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This work in a sentence
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We employ a feed-forward ANN to extrapolate at large model spaces
the results of ab-initio hypernuclear NCSM calculations for the L
separation energy BL of the lightest hypernuclei, obtained in accessible
HO basis spaces using chiral NN, NNN &YN interactions



Machine Learning
Machine Learning is a branch of Artificial Intelligence whose scope is to devise algorithms able to recognize
patterns in previously unseen data without any explicit instructions by an external party. Different types of ML
include

Known input-output (feature-label) relations are given to the machine
learning algorithm to trained it and infer a mapping therefrom. Once the
model is trained based on the known data, one can use unknown data into the
model to get predictions. Used for Classification & Regression problems

§ Supervised Learning

§ Unsupervised Learning

The output of the input training data is unknown. The input data is fed to the
Machine Learning algorithm and is used to train the model which then is
employed to search for patterns in the data. Used for Clustering &
Generation problems

§ Reinforced learning
Given a framework of rules and goals, an agent (algorithm) learns in an
interactive environment by trial and error using feedback from its own
actions and experiences and it gets rewarded or punished depending on which
strategy it uses. Each reward reinforces the current strategy, while punishment
leads to an adaptation of its policy. Example: games such as Chess or Go



Machine Learning in Physics
Machine Learning has been applied in different areas of physics that include among others:

Ø Condense matter

Ø Statistical physics

Ø Cold atoms

Ø Quantum many-body
theory

Ø Quantum computing

Ø Cosmology

Ø Particle physics

Ø Nuclear physics

Ø …

A spectacular increase of the number of publications related with
AI or ML is observed in physical sciences in the last years



Machine Learning Applications  in Nuclear Theory
Since the pioneering work of Gazula et al., NPA 540 1 (1992), who employed a feed forward neural
network to study global nuclear properties across the nuclear landscape, Machine Learning has been
used to predict

Ø Nuclear masses & charge radii
Ø a- & b-decay half-lives
Ø Fission yields
Ø Fusion reaction cross sections
Ø Isotropic cross-sections in proton-induced spallation reactions
Ø Ground and excited state energies
Ø Dripline locations
Ø The deuteron properties
Ø Proton radius
Ø Liquid-gas phase transition
Ø Nuclear energy density functionals
Ø Neutron star EoS
Ø The nucleon axial form factor from neutrino scattering
Ø Extrapolation of A-body results with ANN
Ø …

2003 2020

Number of nuclear theory ML papers



Recently, ANN have been employed to extrapolate the results of ab-initio nuclear structure calculations in finite
model spaces. Particularly:
• Negoita et al., PRC 99, 054308 (2019) have used a feed-forward
ANN method for predicting the ground state energy and the
ground state point proton root-mean-squared radius of 6Li
training the network with NCSM results, obtained in accessible
harmonic oscillator (HO) basis spaces. They showed that an ANN is
able to predict correctly extrapolations of the NCSM results to very
large model spaces of size Nmax ∼ 100.

• Similarly, Jiang et al., PRC 100, 054326 (2019) have also
employed an ANN to extrapolate the ground state energy and
radii of 4He, 6Li & 16O computed with the NCSM and the
coupled-cluster (CC) methods.

4He with NCSM+NNLOopt

16O with CC+NNLOopt

Machine Learning Applications  in Nuclear Theory

Here we follow the work of these authors, to extrapolate at large model spaces the results of ab-initio hypernuclear NCSM calculations for the
L separation energy BL of the lightest hypernuclei



Machine Learning Process: General Scheme

PHASE 1: TRAINING (LEARNING)

PHASE 2: PREDICTION

The task of making a machine to learn is made of 2 phases



Architecture of the ANN
• ANNs consist of a series of layers (input, hidden & output) each one
contained a certain number of interconnected neurons

Architecture of our ANN. The input data are the HO
spacings hw and the maximum number of basis states Nmax
employed in hypernuclear NCSM calculations, whereas the
output is the L separation energy

• In a feed-forward ANN, neurons do not form a cycle and the data propagates
sequentially from the input to the output layer through all the hidden layers

• At each one of the Nk neurons i of a given layer k, the set of input data
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Ø f 𝑧 : activation function, introduces non-linearities on the
neural network that enable it to capture complex non-linear
relationships in the dataset. In this work we use a sigmoid
activation function 𝑓(z)= 𝑒$ + 1 %&

Ø 𝑊'!
(#), 𝑏'

(#): fitting parameters of the ANN. Are the weights of
the connections between the neurons of the two adjacent layers
k-1 & k, and the activation offset (bias) of each neuron of the
layer k. The total number of fitting parameters np is
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𝑁# + 1 𝑁#,'Numerical implementation with Python libraries Scikit-
learn & Keras using a TensorFlow backend



Hyperparameters are the variables which determine the network structure (e.g., number of hidden layers and neurons, type of
regularization techique, initializatial values of weights & biases, type of activation function … ) and the variables which
determine how the network is trained (e.g., learning rate, number of epochs (iterations), bach size, …). They are set before the
training of the network

Neural Network Hyperparameters

Ø Number of hidden layers & neurons : Many hidden layers and neurons layer can increase accuracy. Smaller number of hidden layers and
neurons may cause underfitting

Ø Initial values of weights & biases: different weight initialization schemes can be used to start the training

Ø Dropout: is a regularization technique to avoid overfitting (seen later). It consist on
dropping randomly neurons from the neural network during training in each iteration.
The number of dropped neurons is another hyperparameter

Ø Type of activation function: different types of activation function (seen later) can be used to introduce non-linearities

§ Hyperparameters related to the network structure§ Hyperparameters related to the network structure

§ Hyperparameters related to the training of the network

Ø Learning rate: defines how quickly a network updates its parameters

Ø Number of epochs or iterations: is the number of times the whole training data is shown to the network while training

Ø Batch size: is the number of samples given to the network after which parameter update happens



The Learning Process of an ANN
The learning (or training) process of an ANN involves the minimization of a cost (also called loss or error)
function (which compares the desired ouput (target) and the predicted one by the ANN) in order to obtain the
optimal set of fitting parameters (weights and biases) of the network. The minimization is usually done by
using algorithms such as the so-called gradient descent

§ Regression Cost Functions — used when solving a regression problem. Two examples of them
are the Mean Squared Error, the Mean Absolute Error

§ Classification Cost Functions — used when solving a classification problema. Among these
type we can distinguish the Binary Cross-Entropy and the Categorical Cross-Entropy

Choice of a Cost Function

In general, the choice of the cost function depends on the type of problem one is solving with a neural
network. In supervised learning, there are two main types of cost functions:



Batch Gradient Descent
Batch Gradient Descent or simply Gradient Descent is an iterative optimization algorithm for
finding a local minimum of a differenciable function

Idea: Take repeated steps in the opposite direction of the
gradient since the gradient of a multi-variable function J 𝜽
defines the direction of its maximum increase. One starts with
a guess 𝜃- and considers the sequence 𝜃', 𝜃., 𝜃/, ⋯ according to

With this idea in mind the weights 𝝎𝒋𝒌
𝒍 & biases 𝒃𝒋𝒍 of the network are updated at each iteration

according to:
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0

where h is the so-called learning rate, one of the hyperparameters of the newtwork, and it scales
the magnitude of the weighs and biases updates

𝜃1,' = 𝜃1 − 𝜂∇𝐽 𝜃1 , with h > 0



Batch Gradient Descent Algorithm

The Batch Gradient Descent Algorithm is quite simple. For each epoch (or iteration) of the training do the
following steps:

1. Feed the network with the entire training input dataset 𝑥⃗

2. Calculate the cost function and update the weigths & biases

3. Repeat steps 1 – 2 until the convergence the cost function is substancially reduced 
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A comment in the learning rate h
A proper value of h plays a crucial role in gradient descent

§ Choose h too small and the algorithm will converge very slowly or get stuck in the local minima

§ Choose h too big and the algorithm will never converge either because it will oscillate between
around the minima or it will diverge by overshooting the range



Effect of the learning rate h in the convergence of the Gradient Descent 
Algorithm

This figure tries to summarize the effect of h on
the convergence of the gradient descent algorithm

§ The yellow curve shows the divergence of the algorithm
when the learning rate is really high wherein the learning
steps overshoot.

§ The green curve shows the case where learning rate is not
as large as the previous case but is high enough that the
steps keep oscillating at a point which is not the minima.

§ The red curve would be the optimum curve for the cost
drop as it drops steeply initially and then saturates very
close to the optimum value.

§ The blue curve is the least value of h and converges very
slowly as the steps taken by the algorithm during update
steps are very small.



1. In a feed-forward ANN information
propagates sequentially from through
all the layers form the input to the
output ones

2. The error (also known as cost or loss
function) is evaluated

3. The error is propagated backwards to
determine the new values of the fitting
parameters at each layer & neuron

4. Steps 1 to 3 are repeated iteratively
until a small error is reached

The Backpropagation Algorithm: General Scheme 

Backpropagation is a method used to calculate efficiently the
gradient of the cost function and adjust the connection
weights & the biases to reduce the error during the learning
process



The Backpropagation Algorithm: Main Ingredients 
Before presenting the backpropagation algorithm let us first recall the notation and present the main
ingredients:

§ 𝜔!#( : weight between the neuron k-th in the layer (l-1)-th and the neuron j-th in the layer l-th

§ 𝑏!(: bias of neuron j-th in the layer l-th

§ 𝑧!( = ∑#𝜔!#( 𝑎#($% + 𝑏!( ∶weighted input of neuron j-th in the layer l-th

§ 𝑎!( = 𝑓 𝑧!( : activation (output) of neuron j-th in the layer l-th (note that 𝒂𝒋𝑳 = ,𝒚𝒋)

layer (l-1)-th layer l-th

𝑎#0)' 𝑎%
0

A little change ∆𝑧+, in the weighted input of neuron j-th in the layer l-th will propagate through later layers in
the network, finally causing the overall cost to change by an amount -.

-/2
3 ∆𝑧+,,where -.

-/2
3 can be interpreted as

a measurement the of the error of neuron j-th in the layer l-th

𝛿%
0 ≡

𝜕𝐶
𝜕𝑧%

0 =
𝜕𝐶
𝜕𝑎%

0

𝜕𝑎%
0

𝜕𝑧%
0 =

𝜕𝐶
𝜕𝑎%

0 𝑓′ 𝑧%
0 (BP1)



The Backpropagation Algorithm: Main Ingredients

Since the weighted inputs in the layer (l+1)−th (𝑧0,12) depend on the weighted inputs of the previous
layer l-th (𝑧+,), we can write
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0

Now, from 𝑧0,12 = ∑+𝜔0+,12𝑎+, + 𝑏0,12 we have

And therefore, the gradient of the cost function is simply given by
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The Backpropagation Algorithm: Summary
The backpropagation equations (BP1)-(BP4) provide us with a fast way of computing the gradient of the
cost function and adjusting the weights & biases. Let’s explicitly write it in the form of an algorithm

1. Input x: set the corresponding activation 𝑎%
' = 𝑥% for each neuron j-th of the input layer

2. Feedforward: for each layer 𝑙 = 2, 3,⋯ , 𝐿 compute 𝑧%
0 = ∑#𝜔%#

0 𝑎#0)' + 𝑏%
0 and 𝑎%

0 = 𝑓 𝑧%
0

3. Output error 𝛿%+: compute the error of each neutron of the last layer L, 𝛿%+ =
45
46'

( 𝑓
7 8'

(
= 45

4 9:'
𝑓7 𝑧%+

4. Backpropagate the error: for each layer 𝑙 = 𝐿 − 1, 𝐿 − 2,⋯ , 2 compute 𝛿%
0 = ∑# 𝛿#0,'𝜔#%

0,'𝑓′ 𝑧%
0

5. Gradient of the cost function: -.
-32;

3 = 𝛿+,𝑎0,42 ,
-.
-52

3 = 𝛿+,

6. Update the weights & biases: 𝜔+0, → 𝜔+0, − 𝜂 -.
-32;

3 , 𝑏+, → 𝑏+, −
-.
-52

3

7. Repeat steps 2 to 6 till convergence is achieved



In which sense is Backpropagation a fast algorithm ?
To answer this question, suppose we want to compute the gradient of the cost function C by simply using the
approximation

𝜕𝐶
𝜕𝑤%#

0 ≈
𝐶 𝜔%#

0 − 𝜖𝑒%#
0 , 𝑏%

0 − 𝐶 𝜔%#
0 , 𝑏%

0

𝜖
,

𝜕𝐶
𝜕𝑏%

0 ≈
𝐶 𝜔%#

0 , 𝑏%
0 − 𝜖𝑒%

0 − 𝐶 𝜔%#
0 , 𝑏%

0

𝜖

where 𝜖 > 0 is a small positive number and 𝑒+0, 𝑒+, is a unit vector in the direction of 𝜔+0, 𝑏+,

This looks very promissing, we only have to compute 𝐶 𝜔+0, , 𝑏+, , 𝐶 𝜔+0, − 𝜖𝑒+0, , 𝑏+, and 𝐶 𝜔+0, , 𝑏+, − 𝜖𝑒+,

for each distincts weight 𝜔+0, and bias 𝑏+, . However, this is extremelly expensive computationally
speaking, specially for neural networks with a exteme large number (millions) of weights and biases

What is clever about the backpropagation algorithm is that it enables us to compute simultaneously all the
partial derivatives 𝝏𝑪

𝝏𝒘𝒋𝒌
𝒍 and 𝝏𝑪

𝝏𝒃𝒋
𝒍 using just one forward pass through the network followed by one

backward pass through the network, i.e., the computational cost of the forward and backward passes is the
same. The numerical cost of backpropagation is roughly the same as making just two forward passes



Overfitting of an ANN

• Amajor issue in the development of an ANN is overfitting (also
known as overtraining), which basically means that the network,
due to its high flexibility to approximate complex non-linear
functions, tries to fit the data entirely and ends up memorizing
all the data patterns.

Underfitting Optimal Overfitting

• Due to overfitting the predictability of the network on testing
data becomes questionable

• Strategies to avoid overfitting include among others:

Ø early stopping of the training: stops the training process once the model performance stops improving on the validation dataset

Ø dropout: reduce overfitting by dropping randomly neurons from the neural network during training in each iteration

• In addition to these which can be used together, overfitting can be reduced by:

Ø enlarging the input dataset (specially in those case where the input dataset is not large enough)

Ø adding noise to the input dataset making the network less able to memorize data patterns since they change randomly during the training



Input Dataset
• We employ as input dataset the hypernuclear NCSM results of Gazda et al. (PRC 97 (2018) 064315, Few-Body Syst. 62 (2021)
94) for the L separation energy of 3LH, 4LH & 4LHe obtained with chiral NN & NNN interactions at N3LO and N2LO,
respectively both with a regulator cutoff of 500 MeV, and YN potentials at LO with a cutoff of 600 MeV

• Due to the small size of the original input dataset to avoid overfitting we have:

Ø enlarged it by performing a cubic interpolation in the HO spacing ℏ𝜔 at each given value of Nmax

Ø introduced a Gaussian noise in the enlarged input dataset during the training of the network

• We use the 80% (10 % of it used for validation) of the enlarged input dataset to train the network and leave the 20% of it for testing



Performance of the ANN

Loss function of the training & test datasets as a function
of the number of iterations in the calculation of the L
separation energy of the ground state of 3LH

• The learning process of an ANN involves the minimization of a loss
function in order to obtain the optimal set of parameters 𝑾,𝒂 ≡
𝑾𝒊𝒋
(𝒌), 𝒂𝒊

(𝒌) . In the case of a regression-type problem, as in our
case, a common choice is the mean squared error (MSE)

ℒ 𝑾, 𝒃 =
1
𝑁
$
!&'

(

L𝑦! 𝑾,𝒃 − 𝑦! .

Ø N: number of data points used in the minimization
procedure

Ø ?𝑦' 𝑾,𝒃 ≡ 𝒙𝒊
(𝑳): prediction of the ANN

Ø 𝒚𝒊: actual output of the input data

• Very fast decrease during the first 500 iterations becoming (on
average) essentially constant at about 1000 iterations and above it.

• The loss function of the test dataset is smaller that that of the
training one, indicating that overfitting has been substantially
reduced.

• Similar good performance for 4LH and 4LHe



L separation energy of the ground state of 3LH 

• Slow convergence due to the
extremely weak binding energy of 3LH

• Considerably reduction of the BL
dependence with hw with the increase
of Nmax

• Good extrapolation to the
experimental result for large values of
the model space size Nmax

Open circles in the right panel show the NCSM results used for the training of the ANN 𝐵? ?
/𝐻 = 0.16 ± 0.01

ANN prediction for Nmax= 100

MeV

N.B.: A typical run of an ANN starts with random values of the weights & biases of the network. Therefore, different runs can lead to slightly
different results. Because of this we have performed 25 independent runs of the ANN and taken the average and the standard deviation of all
these runs as the prediction of the network & their corresponding error



L separation energy of the 0+ & 1+ states of 4LH & 4LHe 

• Convergence faster than in the 3
LH

case. Good convergence already for
Nmax > 25

• Well extrapolation of the ANN
prediction for the 0+ state of 4LHe to
the experimental value

• ANN prediction for the 0+ & 1+ states
of 4

LH & 1+ of 4
LHe off of the

experiment by about 0.3 MeV.

• Charge symmetry breaking (CSB) in
these two A=4 mirror hypernuclei not
explained because CSB effects are not
included in the NCSM calculations
used to train the ANN. Therefore, the
ANN cannot account for them

𝐵? ?
/𝐻(0,) = 2.47 ± 0.03 MeV

𝐵? ?
/𝐻(1,) = 1.37 ± 0.03 MeV

𝐵? ?
/𝐻𝑒(0,) = 2.41 ± 0.04 MeV

𝐵? ?
/𝐻𝑒(1,) = 1.33 ± 0.03 MeV

ANN prediction for Nmax= 100



This work in few words

• We employ a feed-forward ANN to extrapolate at large model spaces the results of ab-initio
hypernuclear NCSM calculations for the L separation energy BL of the lightest hypernuclei, obtained
in accessible HO basis spaces using chiral NN, NNN &YN interactions

• The overfitting problem is avoided by enlarging the size of the input dataset & by introducing a
Gaussian noise during the training process of the neural network

• We find that a network with a single hidden layer of eight neurons is enough to extrapolate correctly
the value of BL to model spaces of size Nmax=100

Hypernucleus ANN Prediction Experimental Vaue

?
/H 0.16 ± 0.01 0.13 ± 0.05

?
@H(0,) 2.47 ± 0.03 2.157 ± 0.077

?
@H(1+) 1.37 ± 0.03 1.067 ± 0.08

?
@He(0,) 2.41 ± 0.04 2.39 ± 0.05

?
@He(1,) 1.33 ± 0.03 0.984 ± 0.05
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