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TW TWB NLO Experiment

�E [eV] 373 377 306 283± 36± 6 [10]

� [eV] 495 514 591 541± 89± 22 [10]

� 2.36 2.36 2.37 2.36± 0.04 [11]

Rn 0.20 0.19 0.19 0.189± 0.015 [11]

Rc 0.66 0.66 0.66 0.664± 0.011 [11]

�2/d.o.f 1.12 1.15 0.96

pole positions 1422� 16i 1421� 17i 1424� 26i

[MeV] 1384� 90i 1385� 105i 1381� 81i

Table 1
Results of the systematic �2 analysis using leading order (TW) plus Born terms (TWB) and full NLO
schemes. Shown are the energy shift and width of the 1s state of the kaonic hydrogen (�E and �),
threshold branching ratios (�, Rn and Rc), �2/d.o.f of the fit, and the pole positions of the isospin I = 0
amplitude in the K̄N -⇡⌃ region.

the subtraction constants ai in Eq. (7), especially those in the ⇡⇤ and ⌘⌃ channels,
exceed their expected “natural” values ⇠ 10�2 by more than an order of magnitude [14].
This clearly indicates the necessity of including higher order terms in the interaction
kernel Vij . It also emphasizes the important role of the accurate kaonic hydrogen data in
providing sensitive constraints.

The additional inclusion of direct and crossed meson-baryon Born terms does not
change �E and �2/d.o.f. in any significant way. It nonetheless improves the situation
considerably since the subtraction constants ai now come down to their expected “nat-
ural” sizes.

The best fit (with �2/d.o.f. = 0.96) is achieved when incorporating NLO terms in the
calculations. The inputs used are: the decay constants f⇡ = 92.4 MeV, fK = 110.0 MeV,
f⌘ = 118.8 MeV, and axial vector couplings D = 0.80, F = 0.46 (i.e. gA = D+F = 1.26);
subtraction constants at a renormalization scale µ = 1 GeV (all in units of 10�3): a1 =
a2 = �2.38, a3 = �16.57, a4 = a5 = a6 = 4.35, a7 = �0.01, a8 = 1.90, a9 = a10 =
15.83; and NLO parameters (in units of 10�1 GeV�1): b̄0 = �0.48, b̄D = 0.05, b̄F =
0.40, d1 = 0.86, d2 = �1.06, d3 = 0.92, d4 = 0.64. Within the set of altogether
“natural”-sized constants ai the relative importance of the K⌅ channels involving double-
strangeness exchange is worth mentioning.

As seen in Table 1, the results are in excellent agreement with threshold data. The
same input reproduces the whole set of K�p cross section measurements as shown in
Fig. 2 (Coulomb interaction e↵ects are included in the diagonal K�p ! K�p channel
as in Ref. [6]). A systematic uncertainty analysis has been performed by varying the
parameters obtained from �2 fits within the range permitted by the uncertainty measures
of the kaonic hydrogen experimental data. Since the shift and width of kaonic hydrogen
are rather insensitive to the I = 1 scattering amplitudes, the total cross section of
K�p ! ⇡0⇤ reaction is also used for the uncertainty analysis. We find that all cross
sections are well reproduced with the constraint from the kaonic hydrogen measurement
as shown by the shaded areas in Fig. 2. A detailed description of this analysis will be
given in a longer forthcoming paper [15].

Equipped with the best fit to the observables at K�p threshold and above, an opti-
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Best-fit results
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Construction of  potentialsK̄N

Local  potential is useful for various applicationsK̄N

 potentialsK̄N

meson-baryon amplitude 
(chiral SU(3) EFT)

Kyoto - -  potential 
(coupled-channel, real)

K̄N πΣ πΛ

Kaonic nuclei

Kyoto  potential
(single-channel, complex)

K̄N

Kaonic deuterium  correlation functionK−p

T. Hyodo, W. Weise, PRC 77, 035204 (2008)

K. Miyahara. T. Hyodo, 
PRC 93, 015201 (2016)

K. Miyahara, T. Hyodo, W. Weise, 
PRC 98, 025201 (2018)
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Spatial structure of Λ(1405)

 wave function at  poleK̄N Λ(1405)
K. Miyahara. T. Hyodo, PRC93, 015201 (2016)

 potentialsK̄N

Re U(r)

density 

Im U(r)

- substantial distribution at  fmr > 1

The size of  is much larger than ordinary hadronsΛ(1405)

- root mean squared radius  fm⟨r2⟩ = 1.44

N
K̄

https://inspirehep.net/literature/1376961
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Correlation function and femtoscopy
 correlation function K−p C(q)

- Wave function  : coupled-channel  potentialΨ(−)
q (r) K̄N-πΣ-πΛ

p

K−

cor.

S(r)

 potentialsK̄N

Correlation function is well reproduced

small and the correlation function is not very sensitive to
ωπ0Λ, the effects of πΣ channels are important because of
the strong K̄N − πΣ coupling. Then we fix ωπ0Λ ¼ 1 and
vary the parameter ωπΣ around the reference value,
obtained by the simplest statistical model estimate [34],
ωðstatÞ
πΣ ≃ exp½ðmK þmN −mπ −mΣÞ=Tc& ≃ 2.0 with Tc ¼

154 MeV [35,36]. As for the source size, the ALICE
collaboration fixed R ¼ 1.18 fm by assuming the same
source size as that of Kþp, which was obtained by the
femtoscopic correlation fit based on the Jülich Kþp
interaction [25], with Coulomb effects treated by the
Gamow factor correction. Although this correction
describes the Coulomb effect well for light systems such
as π − π, it lacks the necessary accuracy for heavier
systems [32]. Thus, we also consider the variation of R
in the fitting procedure. While the source size can in
principle be channel dependent, possible size differences
between channels can be compensated by varying the
source weights. We therefore use a common source size
in K̄N, πΣ, and πΛ channels. We also assume that the
source function has a Gaussian shape and the source weight
is isospin symmetric.
The measured correlation function is assumed to be

described in the form [20]

CfitðqÞ ¼ N ½1þ λfCðqÞ − 1g&; ð8Þ

whereN is a normalization constant and λ is the pair purity
parameter, known also as the chaoticity parameter. The pair
purity parameter is experimentally determined through a
Monte Carlo simulation, λexp ¼ 0.64' 0.06, so we allow
for variations of λ within 1σ. We fit the correlation function
data in the momentum range q < 120 MeV=c, where the
distortion of the s wave is considered to give the dominant
contribution.
In Fig. 2 the χ2=d:o:f: distribution is plotted in the

ðR;ωπΣÞ plane. A good fit (χ2=d:o:f:≲ 1) is achieved in the

region from ðR;ωπΣÞ ¼ ð0.6 fm; 0Þ to ð1.1 fm; 5.0Þ. The
source size R ≃ 1 fm is reasonable for pp collisions, while
ωπΣ should be consistent with the simple statistical model
estimate within a factor of 2 to 3. Thus, we consider
parameter sets in this region with 0.5 ≤ ωπΣ ≤ 5 as equally
acceptable. On the other hand, if we take the R ¼ 1.18 fm
as adopted by the ALICE Collaboration, ωπΣ ≳ 8 gives a
good fit, but such large ωπΣ values appear to be signifi-
cantly beyond the statistical model estimate.
Figure 3 shows the fitted K−p correlation function

with R ¼ 0.9 fm as an example of a result satisfying
χ2=d:o:f: < 1. The other parameters are chosen as

ωπΣ ¼ 2.95; N ¼ 1.13; λ ¼ 0.58; ð9Þ

to give the minimum value of χ2=d:o:f: ¼ 0.58. The
enhancement in the low-momentum range and the char-
acteristic cusp structure are evidently well reproduced.
Recalling the importance of the πΣ component in the K−p
correlation as shown in Fig. 1, the sizable value of ωπΣ
indicates that the contribution from the πΣ source is
essential to reproduce the data.
The peak structure seen in Fig. 3 around q ∼ 240 MeV=c

represents the Λð1520Þ resonance. The contribution from
this resonance can be simulated by a Breit-Wigner func-
tion:

CresðqÞ ¼
bΓ2

ðq2=2μK−p þmp þmK− − ERÞ2 þ Γ2=4
; ð10Þ

with parameters b, ER, and Γ. We can isolate the resonance
by subtracting CfitðqÞ from the correlation data, using the
parameters of Eq. (9) and R ¼ 0.9 fm. The remaining
structure in the interval 150 MeV=c < q < 300 MeV=c is

FIG. 2. Reduced χ2 distribution in the ðR;ωπΣÞ plane. From
inward out the contour lines correspond to χ2=d:o:f: ¼ 0.5, 1,
1.5, and 2, respectively.

FIG. 3. Correlation function with the best fit parameters (solid
line). The result including the Λð1520Þ contribution is shown by
the dotted line. The dashed line shows the prediction with
R ¼ 1.6 fm. Its shaded area shows the uncertainty with respect
to the variation of ωπΣ. For comparison, we also plot the
corresponding area for the case with R ¼ 0.9 fm. The ALICE
data set is taken from Ref. [20].

PHYSICAL REVIEW LETTERS 124, 132501 (2020)

132501-4

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

—> Talks by Y. Kamiya 
       and R. Lea 

C(q) =
NK−p( pK−, pp)

NK−( pK−)Np( pp)
≃ ∫ d3r S(r) |Ψ(−)

q (r) |2

https://inspirehep.net/literature/1762829
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Check of kaonic hydrogen
Kaonic hydrogen ( ) should be checkedK−p

Few-body calculations for  and K−p K−d

Two-body calculation with physical masses

(
̂T+ ̂VK̄N+ ̂VEM ̂VK̄N

̂VK̄N ̂T+ ̂VK̄N+Δm) (
|K−p⟩
| K̄0n⟩) = E (

|K−p⟩
| K̄0n⟩)

SIDDHARTA Kyoto  potentialK̄NMB amplitude

DT formula isospin symmetric?

Result reproduces SIDDHARTA (with physical mass)

CONSTRAINING THE K̄N INTERACTION FROM THE . . . PHYSICAL REVIEW C 96, 045204 (2017)

TABLE I. Level shifts and decay widths of the 1S atomic state of
the kaonic hydrogen with physical masses and with isospin averaged
masses. Results by setting EK̄N = 0 in the K̄N interaction are also
shown.

Mass E dependence !E (eV) " (eV)

Physical Self-consistent 283 607
Isospin Self-consistent 163 574
Physical EK̄N = 0 283 607
Expt. [31,32] 283 ± 36 ± 6 541 ± 89 ±22

result [31,32] within its uncertainties. The Kyoto K̄N potential
in the particle basis thus proves to be a valid input even though
the original construction of the potential was not optimized
for this purpose. On the other hand, when calculating kaonic
hydrogen with isospin-averaged masses of the antikaon and
nucleon doublets, we obtain the result shown in the second
(“Isospin”) row of Table I. One observes a quantitative
change of the energy shift by more than 100 eV, exceeding
by far the uncertainty of the measurement [31,32]. While
it is common practice in strong-interaction calculations to
assume that isospin breaking effects are not very significant,
these effects can be kinematically enhanced in near-threshold
observables. To elucidate the difference, we show in Table II
the K̄N scattering lengths calculated with physical masses and
with isospin-averaged masses. The isospin averaging implies
an upward shift of the K−p threshold by 2.6 MeV from its
physical location. As a consequence, the real part of the K−p
scattering length aK−p is reduced in magnitude by 0.26 fm (i.e.,
by about 40%). The more detailed discussion of the resulting
kaonic hydrogen energy shift and width follows in Sec. IV C
featuring the improved Deser formula. Hence, it is obvious
that precise physical masses must be used in the level shift
computation.

Next we examine the effect of the energy dependence of the
Kyoto K̄N potential. This energy dependence is essential in
determining the binding energies (several tens of MeV) of K̄-
nuclear systems with few to several nucleons [19]. However,
the atomic states are located in the near neighborhood of the
threshold. Their binding energies are as small as a few keV.
To study the effect of the energy dependence, we perform the
same calculation as previously described, but setting EK̄N = 0
in the potential. As shown in the third row of Table I, the self-
consistent and fixed EK̄N = 0 results turn out to be numerically
identical. Therefore, in the level shift calculation of the atomic
states, the energy dependence of the K̄N potential can be
safely neglected, and this is how we shall proceed hereafter,
setting EK̄N = 0 throughout.

III. THREE-BODY APPROACH TO KAONIC DEUTERIUM

A. Three-body Hamiltonian

We start from the following three-body Hamiltonian for
kaonic deuterium:

Ĥ =
3∑

i=1

T̂i − T̂cm + V̂ NN
23 +

3∑

i=2

(
V̂ K̄N

1i + V̂ EM
1i

)
, (3)

where T̂i denotes the kinetic energy of the ith particle (i =
1 for an antikaon and i = 2, 3 for two nucleons), including
physical masses of p, n, K−, and K̄0. The center-of-mass
kinetic energy, T̂cm, is properly subtracted.

We use the Minnesota potential [50] as the NN interaction,
V̂ NN . This potential is technically convenient for three-body
computations. It operates with a central force only but repro-
duces the binding energy and radius of the deuteron. In fact,
what matters primarily in the kaonic deuterium calculation
is a deuteron density distribution, ρd (r). We checked that
r2ρd (r) deduced from the Minnesota potential agrees perfectly
and quantitatively with the radial density profile generated by
realistic NN interactions such as the CD-Bonn potential [51].

For the antikaon-nucleon interaction, V̂ K̄N (E), we employ
the Kyoto K̄N potential [39]. As just pointed out, the
choice of the two-body antikaon-nucleon energy at threshold,
E ≡ EK̄N = 0, is justified for kaonic hydrogen. For kaonic
deuterium, this issue requires further discussion. The energy
of the K̄N two-body subsystem within the K−d three-body
system is not a well-defined concept. Different prescriptions
[13,14,17,19] are available to take into account the motion of
the bound nucleons while they interact with the antikaon. In
the present work, we use the prescription of Refs. [13,14,19],
where EK̄N is proportional to the kaon binding energy.
This amounts to setting EK̄N = 0 in the two-body potential
V̂ K̄N also for kaonic deuterium, the choice we take as
our default input in the following three-body calculations.
Leading corrections to this minimal choice are discussed in
the appendix and numerically estimated using the resummed
Deser formula in Sec. IV C.

The electromagnetic (Coulomb) interaction is denoted by
V̂ EM . The effect of higher order QED corrections will be
discussed in Sec. IV C. The explicit three-body coupled-
channels equation is written as

(
ĤK−pn V̂ K̄N

12 + V̂ K̄N
13

V̂ K̄N
12 + V̂ K̄N

13 ĤK̄0nn

)(
|K−pn〉
|K̄0nn〉

)

= E

(
|K−pn〉
|K̄0nn〉

)
(4)

with

ĤK−pn =
3∑

i=1

T̂i − T̂cm + V̂ NN
23 +

3∑

i=2

(
V̂ K̄N

1i + V̂ EM
1i

)
, (5)

ĤK̄0nn =
3∑

i=1

T̂i − T̂cm + V̂ NN
23 +

3∑

i=2

V̂ K̄N
1i + !M, (6)

with !M denoting the mass difference of the K−pn and K̄0nn
channels. In the following subsection, we describe how the
coupled-channels three-body equation is solved in practice.

B. Basis functions

The three-body Schrödinger equation is solved using a
variational method with basis expansion. The generic basis
function is expressed as

$ = A[ψ (space) ⊗ ψ (spin) ⊗ ψ (isospin)], (7)

045204-3

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017)

https://inspirehep.net/literature/1510887
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Deser-Trueman formulae for kaonic hydrogen
(Improved) Deser-Trueman formulae for K−p

Few-body calculations for  and K−p K−d

S. Deser, et al., PR96, 774 (1954); T.L. Trueman, NP26, 57 (1961)

ΔE −
iΓ
2

= − 2μ2
Kα3aK−p ×

[1 − 2μKα(ln α − 1)aK−p]
[1 + 2μKα(ln α − 1)aK−p]

−1

U.G. Meißner, U. Raha, A. Rusetsky, EPJC35, 349 (2004)

V. Baru, E. Epelbaum, A. Rusetsky, EPJA42, 111 (2009)

Improved

Resummed

Ressumed DT formula works well for K−p

計算ノート例1

兵藤哲雄

October 17, 2022

論文 [1]の計算の確認のノート例です。

References

[1] S. Aoki and K. Yazaki, arXiv:2109.07665 [hep-lat].

Table 1: 京都 K̄N ポテンシャルを用いたK 中間子水素のエネルギーシフト∆E と幅 Γの比較．
クーロン相互作用を含めてシュレディンガー方程式を解いた厳密解と，強い相互作用のみで計算
した散乱長 aK−pをデザー・トルーマン公式に代入した結果．δは式 (??)による厳密解との固有エ
ネルギーのずれを表す．

∆E (eV) Γ (eV) δ (eV)
DT 272 734 64
Improved DT 293 596 11
Resummed DT 284 605 1
Exact 283 607 -

1

deviation 
from Exact

c.f. N.V. Shevchenko, FBS, 63, 22 (2022)

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)
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Formulation
Three-body calculation of  with physical massesK−d

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

Few-body technique
 - a large number of correlated gaussian basis

threshold difference

Coulomb

 - Kyoto  potentialK̄N

Y. Suzuki, K. Varga, Lect. Notes Phys. M54, (1998)

Few-body calculations for  and K−p K−d

(
ĤK−pn

̂VK̄N
12 + ̂VK̄N

13

̂VK̄N
12 + ̂VK̄N

13 ĤK̄0nn
) (

|K−pn⟩
| K̄0nn⟩) = E (

|K−pn⟩
| K̄0nn⟩)

ĤK−pn =
3

∑
i=1

̂Ti − ̂Tcm + ̂VNN
23 +

3

∑
i=2

( ̂VK̄N
1i + ̂VEM

1i )

ĤK̄0nn =
3

∑
i=1

̂Ti − ̂Tcm + ̂VNN
23 +

3

∑
i=2

̂VK̄N
1i +Δm

https://inspirehep.net/literature/1510887
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Kaonic deuterium: shift and width
Rigorous three-body calculation

- energy convergence

CONSTRAINING THE K̄N INTERACTION FROM THE . . . PHYSICAL REVIEW C 96, 045204 (2017)

TABLE III. Cutoff parameter λcut, number of basis
functions N , and the real part of the energy of the 1S

state of kaonic deuterium.

log10 λcut N Re[E] (MeV)

16 1677 −2.211689436
17 2194 −2.211722964
18 2377 −2.211732072
19 2511 −2.211735493
20 2621 −2.211737242
21 2721 −2.211737609
22 2806 −2.211737677
23 2879 −2.211737682

matrix Bij :

φµ = 1
√

µ

K∑

i=1

c
(µ)
i #i . (16)

The number of new basis functions {φµ} is again K , and each
function is labeled by its eigenvalue µ. The Hamiltonian is
then diagonalized with this set of basis functions, omitting
those which give very small µ. If a whole set of basis functions
emerges with very small µ, we discard this set altogether and
try another one. In practice, a cutoff parameter is introduced,
defined by the ratio of minimum to maximum eigenvalues
µ as λcut = µmax/µmin. Basis functions with µ < µmin are
discarded. The cutoff parameter is taken as large as possible
within significant digits of the double-precision computation.

To generate the elements of the matrix A (the variational
parameters), we use a geometric progression [58] for diagonal
matrix elements of A with the x coordinates defined in Eq. (12).
For the global vectors, we simply take ũ = (1,0) and ṽ =
(0,1) to define an angular momentum for each coordinate.
Intermediate angular momenta up to L1 + L2 ! 4 are taken
into account.

For the diagonal elements of the matrices A, u, and
v, the variational procedures can actually be optimized by
suitably combining a representation using the coordinates x
of Eq. (12) with the equivalent representation in the so-called
rearrangement channel, using the coordinates y of Eq. (13).
The evaluation of the Hamiltonian matrix elements is then
performed in x coordinates applying the transformations
A → T̃ AT , u → T̃ u, and v → T̃ v where appropriate.

With one-by-one inclusion of those channels just men-
tioned, several sets of variational parameters are prepared
covering distance scales from 0.1 fm to 300–1000 fm, in
a search for the lowest energy. We need more than 30
Gaussian basis functions for each coordinate to achieve energy
convergence within a few eV. After a careful examination of
the energy convergence by introducing the cutoff parameter
λcut, the total number of basis functions K is 4096 and 8192
for the S and P states, respectively.

Table III shows the cutoff dependence of the real part of
the energy of the kaonic deuterium 1S state measured from
the three-body break-up threshold. N denotes the number of
basis functions that actually appear in the diagonalization.
The number of primary basis functions, K = 4096, is reduced
with decreasing λcut. It turns out that we cannot diagonalize

the Hamiltonian for λcut " 1023 due to round-off errors in the
double-precision calculations. Finally we reach convergence
within eV accuracy for λcut " 1020, in which case the number
of basis functions becomes approximately half of the number
of primary basis functions. For the 2P state, we take λcut "
1028, and N " 3508 basis functions are actually needed in the
diagonalization.

IV. RESULTS AND DISCUSSION

A. Spectrum and level shifts

Table IV lists binding energies, measured from the K−d
threshold, and decay widths of kaonic deuterium. The three-
body calculation with Coulomb interaction only is shifted
slightly from the energy levels produced in the K−d two-body
calculations with point charge, by 8 and 1 eV for the 1S and
2S states, respectively. The 2P energy remains unchanged
in the three-body calculation because the P -wave function
around the origin is suppressed by the centrifugal barrier. This
behavior is consistent with the K−d two-body estimate of the
energy shift, assuming a uniform charge distribution as listed
in the table.

With inclusion of the K̄N interaction, the 1S state is shifted
by ∼670 eV from the K−d Coulomb (point charge) 1S level.
The level shift and width of the 2S level are an order of
magnitude smaller than those of the 1S state because the 2S
wave function has a smaller amplitude around the origin than
the one of the 1S state. The 2P energy remains unchanged
and its decay width is found to be less than 1 eV; the K̄N
interaction has virtually no effect on the 2P state of kaonic
deuterium because of the presence of the centrifugal barrier.
We can therefore safely extract the 1S level shift from the
2P → 1S transition energy. In summary, the 1S level shift
and decay width resulting from the full three-body calculation
are predicted as

$E − i
%

2
= (670 − i 508) eV, (17)

namely, ($E,%) = (670,1016) eV using the Kyoto K̄N
potential. These values are roughly consistent with those
found in a recent Faddeev calculation [48], although the basic
interactions used in that approach are different from ours.

For comparison, a full three-body computation of the
level shift and width has also been performed using isospin-
averaged meson and baryon masses, with the result $E −
i%/2 = (672 − i 509) eV. The small deviation, by just a
few eV, from the corresponding calculation using physical
masses is of some interest here, as this is in unexpected contrast
to the relatively large isospin-breaking effects seen in kaonic
hydrogen. Some insight into the origin of this difference can
be gained by a closer look into the multiple scattering series
and the improved Deser formula which relates the level shift
and width to the pertinent scattering lengths; see Subsec. IV C.

Up to this point, the determination of the width % in-
corporates the decay channels K̄N → πY , where Y stands
for ' and ( hyperons. The question arises about possible
additional contributions to the width from antikaon absorption
on two nucleons, with the coupled K−pn and K̄0nn channels
decaying into 'n + (0n + (−p. Early measurements at

045204-5

keV eV!

<— large number of basis

Few-body calculations for  and K−p K−d

- No shift in  state is shown 
   by explicit calculation.

2P

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

Results

[1] J. Revai, PRC 94, 054001 (2016) 
[2] T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

Table 2: SIDDHARTAのK中間子水素の結果を考慮した K̄N 相互作用による Λ(1405)共鳴極の
比較。

Potential Λ(1405) [MeV] Λ(1380) [MeV] BK̄NN [MeV] ΓK̄NN→πY N [MeV]

V 1,SIDD
K̄N -πΣ

1426− 48i [3] - 53.3 [1] 64.8 [1]

V 2,SIDD
K̄N -πΣ

1414− 58i [3] 1386− 104i [3] 47.4 [1] 49.8 [1]

V chiral
K̄N -πΣ-πΛ 1417− 33i [4] 1406− 89i [4] 32.2 [2] 48.6 [2]

Kyoto K̄N 1424− 26i [5] 1381− 81i [5] 25.3-27.9 [2] 30.9-59.4 [2]

Table 3: SIDDHARTAのK中間子水素の結果を考慮した K̄N 相互作用による Λ(1405)共鳴極の
比較。

Potential ∆E − iΓ/2 [eV]

V 1,SIDD
K̄N -πΣ

767− 464i [1]

V 2,SIDD
K̄N -πΣ

782− 469i [1]

V chiral
K̄N -πΣ-πΛ 835− 502i [1]

Kyoto K̄N 670− 508i [2]

2
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Deser-Trueman formulae for kaonic deuterium
(Improved) Deser-Trueman formulae for K−d

Few-body calculations for  and K−p K−d

S. Deser, et al., PR96, 774 (1954); T.L. Trueman, NP26, 57 (1961)

ΔE −
iΓ
2

= − 2μ2
Kdα3aK−d ×

[1 − 2μKdα(ln α − 1)aK−d]
[1 + 2μKdα(ln α − 1)aK−d]−1

U.G. Meißner, U. Raha, A. Rusetsky, EPJC35, 349 (2004)

V. Baru, E. Epelbaum, A. Rusetsky, EPJA42, 111 (2009)

Improved

Resummed

DT formulae do not work accurately for K−d

deviation 
from Exact

c.f. J. Revai, PRC 94, 054001 (2016), N.V. Shevchenko, FBS, 63, 22 (2022)

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

Table 2: 京都 K̄N ポテンシャルを用いたK中間子重水素のエネルギーシフト∆Eと幅 Γの比較．
クーロン相互作用を含めてシュレディンガー方程式を解いた厳密解と，式 (??)の散乱長 aK−dを
デザー・トルーマン公式に代入した結果．δは式 (??)による厳密解との固有エネルギーのずれを
表す．

∆E (eV) Γ (eV) δ (eV)
DT 854 1925 490
Improved DT 910 989 241
Resummed DT 818 1188 171
Exact 670 1016 -

2

https://inspirehep.net/literature/1510887
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 dependenceI = 1

Study sensitivity to  interactionI = 1
- introduce parameter  to control the potential strengthβ

(negative  may contradict with scattering data)β

HOSHINO, OHNISHI, HORIUCHI, HYODO, AND WEISE PHYSICAL REVIEW C 96, 045204 (2017)

TABLE IV. Energy spectrum of kaonic deuterium. Three- and two-body calculations with Coulomb
interaction only (omitting the strong K̄N interaction) are listed in the first three rows. Energy levels
resulting from the three-body calculation are measured relative to the calculated K−d threshold. For the
K−d two-body calculations, the deuteron mass Md = 1875.613 MeV has been used [49].

E1S(keV) E2P (keV) E2S(keV)

Coulomb −10.398 −2.602 −2.600
Uniform charge (2-body) −10.401 −2.602 −2.601
Point charge (2-body) −10.406 −2.602 −2.602
Coulomb + K̄N −9.736 − i 0.508 −2.602 − i 0.000 −2.517 − i 0.067

Brookhaven with K− stopped on liquid deuterium in the BNL
bubble chamber [59] demonstrated that these processes are
strongly suppressed as compared to the leading single-nucleon
channels, K̄N → πY . The ratio of two-nucleon absorption
reactions to the single-nucleon processes was found to be as
small as (1.2 ± 0.1)% [59]. Taking this value for orientation,
the kaonic deuterium 1S width would increase through
two-nucleon absorption by only about 10 eV, a correction
that can be safely neglected within an uncertainty range of
approximately 10 % assigned to the calculated width of about
a keV. The smallness of the two-body absorptive width can
be understood as follows. Kinematical conditions for the
K̄NN → YN process require a large momentum transfer of
order 1 GeV/c to be provided by the initial deuteron wave
function at short distances. The probability for this to take
place in a weakly bound, dilute system like the deuteron is
small. Similar considerations hold, for example, in the analysis
of the 3He(K−,"p)n reaction [30]. Background simulations
performed for this experiment pointed out that two-nucleon
absorption is strongly suppressed in the vicinity of the K−pp
threshold, whereas three-nucleon reactions dominate.

B. Constraining the I = 1 component of K̄ N interaction

To quantify the sensitivity of the kaonic deuterium level
shift with respect to the I = 1 component of the K̄N
interaction, we vary its strength within the uncertainties of
the SIDDHARTA kaonic hydrogen measurement [31,32]. This
uncertainty range can be simulated by simply multiplying a
constant, β, to the real part of the I = 1 component of the
K̄N potential. Within the SIDDHARTA constraint [31,32], the
control parameter β can range from −0.17 to 1.08. Evidently
this constraint is quite weak: Even β = 0, i.e., a vanishing
real part of the I = 1 K̄N potential, would still be acceptable.
Theoretical considerations based on chiral SU(3) dynamics
would exclude such a possibility, but it cannot be ruled out by
just looking at the SIDDHARTA data.

Table V lists the results of the two- and three-body
calculations performed with limiting values of β compared
to the standard case, β = 1. It is interesting to observe that the
sensitivity with respect to the I = 1 K̄N interaction strength
shows different patterns for $E and % in kaonic hydrogen as
compared to kaonic deuterium. In the K−p system, a variation
of β within its upper and lower limits changes $E by less than
10%, whereas % changes by more than 30%. On the other hand,
the same variation of β in the K−pn system induces a change
$E by 170 eV while % remains stable around 1 keV.

One concludes that an accuracy of about 25% in a
measurement of the 1S shift in kaonic deuterium would already
improve the determination of the I = 1 K̄N interaction
considerably over the kaonic hydrogen result. The 30–60 eV
precision to be expected in the planned experiments [37,38]
falls well within that range.

C. Improved Deser formulas for kaonic deuterium

The improved Deser formula [43,60], derived from nonrel-
ativistic effective field theory (EFT), is frequently used in the
investigation of strong-interaction effects in hadronic atoms.
The 1S level shift $E and width % of a kaonic atom can be
estimated by the relation [43,60]

$E − i%

2
= −2µ2α3a[1 − 2µα(ln α − 1)a], (18)

where µ is the kaon-nucleus reduced mass, α is the fine struc-
ture constant, and a is the K−-nucleus scattering length. The
logarithmically enhanced correction term can be resummed to
all orders [61], providing a “double-improved” Deser formula:

$E − i%

2
= − 2µ2α3a

1 + 2µα(ln α − 1)a
. (19)

In this section, we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19). But let
us first examine the shift and width of kaonic hydrogen in this
context. The K−p scattering length obtained by solving the
two-body Schrödinger equation with the Kyoto K̄N potential
is shown in Table II. Using Eqs. (18) and (19), one finds the
results shown in Table VI. It is evident that the improved Deser
formula works reasonably well for kaonic hydrogen and the
resummed version indeed improves the accuracy further.

TABLE V. Level shifts and decay widths (in eV) of
kaonic hydrogen and deuterium computed with different I =
1 strengths of the K̄N interaction. The experimental level
shift data of kaonic hydrogen is ($E,%) = (283 ± 36 ± 6,
541 ± 89 ± 22) eV [31,32].

β K−p K−d

$E % $E %

1.08 287 648 676 1020
1.00 283 607 670 1016
−0.17 310 430 506 980

045204-6

Vary  within SIDDHARTA uncertainty of β K−p

- allowed region: −0.17 < β < 1.08

- Planned precision: 60 eV (30 eV) at J-PARC (SIDDHARTA-2)
- deviation of  of  ~ 170 eVΔE K−d

Measurement of  will provide strong constraint on K−d I = 1

 potentials and their applicationsK̄N

Re ̂VK̄N(I=1) → β × Re ̂VK̄N(I=1)
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 scattering lengthK±d

 scattering length by fixed-center approximationK±d

 potentials and their applicationsK̄N

- good approximation around  thresholdK±d

aK±d =
μK±d

MK± ∫ d3rρd(r)
ãp + ãn +

2ãpãn − b̃2
x(r)

r −
2ãp/nb̃2

x(r)

r2

1 −
ãpãn

r2 +
ãp/nb̃2

x(r)

r3

, b̃2
x(r) =

ã2
x

1 + ã0

r

Diagrammatically:BAYAR, XIAO, HYODO, DOTÉ, OKA, AND OSET PHYSICAL REVIEW C 86, 044004 (2012)

I I’
TII’ = 

I” I’
TI”I’

tI
+ 

tI Pex
G

FIG. 3. Diagrammatic illustration of the three-body equation (6).

two-body cluster (nucleon) is not fulfilled in this case. This
certainly introduces larger uncertainties than in other cases
studied but we still expect that one can get good results at
a qualitative level. Actually, the real difficulty of the FCA
occurs when one applies it to studying possible resonant three-
body systems above the threshold of the three particles [57].
In the present case, we look for deeply bound states of the
DNN system and we are safer. However, in order to be more
certain about the results, we have also performed calculations
using a variational method. The differences found in the two
approaches can give us an idea of the uncertainties, and the
features shared by the two approaches can be considered more
reliable.

The work of Ref. [57] gives us some idea of when we
should expect a break down of the FCA. Indeed, in that work
the system φKK̄ was studied within the FCA with the system
KK̄ forming the cluster on which the φ collides. The results
were compared with a full Faddeev calculation [58] where
the φ(2170) resonance was dynamically generated, with the
KK̄ system clustering around the f0(980) resonance. The
comparison of two approaches allowed one to see that the
FCA was failing to provide realistic results because it did not
allow the KK̄ system to be excited in intermediate states. Since
the energy of the system is 90 MeV above the threshold of its
components, the φ, a massive particle compared to the mass
of the components of the cluster, can easily produce excited
intermediate states of the KK̄ system in its collisions with the
kaons and this is accounted for by the Faddeev calculations
of Ref. [58] but not in the FCA, where the KK̄ cluster
wave function is supposed to be unaltered. Maintaining the
structure of the cluster on collisions can happen either when the
interacting particle with the cluster is very light or in the case
when it is not light (like in the present case), when the system
is rather bound such that the interacting particle does not have
energy to excite the cluster. The situation for the DNN case
that we study corresponds to this latter case and we expect a
fair description of the three-body system within the FCA.

A. The formalism for the FCA in the DN N system

In the FCA to the Faddeev equations for the DNN three-
body system, one takes the NN as a cluster and D scatters
from that cluster. We consider the DNN system with total
isospin Itot = 1/2 and with the total spin-parity JP = 0− and
JP = 1−. In this approach, all the two-body pairs are in s wave.

First, we make the evaluation for the case of JP = 0−,
which corresponds to the spin (isospin) of the NN pair as
SNN = 0 (INN = 1). To have total isospin Itot = 1/2, the
dominant component of the DN system is I = 0, where the
"c(2595) resonance appears.

The T matrix for the three-body DNN scattering is labeled
by the DN isospins in the entrance channel I and the exit
channel I ′, TI,I ′ . We denote the two-body (s-wave) DN
scattering amplitudes by t (0) for I = 0 and t (1) for I = 1. The
T matrix then satisfies

TI,I ′ = t (I )δI,I ′ + t (I )GI,I ′′G0TI ′′,I ′Pex, (6)

which is diagrammatically represented in Fig. 3. In Eq. (6),
G0 is the meson exchange propagator [34,59]

G0 =
∫

d3q

(2π )3
FNN (q)

1

q02 − #q 2 − m2
D + iε

, (7)

where FNN (q) is the form factor, representing the momentum
distribution of the NN system. Pex is the isospin exchange
factor, which depends on the total isospin of the nucleons,
INN , in the final state, Pex = (−1)INN +1 = 1 for J = 0, and
= −1 for J = 1.

Here we concentrate on the isospin factors in the DNN
scattering amplitudes. We define the isospin doublets, N =
(p, n), D = (D+,−D0) and consider the DNN states with
the total isospin Itot = 1/2. There are two independent states
with the total spin J = 0 and J = 1, which can be decomposed
into the DN isospin eigenstates, as

|D(N1N2)INN=1〉J=0 =
√

3
2

|(DN1)0N2〉 + 1
2
|(DN1)1N2〉,

|D(N1N2)INN=0〉J=1 = −1
2
|(DN1)0N2〉 +

√
3

2
|(DN1)1N2〉.

The D exchange matrix is given in terms of the isospin
recombination factors.

|(DN1)0N2〉 = 1
2
|(DN2)0N1〉 +

√
3

2
|(DN2)1N1〉,

|(DN1)1N2〉 =
√

3
2

|(DN2)0N1〉 − 1
2
|(DN2)1N1〉.

Thus, the transition matrix G is given by

G =
(

1
2

√
3

2√
3

2 − 1
2

)

.

The three-body amplitude TI,I ′ is obtained by solving
Eq. (6),

T =
[

1 − 1
2

(t (0) − t (1))G0Pex − t (0)t (1)G2
0

]−1

×




t (0) + 1

2 t (1)G0t
(0)Pex

√
3

2 t (0)t (1)G0Pex
√

3
2 t (0)t (1)G0Pex t (1) − 1

2 t (0)G0t
(1)Pex



 .

044004-4

- Weak 2-body  (scattering length) : impulse should workt

- Strong 2-body  : rescattering becomes importantt

S.S. Kamalov, E. Oset, A. Ramos, NPA 690, 494 (2001) 
T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

Impulse Rescattering
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Comparison of  and K+d K−d

Two-body scattering lengths

 potentials and their applicationsK̄N

K. Aoki, D. Jido, PTEP 2019, 013D01 (2019) 
T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

3 Discussion

3.1 Impluse approximation

By eliminating the multiple scatterings, we obtain the expression of the impulse approximation

ãK+d(r) = ãp + ãn (22)

Table 1: K±d scattering lengths

Impluse [fm] Full [fm]
K+d −0.61 −0.54
K−d −0.10 + 2.02i −1.42 + 1.61i

Table 2: K±d scattering lengths

ap [fm] an [fm] ax [fm] a0 [fm]
K+d −0.310 −0.195 −0.115 −0.195
K−d −0.66 + i0.89 −0.58 + i0.78 −0.85 + i0.26 −0.40 + i1.03
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A Calculations

A.1 Eq. (13)

Using Eq. (10), ãK+d(r) can be expressed only by An(r) as

ãK+d(r) = Ap(r) + An(r)

= ãp + ãp
1

r
An(r) + An(r)

= ãp + An(r)

[
1 +

ãp
r

]

3

-  system has stronger 2-body interactions than K−d K+d

- Impulse works for  (weak), but not for  (strong)K+d K−d
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1

r
An(r) + An(r)
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LL formula suitable for  correlation function?K+d
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Relation to correlation functions?
3-body equation and correlation functions

 potentials and their applicationsK̄N

BAYAR, XIAO, HYODO, DOTÉ, OKA, AND OSET PHYSICAL REVIEW C 86, 044004 (2012)
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FIG. 3. Diagrammatic illustration of the three-body equation (6).

two-body cluster (nucleon) is not fulfilled in this case. This
certainly introduces larger uncertainties than in other cases
studied but we still expect that one can get good results at
a qualitative level. Actually, the real difficulty of the FCA
occurs when one applies it to studying possible resonant three-
body systems above the threshold of the three particles [57].
In the present case, we look for deeply bound states of the
DNN system and we are safer. However, in order to be more
certain about the results, we have also performed calculations
using a variational method. The differences found in the two
approaches can give us an idea of the uncertainties, and the
features shared by the two approaches can be considered more
reliable.

The work of Ref. [57] gives us some idea of when we
should expect a break down of the FCA. Indeed, in that work
the system φKK̄ was studied within the FCA with the system
KK̄ forming the cluster on which the φ collides. The results
were compared with a full Faddeev calculation [58] where
the φ(2170) resonance was dynamically generated, with the
KK̄ system clustering around the f0(980) resonance. The
comparison of two approaches allowed one to see that the
FCA was failing to provide realistic results because it did not
allow the KK̄ system to be excited in intermediate states. Since
the energy of the system is 90 MeV above the threshold of its
components, the φ, a massive particle compared to the mass
of the components of the cluster, can easily produce excited
intermediate states of the KK̄ system in its collisions with the
kaons and this is accounted for by the Faddeev calculations
of Ref. [58] but not in the FCA, where the KK̄ cluster
wave function is supposed to be unaltered. Maintaining the
structure of the cluster on collisions can happen either when the
interacting particle with the cluster is very light or in the case
when it is not light (like in the present case), when the system
is rather bound such that the interacting particle does not have
energy to excite the cluster. The situation for the DNN case
that we study corresponds to this latter case and we expect a
fair description of the three-body system within the FCA.

A. The formalism for the FCA in the DN N system

In the FCA to the Faddeev equations for the DNN three-
body system, one takes the NN as a cluster and D scatters
from that cluster. We consider the DNN system with total
isospin Itot = 1/2 and with the total spin-parity JP = 0− and
JP = 1−. In this approach, all the two-body pairs are in s wave.

First, we make the evaluation for the case of JP = 0−,
which corresponds to the spin (isospin) of the NN pair as
SNN = 0 (INN = 1). To have total isospin Itot = 1/2, the
dominant component of the DN system is I = 0, where the
"c(2595) resonance appears.

The T matrix for the three-body DNN scattering is labeled
by the DN isospins in the entrance channel I and the exit
channel I ′, TI,I ′ . We denote the two-body (s-wave) DN
scattering amplitudes by t (0) for I = 0 and t (1) for I = 1. The
T matrix then satisfies

TI,I ′ = t (I )δI,I ′ + t (I )GI,I ′′G0TI ′′,I ′Pex, (6)

which is diagrammatically represented in Fig. 3. In Eq. (6),
G0 is the meson exchange propagator [34,59]

G0 =
∫

d3q

(2π )3
FNN (q)

1

q02 − #q 2 − m2
D + iε

, (7)

where FNN (q) is the form factor, representing the momentum
distribution of the NN system. Pex is the isospin exchange
factor, which depends on the total isospin of the nucleons,
INN , in the final state, Pex = (−1)INN +1 = 1 for J = 0, and
= −1 for J = 1.

Here we concentrate on the isospin factors in the DNN
scattering amplitudes. We define the isospin doublets, N =
(p, n), D = (D+,−D0) and consider the DNN states with
the total isospin Itot = 1/2. There are two independent states
with the total spin J = 0 and J = 1, which can be decomposed
into the DN isospin eigenstates, as

|D(N1N2)INN=1〉J=0 =
√

3
2

|(DN1)0N2〉 + 1
2
|(DN1)1N2〉,

|D(N1N2)INN=0〉J=1 = −1
2
|(DN1)0N2〉 +

√
3

2
|(DN1)1N2〉.

The D exchange matrix is given in terms of the isospin
recombination factors.

|(DN1)0N2〉 = 1
2
|(DN2)0N1〉 +

√
3

2
|(DN2)1N1〉,

|(DN1)1N2〉 =
√

3
2

|(DN2)0N1〉 − 1
2
|(DN2)1N1〉.

Thus, the transition matrix G is given by

G =
(

1
2

√
3

2√
3

2 − 1
2

)

.

The three-body amplitude TI,I ′ is obtained by solving
Eq. (6),

T =
[

1 − 1
2

(t (0) − t (1))G0Pex − t (0)t (1)G2
0

]−1

×




t (0) + 1

2 t (1)G0t
(0)Pex

√
3

2 t (0)t (1)G0Pex
√

3
2 t (0)t (1)G0Pex t (1) − 1

2 t (0)G0t
(1)Pex



 .
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Kubo’s cumulant expansion method

In terms of 
correlation 
functions:

Genuine three-particle correlations isolated using the Kubo’s cumulant expansion method: 
R. Kubo, J. Phys. Soc. Jpn. 17(7), 1100–1120 (1962)

Measured triplets
Genuine three-body 
correlations (cumulant)

Lower-order correlations

Evaluated using the data-driven approach and projector method.

R. Del Grande, ALICE collaboration

“Genuine three-body correlation”
- multiple rescattering of 2-body interaction?
- 3-body force (act only in 3-body system)?
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Realistic  potentials are constructed

Rigorous Few-body calculations of 

K̄N

K−d

Summary

Summary

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);
K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);

Table 2: SIDDHARTAのK中間子水素の結果を考慮した K̄N 相互作用による Λ(1405)共鳴極の
比較。

Potential Λ(1405) [MeV] Λ(1380) [MeV] BK̄NN [MeV] ΓK̄NN→πY N [MeV]

V 1,SIDD
K̄N -πΣ

1426− 48i [3] - 53.3 [1] 64.8 [1]

V 2,SIDD
K̄N -πΣ

1414− 58i [3] 1386− 104i [3] 47.4 [1] 49.8 [1]

V chiral
K̄N -πΣ-πΛ 1417− 33i [4] 1406− 89i [4] 32.2 [2] 48.6 [2]

Kyoto K̄N 1424− 26i [5] 1381− 81i [5] 25.3-27.9 [2] 30.9-59.4 [2]

Table 3: SIDDHARTAのK中間子水素の結果を考慮した K̄N 相互作用による Λ(1405)共鳴極の
比較。

Potential ∆E − iΓ/2 [eV]

V 1,SIDD
K̄N -πΣ

767− 464i [1]

V 2,SIDD
K̄N -πΣ

782− 469i [1]

V chiral
K̄N -πΣ-πΛ 835− 502i [1]

Kyoto K̄N 670− 508i [2]

2

[1] J. Revai, PRC 94, 054001 (2016) 
[2] T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

-  is sensitive to  potentialΔE − iΓ/2 K̄N(I = 1)
- DT formulae work well for , but not for K−p K−d

https://inspirehep.net/literature/927436
https://inspirehep.net/literature/1086833
https://inspirehep.net/literature/1376961
https://inspirehep.net/literature/1600610

