Kaon-deuteron systems and femtoscopy

Tetsuo Hyodo

Tokyo Metropolitan Univ.

<u>2022, Oct. 18th</u> 1

Contents

Contents

<u> </u><i>KN **potentials**

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);</u> <u>K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);</u>

Rigorous few-body calculation for K^-p and K^-d <u>T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)</u>

- Precision of Deser-Trueman formulae
- Sensitivity to I = 1 amplitude
- **Femtoscopy of** K^+d and K^-d
 - Rescattering and interaction strength

Summary

ĒN potentials

Best-fit results

		TW	TWB	NLO	Experiment	۰.
St	$\Delta E \ [eV]$	373	377	306	$283 \pm 36 \pm 6$	[10]
ě	$\Gamma \ [eV]$	495	514	591	$541 \pm 89 \pm 22$	[10]
+	γ	2.36	2.36	2.37	2.36 ± 0.04	[11]
a	R_n	0.20	0.19	0.19	0.189 ± 0.015	[11]
X	R_c	0.66	0.66	0.66	0.664 ± 0.011	[11]
	$\chi^2/{ m d.o.f}$	1.12	1.15	0.96		

SIDDHARTA

Branching ratios

Accurate description of all existing data ($\chi^2/d.o.f \sim 1$)

Construction of *KN* **potentials**

Local *KN* potential is useful for various applications

meson-baryon amplitude (chiral SU(3) EFT)

T. Hyodo, W. Weise, PRC 77, 035204 (2008)

Kyoto *k̄N* potential (single-channel, complex)

K. Miyahara. T. Hyodo, PRC 93, 015201 (2016) Kyoto $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential (coupled-channel, real)

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)

Kaonic nuclei Kaonic deuterium

K⁻p correlation function

Spatial structure of $\Lambda(1405)$

$\bar{K}N$ wave function at $\Lambda(1405)$ pole

K. Miyahara. T. Hyodo, PRC93, 015201 (2016)

- substantial distribution at r > 1 fm

- root mean squared radius $\sqrt{\langle r^2 \rangle} = 1.44$ fm

The size of $\Lambda(1405)$ is much larger than ordinary hadrons

KN **potentials**

Correlation function and femtoscopy

 K^-p correlation function C(q)

$$C(\boldsymbol{q}) = \frac{N_{K^-p}(\boldsymbol{p}_{K^-}, \boldsymbol{p}_p)}{N_{K^-}(\boldsymbol{p}_{K^-})N_p(\boldsymbol{p}_p)} \simeq \int d^3\boldsymbol{r} \, S(\boldsymbol{r}) \, |\, \Psi_{\boldsymbol{q}}^{(-)}(\boldsymbol{r})\,|^2$$

- Wave function $\Psi_q^{(-)}(r)$: coupled-channel $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

<u>Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)</u> Correlation function is well reproduced

cor.

 $S(\mathbf{r})$

Contents

Contents

<u> </u><i>KN **potentials**

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);</u> <u>K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);</u>

Few-body calculations for *K*⁻*p* **and** *K*⁻*d*

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

- Precision of DT formulae
- Sensitivity to I = 1 potential

Femtoscopy of K^+d and K^-d

- Rescattering and correlation functions

Summary

Mass	E dependence	ΔE (eV)	Γ (eV)
Physical	Self-consistent	283	607
Isospin	Self-consistent	163	574
Physical	$E_{\bar{K}N}=0$	283	607
Expt. [31,32]		$283 \pm 36 \pm 6$	$541\pm89\pm22$

Few-body calculations for K⁻p and K⁻d

Deser-Trueman formulae for kaonic hydrogen

(Improved) Deser-Trueman formulae for K⁻p

S. Deser, et al., PR96, 774 (1954); T.L. Trueman, NP26, 57 (1961)

$$\Delta E - \frac{i\Gamma}{2} = -2\mu_K^2 \alpha^3 a_{K^- p} \times \begin{cases} \left[1 - 2\mu_K \alpha (\ln \alpha - 1) a_{K^- p} \right] & \text{Improved} \\ \left[1 + 2\mu_K \alpha (\ln \alpha - 1) a_{K^- p} \right]^{-1} & \text{Improved} \end{cases}$$

U.G. Meißner, U. Raha, A. Rusetsky, EPJC35, 349 (2004)

V. Baru, E. Epelbaum, A. Rusetsky, EPJA42, 111 (2009)

	$\Delta E \ (eV)$	Γ (eV)	δ (eV)	
DT	272	734	64	
Improved DT	293	596	11	C
Resummed DT	284	605	1	f
Exact	283	607	-	

deviation from Exact

Resummed

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

Ressumed DT formula works well for *K*⁻*p*

c.f. N.V. Shevchenko, FBS, 63, 22 (2022)

Formulation

Three-body calculation of *K*⁻*d* with physical masses

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

$$\begin{pmatrix} \hat{H}_{K^{-}pn} & \hat{V}_{12}^{\bar{K}N} + \hat{V}_{13}^{\bar{K}N} \\ \hat{V}_{12}^{\bar{K}N} + \hat{V}_{13}^{\bar{K}N} & \hat{H}_{\bar{K}^{0}nn} \end{pmatrix} \begin{pmatrix} |K^{-}pn\rangle \\ |\bar{K}^{0}nn\rangle \end{pmatrix} = E \begin{pmatrix} |K^{-}pn\rangle \\ |\bar{K}^{0}nn\rangle \end{pmatrix}$$

$$\hat{H}_{K^{-}pn} = \sum_{i=1}^{3} \hat{T}_{i} - \hat{T}_{cm} + \hat{V}_{23}^{NN} + \sum_{i=2}^{3} (\hat{V}_{1i}^{\bar{K}N} + \hat{V}_{1i}^{EM}) \text{ Coulomb}$$

$$\hat{H}_{\bar{K}^{0}nn} = \sum_{i=1}^{3} \hat{T}_{i} - \hat{T}_{cm} + \hat{V}_{23}^{NN} + \sum_{i=2}^{3} \hat{V}_{1i}^{\bar{K}N} + \underline{\Delta m} \text{ threshold difference}$$

- Kyoto *KN* potential

Few-body technique

- a large number of correlated gaussian basis

Y. Suzuki, K. Varga, Lect. Notes Phys. M54, (1998)

Few-body calculations for K⁻p and K⁻d

Kaonic deuterium: shift and width

Rigorous three-body calculation

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

- energy convergence
- <- large number of basis
- No shift in 2P state is shown by explicit calculation.

N	$\operatorname{Re}[E](\operatorname{MeV})$
1677	-2.211689436
2194	-2.211722964
2377	-2.211732072
2511	-2.211735493
2621	-2.211737242
2721	-2.211737609
2806	-2.211737677
2879	-2.211737682
	keV e

Results

Potential	$\Delta E - i\Gamma/2 \; [eV]$
$V^{1,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma}$	767 - 464i [1]
$V^{2,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma}$	782 - 469i [1]
$V_{\bar{K}N-\pi\Sigma-\pi\Lambda}^{ m chiral}$	835 - 502i [1]
Kyoto $\bar{K}N$	670 - 508i [2]

[1] J. Revai, PRC 94, 054001 (2016)

[2] T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

Few-body calculations for K^-p and K^-d

Deser-Trueman formulae for kaonic deuterium

(Improved) Deser-Trueman formulae for K⁻d

S. Deser, et al., PR96, 774 (1954); T.L. Trueman, NP26, 57 (1961)

$$\Delta E - \frac{i\Gamma}{2} = -2\mu_{Kd}^2 \alpha^3 a_{K-d} \times \begin{cases} \left[1 - 2\mu_{Kd}\alpha(\ln \alpha - 1)a_{K-d}\right]^{-1} \\ \left[1 + 2\mu_{Kd}\alpha(\ln \alpha - 1)a_{K-d}\right]^{-1} \end{cases}$$
U.G. Meißner, U. Raha, A. Rusetsky, EPJC35, 349 (2004)
W. Baru, E. Epelbaum, A. Rusetsky, EPJA42, 111 (2009)
$$\boxed{\frac{\Delta E \text{ (eV) } \Gamma \text{ (eV) } \delta \text{ (eV)}}{\frac{DT}{\text{ Herrowed } DT}} \\ 854 & 1925 & 490 \\ 910 & 989 & 241 \\ 818 & 1188 & 171 \end{cases}$$
deviation from Exact

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

670

1016

DT formulae do not work accurately for K^-d

Exact

c.f. J. Revai, PRC 94, 054001 (2016), N.V. Shevchenko, FBS, 63, 22 (2022)

I = 1 dependence

- Study sensitivity to I = 1 interaction
 - introduce parameter β to control the potential strength

Re $\hat{V}^{\bar{K}N(I=1)} \rightarrow \beta \times \text{Re } \hat{V}^{\bar{K}N(I=1)}$

- **Vary** β within SIDDHARTA uncertainty of K^-p
 - allowed region: $-0.17 < \beta < 1.08$
 - (negative β may contradict with scattering data)

β	K^{-}	⁻ p	K	$d^{-}d$
	ΔE	Г	ΔE	Γ
1.08	287	648	676	1020
1.00	283	607	670	1016
-0.17	310	430	506	980

- deviation of ΔE of $K^-d \sim 170 \text{ eV}$
- Planned precision: 60 eV (30 eV) at J-PARC (SIDDHARTA-2)
- **Measurement of** K^-d will provide strong constraint on I = 1

Contents

Contents

ĒN potentials

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);</u> <u>K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);</u>

Few-body calculations for K^-p **and** K^-d <u>T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)</u>

- Precision of DT formulae
- Sensitivity to I = 1 potential

Femtoscopy of K^+d and K^-d

- Rescattering and correlation functions

K[±]*d* scattering length

K[±]*d* scattering length by fixed-center approximation

S.S. Kamalov, E. Oset, A. Ramos, NPA 690, 494 (2001) <u>T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)</u>

$$a_{K^{\pm}d} = \frac{\mu_{K^{\pm}d}}{M_{K^{\pm}}} \int d^3 \boldsymbol{r} \rho_d(r) \frac{\tilde{a}_p + \tilde{a}_n}{\frac{1}{r} + \frac{2\tilde{a}_p \tilde{a}_n - \tilde{b}_x^2(r)}{r} - \frac{2\tilde{a}_{p/n} \tilde{b}_x^2(r)}{r^2}}{1 - \frac{\tilde{a}_p \tilde{a}_n}{r^2} + \frac{\tilde{a}_{p/n} \tilde{b}_x^2(r)}{r^3}}, \quad \tilde{b}_x^2(r) = \frac{\tilde{a}_x^2}{1 + \frac{\tilde{a}_0}{r}}$$

- good approximation around K[±]d threshold

- Weak 2-body t (scattering length) : impulse should work
- Strong 2-body *t* : rescattering becomes important

Comparison of K^+d and K^-d

Two-body scattering lengths

K. Aoki, D. Jido, PTEP 2019, 013D01 (2019)

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

	$a_p \; [\mathrm{fm}]$	a_n [fm]	a_x [fm]	$a_0 [\mathrm{fm}]$
K^+d	-0.310	-0.195	-0.115	-0.195
K^-d	-0.66 + i0.89	-0.58 + i0.78	-0.85 + i0.26	-0.40 + i1.03

- *K*⁻*d* system has stronger 2-body interactions than *K*⁺*d*

K[±]*d* scattering lengths

	Impluse [fm]	Full [fm]
K^+d	-0.61	-0.54
$K^{-}d$	-0.10 + 2.02i	-1.42 + 1.61i

- Impulse works for K^+d (weak), but not for K^-d (strong)

LL formula suitable for *K*⁺*d* correlation function?

Relation to correlation functions?

3-body equation and correlation functions

- "Genuine three-body correlation" $c_3(Q_3) = C(Q_3) - C_{12}(Q_3) - C_{23}(Q_3) - C_{31}(Q_3) + 2$ - multiple rescattering of 2-body interaction?
 - 3-body force (act only in 3-body system)?

Summary

Realistic *KN* **potentials** are constructed

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);</u> <u>K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);</u>

Rigorous Few-body calculations of K⁻d

Potential	$\Delta E - i\Gamma/2 \; [eV]$
$V^{1,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma}$	767 - 464i [1]
$V^{2,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma}$	782 - 469i [1]
$V_{\bar{K}N-\pi\Sigma-\pi\Lambda}^{\text{chiral}}$	835 - 502i [1]
Kyoto $\bar{K}N$	670 - 508i [2]

[1] J. Revai, PRC 94, 054001 (2016) [2] T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

- **DT** formulae work well for K^-p , but not for K^-d
- $\Delta E i\Gamma/2$ is sensitive to $\bar{K}N(I = 1)$ potential