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 Hadron-hadron correlation 

: Source functionS(r)

φ(−)(q, r) : Relative wave function

• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
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 Hadron-hadron correlation 
• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

• Depends on …

Collision detail (Ai, energy, centrality)

• Including information of…

size of hadron source,  
momentum dependence, weight…

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
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• Depends on …

Interaction (strong and Coulomb)

quantum statistics (Fermion, boson)

Hadron correlation in high energy nuclear collision

 Hadron-hadron correlation 
• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
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Simple model: Lednicky-Lyuboshits (LL) formula

Y. Kamiya, K. Sasaki, T. Fukui, K. Morita, K. Ogata, A. Ohnishi, T. Hatsuda, 
Phys.Rev.C 105 (2022) 1, 014915

Hadron correlation in high energy nuclear collision

• Gaussian source with radius  
•   with scat. length 

R
ℱ(q) = [−1/a0 − iq]−1 a0
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FIG. 1. The correlation function C(LL)(q) with re↵ = 0 as a function
of R/a0 for different qR (upper panel) and as a function of qR for
different R/a0 value (lower panel). In the present sign convention,
a0 > 0 corresponds to the existence of a bound state.

where [dr⇤] = dr⇤S(r) with S(r) being properly normal-
ized as

R
[dr⇤] = 1. One immediately finds that the deviation

of the wave function from the non-interacting one is directly
translated into the correlation function and that the relative
source function acts as a weight factor at relative distance r.

Furthermore, when the source size is not too small com-
pared to the interaction range, the integral is dominated by the
contribution outside the interaction range such that the wave
function can be approximated by its asymptotic form  q(r) ⇠
e
�i� sin(qr+�)/(qr) with � being the S-wave scattering phase

shift. Employing a Gaussian source S(r) / exp(�r
2
/4R2)

and the effective range formula for small q,

q cot � ' � 1

a0
+

1

2
reffq

2
, (12)

one can express the correlation function in terms of the scat-
tering length a0 and the effective range reff, which is known
as the Lednický-Lyuboshits (LL) formula [29],

C
(LL)(q) = 1 +

|f(q)|2

2R2
F3

⇣
reff

R

⌘
+

2Ref(q)p
⇡R

F1(2qR)

� Imf(q)

R
F2(2qR). (13)

Here f(q) = (q cot � � iq)�1 is the scattering amplitude,
F1(x) =

R x
0 dte

t2�x2

, F2(x) = (1 � e
�x2

)/x, and F3(x) =
1 � x/(2

p
⇡). Since the scattering length dominates the be-

havior of the phase shift at small q, this correlation function
is mainly determined by the scattering length and the source
size: For reff = 0, C(LL)(q) is a function of two dimensionless
variables, qR and R/a0 [17].

Figure 1 represents characteristics of the correlation func-
tion C

(LL)(q) with re↵ = 0. For a fixed qR (upper panel), the
correlation function exhibits non-monotonic changes against
the ratio of the system size to the scattering length. It shows a
strong peak around R/a0 ⇠ 0 for small qR due to the strong
enhancement of the wave function. We call the region where
C(q) is enhanced as the “unitary region” throughout this pa-
per. The peak is smeared as qR is increased. As the attraction
becomes weaker (a0 < 0), the correlation is also weakened
to exhibit monotonic decrease with decreasing R/a0 and in-
creasing qR. On the other hand, if the attraction is strong
enough to accommodate a bound state (a0 > 0), C(q) rapidly
decreases with R/a0 then takes values less than unity imply-
ing the depletion of correlated pairs at small qR. The deple-
tion can be understood by so-called the structural core; the
scattering wave function needs to be orthogonal to the bound
state wave function, then it has a node in the interaction range
as if there is a repulsive core. Thus the squared wave function
is suppressed on average.

The above properties of C(q) are essential in order to ex-
tract the pairwise interaction from the measured correlation
functions. In particular, the behavior of C(q) for different
system size provides detailed information on the scattering
parameters as shown in the lower panel of Fig. 1. Consider
the case where C(q) � 1 at small qR. It indicates that the
system is in the unitary region where |R/a0| is small, while
the sign of a0 is unknown. However, by increasing R with
a0 and qR fixed, C(q) eventually becomes smaller than 1 for
positive a0, while C(q) is always larger than 1 for negative
a0.

In reality, the correlation at small q originates not only from
the single-channel FSI but also from the quantum statistics in
the case of identical pairs (HBT effect), from the Coulomb
interaction, and from the coupled channel effect [30]. Fur-
thermore, the correlation from the HBT effect is affected by
the collective flow through the modification of the source ge-
ometry. As a result, even for non-identical pairs, the absolute
magnitude of C(q) with respect to unity is not always a useful
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No bound state ( )a0 < 0

Morita, et al., PRC101 (2020)

C(q) ≃ ∫ d3r S(r)|φ(−)(q, r) |2

• Clear relation between  and interaction 

• Sensitive to (non)existence of bound state
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FIG. 1. The correlation function C(LL)(q) with re↵ = 0 as a function
of R/a0 for different qR (upper panel) and as a function of qR for
different R/a0 value (lower panel). In the present sign convention,
a0 > 0 corresponds to the existence of a bound state.

where [dr⇤] = dr⇤S(r) with S(r) being properly normal-
ized as

R
[dr⇤] = 1. One immediately finds that the deviation

of the wave function from the non-interacting one is directly
translated into the correlation function and that the relative
source function acts as a weight factor at relative distance r.

Furthermore, when the source size is not too small com-
pared to the interaction range, the integral is dominated by the
contribution outside the interaction range such that the wave
function can be approximated by its asymptotic form  q(r) ⇠
e
�i� sin(qr+�)/(qr) with � being the S-wave scattering phase

shift. Employing a Gaussian source S(r) / exp(�r
2
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and the effective range formula for small q,
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one can express the correlation function in terms of the scat-
tering length a0 and the effective range reff, which is known
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, F2(x) = (1 � e
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)/x, and F3(x) =
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p
⇡). Since the scattering length dominates the be-

havior of the phase shift at small q, this correlation function
is mainly determined by the scattering length and the source
size: For reff = 0, C(LL)(q) is a function of two dimensionless
variables, qR and R/a0 [17].

Figure 1 represents characteristics of the correlation func-
tion C

(LL)(q) with re↵ = 0. For a fixed qR (upper panel), the
correlation function exhibits non-monotonic changes against
the ratio of the system size to the scattering length. It shows a
strong peak around R/a0 ⇠ 0 for small qR due to the strong
enhancement of the wave function. We call the region where
C(q) is enhanced as the “unitary region” throughout this pa-
per. The peak is smeared as qR is increased. As the attraction
becomes weaker (a0 < 0), the correlation is also weakened
to exhibit monotonic decrease with decreasing R/a0 and in-
creasing qR. On the other hand, if the attraction is strong
enough to accommodate a bound state (a0 > 0), C(q) rapidly
decreases with R/a0 then takes values less than unity imply-
ing the depletion of correlated pairs at small qR. The deple-
tion can be understood by so-called the structural core; the
scattering wave function needs to be orthogonal to the bound
state wave function, then it has a node in the interaction range
as if there is a repulsive core. Thus the squared wave function
is suppressed on average.

The above properties of C(q) are essential in order to ex-
tract the pairwise interaction from the measured correlation
functions. In particular, the behavior of C(q) for different
system size provides detailed information on the scattering
parameters as shown in the lower panel of Fig. 1. Consider
the case where C(q) � 1 at small qR. It indicates that the
system is in the unitary region where |R/a0| is small, while
the sign of a0 is unknown. However, by increasing R with
a0 and qR fixed, C(q) eventually becomes smaller than 1 for
positive a0, while C(q) is always larger than 1 for negative
a0.

In reality, the correlation at small q originates not only from
the single-channel FSI but also from the quantum statistics in
the case of identical pairs (HBT effect), from the Coulomb
interaction, and from the coupled channel effect [30]. Fur-
thermore, the correlation from the HBT effect is affected by
the collective flow through the modification of the source ge-
ometry. As a result, even for non-identical pairs, the absolute
magnitude of C(q) with respect to unity is not always a useful
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 interaction and  correlationK̄N K−p
 interaction and  K̄(sl̄)N Λ(1405)

K−pπΣ K̄0n

Λ(1405)

σK−p→K−p
σK−p→K̄0n

SIDDHARTA 
constraint on aK−p

0

Re s

 correlationK−p

Vstrong
ij (r, E) = e−(bi/2+bj/2)r2

∑ αmax
α=0 Kα,ij (E/100 MeV)α

Chiral SU(3) based - -  potentialK̄N πΣ πΛ Miyahara, Hyodo, Weise, PRC 98 (2018) 

• Constructed based on the amplitude with NLO chiral SU(3) dynamics <—  ,  fitted 

• Coupled-channel, energy dependent as 

aK−p
0 σ

• Constructed to reproduce the chiral SU(3) amplitude around the  sub-threshold regionK̄N

Ikeda, Hyodo, Weise, NPA881 (2012)

• Coupled-channel system of - -πΣ πΛ K̄N

• Strong attraction reproducing  
quasi-bound state  Λ(1405)

• Strong constraint on  by SIDDHARTA 
experiment of Kaonic hydrogen 

aK−p
0

• Structure of  Λ(1405)
• two pole structure

•  molecular picture (high-mass pole)K̄N
 J. A. Oller and U. G. Meißner, PLB500, 263 (2001)

R.H. Dalitz, S.F. Tuan, PRL 425 (1959).

M. Bazzi, et al.. PLB 704 (2011)
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Koonin-Pratt-Lednicky-Lyuboshits-Lyuboshits (KPLLL) formula
S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
R. Lednicky, et.al. Phys. At. Nucl. 61(1998) 

• Contribution from coupled-channel source 

C(q) = ∫ d3r S(r) |ψ (−)(q; r) |2 + ∑
j≠i

ωj ∫ d3r Sj(r) |ψ (−)
j (q; r) |2

Contribution from Coupled-
channel Source

Coupled-channel effect

, , , , , K−p K̄0n π0Σ0 π+Σ− π−Σ+ π0Λ

K−

p
CK−p

FSI

• Enhance  
• Enhance cusp structure   
•  : production rate  
         (compared to measured channel)

C(q)

ωi

• | | < 1  —> Decrease the correlation 
• At channel threshold —> Cusp structure 
• : obtained by solving the c.c. Schrödinger eq.   

Sij

ψi

(out-going wave) +  (incoming wave ) ψi → S†
• Coupled-channel wave function

In the non-interacting limit, where the every interaction is switched off, the ψ(r) reduces to j0(qr) and
C(q) goes to unity for every momentum.

When both of the observed particles are charged, the relative wave function is also modified by
the Coulomb interaction. Because of this long range interaction, the modification of the higher partial
waves (l ≥ 1) is not negligible. The asymptotic wave function is no longer written by the plain wave
exp(+iqi ·r) but by the Coulomb wave function ψC(r, q). The relative wave function including Coulomb
effect is written as

ϕC,(−)(r, q) = ψC(r, q)− ψC
0 (qr) + ψ(q, r), (10)

where ψC
0 is the s-wave component of Coulomb wave function ψC . By switching off the Coulomb in-

teraction, ψC and ψC
0 reduce to plain wave exp(+iq · r) and j0(qr), respectively. The scattering wave

function ψ(qr) satisfies the Coulomb outgoing boundary condition as follows. The s-wave asymptotic
wave function can be written with the superposition of the regular solution F (qr) and irregular solution
G(qr) as

ψ(q, r) → c1
qr

F (qr) +
c2
qr

G(qr) (11)

With these two solutions, the Coulomb incoming (outgoing) wave uC(−)(q, r) (uC(+)(q, r)) are expressed
as [29]

uC(−)(q, r) = −eiσ(iF (qr)−G(qr)), (12)

uC(+)(q, r) = e−iσ(iF (qr) +G(qr)), (13)

where σ = argΓ(1 + iη) is s-wave Coulomb phase shift with Sommerfeld parameter η = µα/q. In the
limit of switching off the Coulomb force α → 0, these reduce to the plain wave; uC(±)(q, r) → e±iqr.
Using these Coulomb incoming and outgoing wave, the asymptotic wave function is written as

ψ(q, r) → aC

2iqr
uC(+)(q, r) +

bC

2iqr
uC(−)(q, r). (14)

The Coulomb outgoing boundary condition, that ψ(q, r) in Eq. (10) must satisfy, is given as |aC | = 1.
Employing Eq. (10), the correlation function including the Coulomb effect is written as

C(q) =

∫
d3rS(r)

[
|ψC(qr, q)|2 − |ψC

0 (q, r)|2 + |ψC(r)|2
]
. (15)

Due to the presence of the Coulomb interaction, the correlation function differs from unity even in the
limit of switching off the strong interaction.

When the coupling between the observed channel (denoted as channel 1 in the following) and other
channels is not negligible, the coupled channel effect to the correlation function must be taken into
account. The modified Koonin-Platt formula for the coupled channel problem is obtained in Ref. [30] as

C1(q) =
n∑

i=1

ωi

∫
drSi(r)|Φ(−)

i (q1, r)|2, (16)

where Si(r) and ωi are the relative source function and the weight of channel i, respectively. Φ(−)
i (q1, r) is

the i-th component of coupled channel wave function. Assuming the absence of the Coulomb interaction
for every coupled channel, the Φ(−)(q1, r) is written in the form of

Φ(−)(q1, r) = e+iq1·re1 − j0(q1r)e1 +Ψ(q1, r), (17)

where ei is the unit vector of channel i and Ψ(q1, r) is the s-wave scattering wave function satisfying the
coupled channel Schrödinger equation;





− ∇2

2µ1
+ V11(r) V12(r) · · · V1n(r)

V21(r) − ∇2

2µ2
+ V22(r) +∆2 · · · V2n(r)

...
...

. . .
...

Vn1(r) Vn2(r) · · · − ∇2

2µn
+ Vnn(r) +∆n




Ψ(q1, r) = EΨ(q1, r), (18)

E =
q21
2µ1

, Ψ(q1, r) =
t (ψ1(q1, r),ψ2(q2, r), · · · ,ψn(qn, r)) , (19)

3

Vij = V strong
ij ( +VCoulomb)  ; threshold energy diff.Δi
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Coupled-channel source effect 
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• Enhance the correlation  
• Enhance the cusp structure  
•  and  w.f. components are significantπΣ K̄0n

Coulomb function. For closed channels (E < Δi), the
asymptotic form is given by substituting qj ¼ −iκj ¼
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μjðΔj − EÞ

p
as ψ ð−Þ

j ðrÞ→AjðqÞu
ð−Þ
j ð−iκjrÞ=ð2κjrÞ∝

e−κjr=κjr. This is because the wave function component of
the off-shell state can emerge only in the strong interaction
region. For spherically symmetric source functions the
correlation function can be written as

CðqÞ ¼
Z

d3rS1ðrÞ½jϕCðq; rÞj2 − jϕC
0 ðqrÞj2%

þ 4π
X

j

Z
∞

0
drr2ωjSjðrÞjψ

ð−Þ
j ðq; rÞj2; ð7Þ

where the left-hand side depends only on q ¼ jqj. The
normalization of the source function implies that the weight
of the observed channel must be unity: ω1 ¼ 1 [27].
The K−p correlation function was calculated in Ref. [14]

using the effective K̄N potential in Ref. [33] within the
model space of K−p and K̄0n channels. Although the
effects of the coupled πΣ and πΛ channels are implicitly
included in the renormalized K̄N potential to reproduce the
scattering amplitude, the proper boundary condition (6)
was not imposed because the wave function does not
contain explicit πΣ and πΛ components. The present
calculation reduces to that in Ref. [14] when the channel
couplings of K̄N ↔ πΣ; πΛ are switched off and the K̄0n
source function is ignored. It turns out, however, that there
are sizable deviations of the present results from those in
Ref. [14]. This indicates the importance of an explicit
treatment of coupled channels in the K−p correlation
function.
We now employ the wave functions in the full

K̄N-πΣ-πΛ coupled-channel framework. The starting point
is chiral SU(3) dynamics at next-to-leading order [30]
which successfully describes the set of existing K−p
scattering data together with the SIDDHARTA kaonic
hydrogen data [4]. An equivalent local K̄N-πΣ-πΛ
coupled-channel potential has been constructed to repro-
duce the corresponding scattering amplitudes [28]. Note
that the coupled-channel effects contribute to the correla-
tion function through the wave functions ψ ð−Þ

j includ-

ing ψ ð−Þ
K−p.

Results.—The K−p correlation function and its break-
down into channels are shown in Fig. 1 for source sizes of
R ¼ 1 fm and 3 fm. We assume a common source function
of Gaussian shape for all channels, SjðrÞ ¼ SRðrÞ≡
expð−r2=4R2Þ=ð4πR2Þ3=2 with ωj ¼ 1. For both source
radii R we can see the strong enhancement due to the
Coulomb attraction at small momenta, demonstrated by
comparison with the results omitting the Coulomb inter-
action. Also evident is the cusp structure at the K̄0n
threshold at q ≃ 58 MeV=c. Among the coupled-channel

components, the enhancement by the K̄0n channel is found
to be the largest, and next in importance is πΣ. The
inclusion of the K̄0n component also makes the cusp
structure more prominent. The π0Λ channel couples to
K−p only in the I ¼ 1 sector; its effect is relatively weak.
Because the calculated wave functions in channels other
than K−p have a sizable magnitude only at small distances,
the contributions from these components decrease with
increasing source size. This leads to a less pronounced cusp
structure for the R ¼ 3 fm case.
Now we are prepared to compare the calculated K−p

correlation function with data. We allow for variations of
the source size and weights, which can be channel
dependent [25]. Since a given source function with the
weight in the relative coordinate is obtained from a product
of single-particle emission functions, the weight should be
proportional to the product of particle yields. For example,
ωπ−Σþ=ωK−p ¼ Nðπ−ÞNðΣþÞ=NðK−ÞNðpÞ. The produc-
tion yields NðhÞ should be regarded as those of promptly
emitted particles in order for those hadrons to couple into
the final K−p channel. Those primary yields are not
directly observable. Thus, we regard the source weights
ωj as parameters. While the effect of the π0Λ channel is

FIG. 1. K−p correlation function with R ¼ 1 fm (upper panel)
and R ¼ 3 fm (lower panel). The long-dashed line denotes the
result with K−p component only. The short-dashed, dotted, and
solid lines show the results in which the contributions from K̄0n,
K̄0n, and πΣ, and from all coupled-channel components are
added, respectively. The dash-dotted line denotes the full
coupled-channel calculation without the Coulomb interaction.

PHYSICAL REVIEW LETTERS 124, 132501 (2020)

132501-3

• Strong source size dependence  
  < == Due to the near-threshold  pole  
           

Λ(1405)

R = 1 fm

Coupled-channel effect

CK−p

• Coupled—channel effect

Kamiya, Hyodo, Morita, Ohnishi, Weise, PRL 124 (2020) 13, 132501
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Source size dependence of coupled-channel effect 
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• Less prominent cusp structure 
• Weaker coupled-channel source contribution

• Strong source size dependence  
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• Small source ==> W.F. of Coupled-channels counts

• Large source ==> Measured channel contribution dominant
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Source size dependence with  dataK−p

Kaon–proton scattering in Pb–Pb collisions at the LHC ALICE Collaboration
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17

�0.03(syst) fm
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17
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• Large source

• Consistent with analysis only with  sourceK−p
• Weaker cusp 

• Clear  cusp structure K̄0n

Kamiya, Hyodo, Morita, Ohnishi, Weise, PRL 124 (2020) 13, 132501

 interaction and  correlationK̄N K−p

• Chiral SU(3) dynamics describes the both correlation data well. 

ALICE PLB 822 (2021) 136708
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Source size dependence of  data K−p
• ALICE data PbPb collisions data

Kaon–proton scattering in Pb–Pb collisions at the LHC ALICE Collaboration
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Figure 3: Left: scattering parameters obtained from the Lednický–Lyuboshitz fit compared with available world
data and theoretical calculations. Statistical uncertainties are represented as bars and systematic uncertainties, if
provided, as boxes. Right: experimental femtoscopic correlation function for K�p�K+p pairs in the 30–40%
centrality interval, together with various Lednický–Lyuboshitz calculations obtained using the scattering length
parameters from Refs. [17, 18, 71–75] and the source radius from this analysis. The statistical and systematic
uncertainties of the measured data points are added in quadrature and shown as vertical bars.

and ¡ f0 = 0.92± 0.05(stat)+0.12
�0.33(syst) fm.

The obtained parameters of the scattering length are compared with the available experimental values as
well as model calculations [18, 71–75] in the left panel of Fig. 3. Numerical values of those parameters
are also provided in Tab. 1. The ALICE results are compatible with them within uncertainties2. Up until
this point, the world’s best experimental data on Kp scattering are mainly from exotic kaonic atoms,
where the interaction at the threshold is measured, and from scattering experiments. Theory predictions
and calculations are based on cEFT models.

Moreover, the Lednický–Lyuboshitz formalism is also used to compute femtoscopic correlation functions
using scattering length parameters from previous measurements and theory predictions. They are then
compared with the experimental data and the deviations in units of c2/ndf are obtained. The result of
such a procedure is shown in Fig. 3 (right), while the c2/ndf values are presented in Table 1. The Kyoto
model, which captures well the structures related to coupled channels in pp collisions, reproduces the data
trends in all measured Pb–Pb centrality intervals, confirming that the coupled channels are fundamental
in the description of small sources but have a negligible influence on correlation functions at large source
sizes [39]. However, the model still requires further development as the resulting c2/ndf= 2.8 is slightly
worse than the best calculations using the Lednický–Lyuboshitz analytical approach.

2Note that systematic uncertainties are not provided for some of the older results.
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• Large source —> weaker coupled-channel effect 
                        —> more direct approach to interaction of the measured channel 
• Extraction of the  scattering length from correlation function K−p

* Fitting with 1 channel LL model with Gaussian source

ALICE PLB 822 (2021) 136708
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centrality interval, together with various Lednický–Lyuboshitz calculations obtained using the scattering length
parameters from Refs. [17, 18, 71–75] and the source radius from this analysis. The statistical and systematic
uncertainties of the measured data points are added in quadrature and shown as vertical bars.
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The obtained parameters of the scattering length are compared with the available experimental values as
well as model calculations [18, 71–75] in the left panel of Fig. 3. Numerical values of those parameters
are also provided in Tab. 1. The ALICE results are compatible with them within uncertainties2. Up until
this point, the world’s best experimental data on Kp scattering are mainly from exotic kaonic atoms,
where the interaction at the threshold is measured, and from scattering experiments. Theory predictions
and calculations are based on cEFT models.

Moreover, the Lednický–Lyuboshitz formalism is also used to compute femtoscopic correlation functions
using scattering length parameters from previous measurements and theory predictions. They are then
compared with the experimental data and the deviations in units of c2/ndf are obtained. The result of
such a procedure is shown in Fig. 3 (right), while the c2/ndf values are presented in Table 1. The Kyoto
model, which captures well the structures related to coupled channels in pp collisions, reproduces the data
trends in all measured Pb–Pb centrality intervals, confirming that the coupled channels are fundamental
in the description of small sources but have a negligible influence on correlation functions at large source
sizes [39]. However, the model still requires further development as the resulting c2/ndf= 2.8 is slightly
worse than the best calculations using the Lednický–Lyuboshitz analytical approach.
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Constraining the KN coupled channels ALICE Collaboration
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Figure 7: Scaling factor (a j) for K0n (black circles) and pS (red squares) extracted from the different fits of the
K�p correlation function as a function of the core radius rcore extracted for pp, p–Pb and Pb–Pb collisions. The
vertical error bars and boxes represent the statistical and systematic uncertainties on the extracted parameters,
respectively. The widths of the boxes represent the systematic uncertainty associated to each extracted rcore. The
black and red bands represent the uncertainty coming from the yield estimates in TF and the variations applied in
the BW kinematics summed in quadrature as described in the text for K0n and pS, respectively.

be equal to unity if the coupling strength is correctly estimated within the Kyoto model. From the fits to
the measured correlation functions with the state-of-the-art Kyoto model, calculated within the coupled
channel approach, it is possible to observe that the dynamics of the coupled channels is under control in
the case of pS, while the deviation from unity of aK0n indicates that the transition between the K�p and

the K0n channel, as currently implemented in the Kyoto model, is too weak. Hence, the data presented
in this work provide a unique constraint to pin down the coupling strength to the K0n channel.
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Figure 5: (K�p � K+p) correlation functions obtained in p–Pb collisions at
p

sNN = 5.02 TeV in the 0–20%
(left), 20–40% (middle) and 40–100% (right) centrality intervals. The measurement is shown by the black markers,
the vertical error bars and the boxes represent the statistical and systematic uncertainties, respectively. The red and
blue bands in the upper panels represent the model calculations and their systematic uncertainty as described in
the text. The rcore and reff values of the source are reported with their statistical and systematical uncertainties,
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Since the coupled channel dynamics mostly acts at inter-particle distances of the order of 1 fm, the
inelastic terms shown in Eq. (3) should be relevant for femtoscopic measurements performed in small
colliding systems like pp, p–Pb, peripheral and semi-peripheral Pb–Pb. It has been shown that the probed
source sizes in such small systems are around 1 fm [72] and the explicit inclusion of the inelastic corre-
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Since the coupled channel dynamics mostly acts at inter-particle distances of the order of 1 fm, the
inelastic terms shown in Eq. (3) should be relevant for femtoscopic measurements performed in small
colliding systems like pp, p–Pb, peripheral and semi-peripheral Pb–Pb. It has been shown that the probed
source sizes in such small systems are around 1 fm [72] and the explicit inclusion of the inelastic corre-
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Figure 6: (K�p � K+p) correlation functions obtained in Pb–Pb collisions at
p

sNN = 5.02 TeV in the 60–70%
(left), 70–80% (middle) and 80–90% (right) centrality intervals. The measurement is shown by the black markers,
the vertical error bars and the boxes represent the statistical and systematic uncertainties respectively. The red and
blue bands in the upper panels represent the model calculations and their systematic uncertainty as described in
the text. The rcore and reff values of the source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as described in the text.

Schrödinger equation.

Since the coupled channel dynamics mostly acts at inter-particle distances of the order of 1 fm, the
inelastic terms shown in Eq. (3) should be relevant for femtoscopic measurements performed in small
colliding systems like pp, p–Pb, peripheral and semi-peripheral Pb–Pb. It has been shown that the probed
source sizes in such small systems are around 1 fm [72] and the explicit inclusion of the inelastic corre-

9
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 interaction  K̄N

Cieply and Mai, EPJ Web Conf. 130, 02001 (2016)

CHIRALLY MOTIVATED K̄N AMPLITUDES

A modern treatment of low-energy meson-baryon interactions is provided by approaches based on chiral perturbation
theory combined with coupled channel T-matrix re-summations techniques. The parameters of such models are fitted
to low energy K

�
p total cross sections, the threshold branching ratios (see e.g [? ] and to the strong-interaction

characteristics of the 1s level in kaonic hydrogen measured recently by the SIDDHARTA collaboration [4]. Several
theoretical groups presented models describing about equally well this set of experimental data. We refer to these
approaches as Kyoto-Munich (KM) [5], Prague (P) [6], Bonn (B2, B4) [7], Murcia (MI , MII) [8] and Barcelona
(BCN) [9], with some of them providing two solutions. The first four models are compared in [10].

In Fig. 1 we present the predictions of the models for K
�

p and K
�

n elastic amplitudes in the free space. Concerning
the K

�
p amplitude, all these state-of-the-art chiral models are in agreement in a region of energies at and above the

K
�

p threshold. The only exception is the Bonn approach due to different treatment of off-shell effects and partial
waves. The above models yield considerably different K

�
p amplitude below the threshold. On the other hand, for

the K
�

n amplitude the model variations are quite large over the whole energy region. The reason is that the I = 1
amplitudes, as well as the subthreshold K

�
p amplitudes, are not sufficiently restricted by the experimental data.

In nuclear matter the free-space K
�

N amplitudes are modified due to Pauli blocking and hadron self-energies,
the latter effectively modifying the in-medium hadron masses as well. It appears that for energies at least about
20 MeV below the K̄N threshold the main effect comes from the Pauli blocking and can be approximated by a simple
multiplication of the free-space K

�
N amplitudes by an energy and density dependent factor derived from considering
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n (bottom panels) elastic scattering amplitudes generated by recent chirally motivated
approaches. The various lines refer to the models: B2 (dotted, purple), B4 (dot-dashed, red), MI (dashed, blue), MII (long-dashed,
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N thresholds.
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Further constraint on  interaction?K̄N

• Can we constrain   interaction / amplitude from femtoscopy?K̄N I = 1

B2, B4: Mai, Meißner, EPJA 51 (2015) 

M1, MII: Guo, Oller, PRC 87 (2013) 

PNLO: Cieplý, Smejkal, NPA 881 (2012)

KMNLO: Ikeda, Hyodo Weise NPA 881 (2012)
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 correlationK0
S p

 interaction from  correlation functionK̄N K0
S p

|K0
S p⟩ = [ | K̄0p⟩ − |K0p⟩]/ 2

KN, I = 0, 1K̄N, I = 1
CK0

S p = [CK̄0p + CK0p]/2

•  component only I = 1

re = − 0.06 + i0.20 fm

K. Aoki and D. Jido, PTEP (2019) Ikeda, Hyodo, Weise, NPA881 (2012)

• Well determined with scat. exp. 

• Chiral amplitude• Chiral amplitude
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Figure 1: Scattering amplitude of K̄0p diagonal component.

We show the scattering amplitude above the threshold in Fig. 1. Compared to the K−p channel, the
attraction is moderate but not so small. The large imaginary part indicates the coupling to the lower
channels is strong. The scattering length a0 and the effective range re of the K̄0p channel are obtained
as

a0 = −0.61− i0.78 fm, (6)

re = −0.06 + i0.20 fm, (7)

where the scattering length is defined as a0 = −F(E = Eth).
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Figure 2: K̄0p correlation function.

In Fig. 2, we show the K̄0p correlation function for the Gaussian source with radius R = 1 fm case.
We find that the K̄0p correlation function shows the strong enhancement at the low momentum region
due to the strong attraction. The πΣ source contribution gives the non-negligible enhancement to CK̄0p.
Note that here we have assumed ωi = 1 for every channels. In the actual cases, these weight factors of
πΣ and πΛ should be larger than unity, which leads the larger contribution of coupled channel source
compared to Fig. 2.

2

ωj = 1

The K0p correlation function is calculated using the KN effective potential as shown in Fig. 4. As
expected from the weakly repulsive K0p amplitude, the K0p correlation function shows weak suppression.
The K+n source contribution is very small due to the weak coupling. The difference between the two
models can be considered as the theoretical uncertainty of the chiral dynamics.
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Figure 4: K0p correlation function.

4 K0
sp correlation function

With the K0p and the K̄0p correlation function, the K0
sp correlation function is calculated with Eq. (1) as

shown in Fig. 5. Due to the strong enhancement of the CK̄0p at the low momentum, the K0
sp correlation

function also shows the enhancement.
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The K0p correlation function is calculated using the KN effective potential as shown in Fig. 4. As
expected from the weakly repulsive K0p amplitude, the K0p correlation function shows weak suppression.
The K+n source contribution is very small due to the weak coupling. The difference between the two
models can be considered as the theoretical uncertainty of the chiral dynamics.
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4 K0
sp correlation function

With the K0p and the K̄0p correlation function, the K0
sp correlation function is calculated with Eq. (1) as

shown in Fig. 5. Due to the strong enhancement of the CK̄0p at the low momentum, the K0
sp correlation

function also shows the enhancement.
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4

K0
S p

K̄0p
• Enhancement by  is sizable.  K̄0p(K̄N I = 1)

Y. Kamiya, T. Hyodo, A. Ohnishi. in preparation

• Effective potential
Miyahara, Hyodo, Weise, PRC 98 (2018) 

• Effective potential
Constructed from chiral amp.
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Summary

Femtoscopic correlation function in high energy nuclear collisions is a 
powerful tool to investigate the hadron-hadron interaction. 
Chiral SU(3) based effective potential model reproduces the ALICE  
correlation data from  collisions with the reasonable by including the 
coupled-channel source effect.  
Detailed source size dependence can be investigated with the latest data 
from the different collision experiments. 
• Large source: Good agreement with the chiral model of  channel 
• Small source: Finite deviation indicates the need for the modification of 
the coupled-channel interaction. 

 correlation is useful to directly see the   interaction. 

K−p
pp

K−p

K0
s p I = 1 K̄N

Thank you for your attention!
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