeV) at nuclear matter density $\rho_0 = 0.17$ fm⁻³. Pauli correlations are switched off (on) using $\alpha_P = 0$ (1).

Model	α_{P}	b 0	B_0	$D^{(2)}_{\Lambda}$	$D^{(3)}_{\Lambda}$	D_{Λ}
Р	0	0.418	-	-34.1	-	-34.1
Ρ'	1	0.908	-	-32.3	-	-32.3
Q	0	0.706	0.370	-57.6	30.2	-27.4
X,Y	1	1.85	0.170	-41.6	13.9	-27.7

 b_0 is attractive; B_0 is repulsive.

Experimental ΛN spin-averaged scattering length=1.7 \pm 0.1 fm

Final values for $\rho_0 = 0.17 \text{fm}^{-3}$ $D_{\Lambda}^{(2)} = -(40.6 \pm 1.0) \text{MeV}, \quad D_{\Lambda}^{(3)} = (13.9 \pm 1.4) \text{MeV}, \text{ and } D_{\Lambda} = -26.7 \pm 1.7 \text{ MeV}.$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ < つ < ○ 17/22</p>

Discussion

Other calculations do NOT apply the Pauli correction. Consequently their $D_{\Lambda}^{(2)}$ and $D_{\Lambda}^{(3)}$ come out larger than ours, but the sum D_{Λ} agrees with our result, within uncertainties.

Quantum Monte Carlo calculations used nuclear r.m.s. radii that are some 20% smaller than the corresponding charge radii. Estimating the very large corrections required, their results would agree with ours.

Summary

A simple phenomenological optical potential based on nuclear densities constrained by charge radii and containing ρ and ρ^2 terms, where a Pauli correlations effect is applied, is capable of describing experimental 1s and 1p A-nuclear binding energies with two parameters.

The ρ^2 term turns out to be repulsive and larger by a few MeV than the one leading to the Λ chemical potential to be larger than the chemical potential for neutrons in pure neutron matter. (Gerstung, Kaiser and Weise, Eur. Phys. J. **A 56**,175 (2020)).

Thanks for your attention!

Suppressing ρ^2 in medium-weight and heavy species

 $\rho = \rho_c + \rho_{ex}$. By definition: $\int \rho^2 d\vec{r} = A \int \rho \frac{\rho}{A} d\vec{r} = A\bar{\rho}$ $\int \rho_c^2 d\vec{r} = 2Z \int \rho_c \frac{\rho_c}{2Z} d\vec{r} = 2Z\bar{\rho}_c$ $\int \rho_{e_x}^2 d\vec{r} = (N-Z) \int \rho_{e_x} \frac{\rho_{e_x}}{N-Z} d\vec{r} = (N-Z) \bar{\rho}_{e_x}$ $\rho^2 = (\rho_c + \rho_{ex})^2 = \rho_c^2 + \rho_{ex}^2 + 2\rho_c \rho_{ex}.$ Ignoring the crossed term $2\rho_c\rho_{ex}$ and approximating $\bar{\rho}_c = \frac{2Z}{\Lambda}\bar{\rho}, \qquad \bar{\rho}_{ex} = \frac{N-Z}{\Lambda}\bar{\rho}, \qquad \text{we get}$ $\int \rho^2 d\vec{r} \to \int (\rho_c + \rho_{ex})^2 d\vec{r} = \frac{(2Z)^2 + (N-Z)^2}{A^2} \int \rho^2 d\vec{r}.$

Hence we apply a suppression factor $F = \frac{(2Z)^2 + (N-Z)^2}{A^2}$ to the ρ^2 term in the potential.

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

