Kaon-deuteron systems and femtoscopy

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

${ }^{-} \bar{K} N$ potentials

Y．Ikeda，T．Hyodo，W．Weise，PLB 706， 63 （2011）；NPA 881， 98 （2012）；
K．Miyahara．T．Hyodo，PRC 93， 015201 （2016）；
Rigorous few－body calculation for $K^{-} p$ and $K^{-} d$
－Precision of Deser－Trueman formulae －Sensitivity to $I=1$ amplitude
Femtoscopy of $K^{+} d$ and $K^{-} d$
－Rescattering and interaction strength

Summary

 \qquad $2=-2=-18$

Abstract

\qquad

Abstract

 s左

T．Hoshino，S．Ohnishi，W．Horiuchi，T．Hyodo，W．Weise，PRC96， 045204 （2017）

```
on strength
```

$$
\square
$$

$\bar{K} N$ potentials

Best-fit results

	TW	TWB	NLO	Experiment
$\Delta E[\mathrm{eV}]$	373	377	306	$283 \pm 36 \pm 6$ [10]
$\Gamma[\mathrm{eV}]$	495	514	591	$541 \pm 89 \pm 22 \quad[10]$
γ	2.36	2.36	2.37	$2.36 \pm 0.04 \quad[11]$
R_{n}	0.20	0.19	0.19	$0.189 \pm 0.015 \quad[11]$
R_{c}	0.66	0.66	0.66	$0.664 \pm 0.011 \quad[11]$
$\chi^{2} /$ d.o.f	1.12	1.15	0.96	

Accurate description of all existing data ($\chi^{2} / \mathrm{d} . \mathrm{o} . \mathrm{f} \sim 1$)
$\bar{K} N$ potentials

Construction of $\bar{K} N$ potentials

Local $\bar{K} N$ potential is useful for various applications

meson-baryon amplitude (chiral SU(3) EFT)

Kyoto $\bar{K} N$ potential (single-channel, complex)
K. Miyahara. T. Hyodo, PRC 93, 015201 (2016)

Kyoto $\bar{K} N-\pi \Sigma-\pi \Lambda$ potential (coupled-channel, real)
K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)
$\bar{K} N$ potentials

Spatial structure of $\Lambda(1405)$

$\bar{K} N$ wave function at $\Lambda(1405)$ pole
K. Miyahara. T. Hyodo, PRC93, 015201 (2016)

- substantial distribution at $r>1 \mathbf{f m}$
- root mean squared radius $\sqrt{\left\langle r^{2}\right\rangle}=1.44 \mathrm{fm}$

The size of $\Lambda(1405)$ is much larger than ordinary hadrons
$\bar{K} N$ potentials

Correlation function and femtoscopy

$K^{-} p$ correlation function $C(q)$

$$
C(\boldsymbol{q})=\frac{N_{K^{-}-p}\left(\boldsymbol{p}_{K^{-}}, \boldsymbol{p}_{p}\right)}{N_{K^{-}}\left(\boldsymbol{p}_{K^{-}}\right) N_{p}\left(\boldsymbol{p}_{p}\right)} \simeq \int d^{3} \boldsymbol{r} S(\boldsymbol{r})\left|\Psi_{\boldsymbol{q}}^{(-)}(\boldsymbol{r})\right|^{2}
$$

- Wave function $\Psi_{q}^{(-)}(r)$: coupled-channel $\bar{K} N-\pi \Sigma-\pi \Lambda$ potential

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020) Correlation function is well reproduced

Contents

$\bar{K} N$ potentials

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);
K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);

Few-body calculations for $K^{-} p$ and $K^{-} d$
T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

- Precision of DT formulae
- Sensitivity to $I=1$ potential

Femtoscopy of $K^{+} d$ and $K^{-} d$

- Rescattering and correlation functions

Summary

Few-body calculations for $K^{-} p$ and $K^{-} d$

Check of kaonic hydrogen

Kaonic hydrogen ($\kappa^{-} p$) should be checked

SIDDHARTA
 MB amplitude
 Kyoto $\bar{K} N$ potential

? DT formula isospin symmetric

Two-body calculation with physical masses

$$
\left(\begin{array}{cc}
\hat{T}+\hat{V}^{\bar{K} N}+\hat{V}^{\mathrm{EM}} & \hat{V}^{\bar{K} N} \\
\hat{V}^{\hat{K} N} & \hat{T}+\hat{V}^{\bar{K} N}+\Delta m
\end{array}\right)\binom{\left|K^{-} p\right\rangle}{\left|\bar{K}^{0} n\right\rangle}=E\binom{\left|K^{-} p\right\rangle}{\left|\bar{K}^{0} n\right\rangle}
$$

Result reproduces SIDDHARTA (with physical mass)
S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017)

Mass	E dependence	$\Delta E(\mathrm{eV})$	$\Gamma(\mathrm{eV})$
Physical	Self-consistent	283	607
Isospin	Self-consistent	163	574
Physical	$E_{\bar{K} N}=0$	283	607
Expt. [31,32]		$283 \pm 36 \pm 6$	$541 \pm 89 \pm 22$

Few-body calculations for $K^{-} p$ and $K^{-} d$

Deser-Trueman formulae for kaonic hydrogen

(Improved) Deser-Trueman formulae for $K^{-} p$
S. Deser, et al., PR96, 774 (1954); T.L. Trueman, NP26, 57 (1961)

$$
\left.\begin{array}{l}
\Delta E-\frac{i \Gamma}{2}=-2 \mu_{K^{2}}^{2} \alpha^{3} a_{K^{-} p} \times\left\{\begin{array}{l}
{\left[1-2 \mu_{K} \alpha(\ln \alpha-1) a_{K^{-} p}\right]} \\
{\left[1+2 \mu_{K} \alpha(\ln \alpha-1) a_{K^{-} p}\right.}
\end{array}\right]^{-1}
\end{array}\right] \text { Improved }
$$

	$\Delta E(\mathrm{eV})$	$\Gamma(\mathrm{eV})$	$\delta(\mathrm{eV})$
DT	272	734	64
Improved DT	293	596	11
Resummed DT	284	605	1
Exact	283	607	-

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017) Ressumed DT formula works well for $K^{-} p$
c.f. N.V. Shevchenko, FBS, 63, 22 (2022)

Few-body calculations for $K^{-} p$ and $K^{-} d$

Formulation

Three-body calculation of $K^{-} d$ with physical masses
T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

$$
\begin{aligned}
& \left(\begin{array}{cc}
\hat{H}_{K-p n} & \hat{V}_{12}^{\bar{K} N}+\hat{V}_{13}^{\bar{K} N} \\
\hat{V}_{12}^{\overline{K N}}+\hat{V}_{13}^{\bar{K} N} & \hat{H}_{\bar{K}^{0} n n}
\end{array}\right)\binom{\left|K^{-} p n\right\rangle}{\left|\bar{K}^{0} n n\right\rangle}=E\binom{\left|K^{-} p n\right\rangle}{\left|\bar{K}^{0} n n\right\rangle} \\
& \hat{H}_{K^{-} p n}=\sum_{i=1}^{3} \hat{T}_{i}-\hat{T}_{\mathrm{cm}}+\hat{V}_{23}^{N N}+\sum_{i=2}^{3}\left(\hat{V}_{1 i}^{\bar{K} N}+\underline{\left.\hat{V}_{1 i}^{\mathrm{EM}}\right)}\right. \text { Coulomb } \\
& \hat{H}_{\bar{K}^{0} n n}=\sum_{i=1}^{3} \hat{T}_{i}-\hat{T}_{\mathrm{cm}}+\hat{V}_{23}^{N N}+\sum_{i=2}^{3} \hat{V}_{1 i}^{\bar{K} N}+\underline{\Delta m} \text { threshold difference }
\end{aligned}
$$

- Kyoto $\bar{K} N$ potential

Few-body technique

- a large number of correlated gaussian basis
Y. Suzuki, K. Varga, Lect. Notes Phys. M54, (1998)

Few-body calculations for $K^{-} p$ and $K^{-} d$

Kaonic deuterium: shift and width

Rigorous three-body calculation
T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

- energy convergence
<- large number of basis
- No shift in $2 P$ state is shown by explicit calculation.

Results

Potential	$\Delta E-i \Gamma / 2[\mathrm{eV}]$
$V_{\bar{K} N-\pi \Sigma}^{1, \text { SIDD }}$	$767-464 i[1]$
$V_{\bar{K} N-\pi \Sigma}^{2, \text { SIDD }}$	$782-469 i[1]$
$V_{\bar{K} N-\pi \Sigma-\pi \Lambda}^{\text {chiral }}$	$835-502 i[1]$
Kyoto $\bar{K} N$	$670-508 i[2]$

N	$\operatorname{Re}[E](\mathrm{MeV})$
1677	-2.211689436
2194	-2.211722964
2377	-2.211732072
2511	-2.211735493
2621	-2.211737242
2721	-2.211737609
2806	-2.211737677
2879	-2.211737682

[1] J. Revai, PRC 94, 054001 (2016)
[2] T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

Few-body calculations for $K^{-} p$ and $K^{-} d$

Deser-Trueman formulae for kaonic deuterium

(Improved) Deser-Trueman formulae for $K^{-} d$

S. Deser, et al., PR96, 774 (1954); T.L. Trueman, NP26, 57 (1961)

$$
\int\left[1-2 \mu_{n} \alpha(\ln \alpha-1) a_{n}\right], \text { Improved }
$$

U.G. Meißner, U. Raha, A. Rusetsky, EPJC35, 349 (2004)
V. Baru, E. Epelbaum, A. Rusetsky, EPJA42, 111 (2009)
deviation from Exact
T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

DT formulae do not work accurately for $K^{-} d$
c.f. J. Revai, PRC 94, 054001 (2016), N.V. Shevchenko, FBS, 63, 22 (2022)
$\bar{K} N$ potentials and their applications

$I=1$ dependence

Study sensitivity to $I=1$ interaction

- introduce parameter β to control the potential strength

$$
\operatorname{Re} \hat{V}^{\bar{K} N(I=1)} \rightarrow \beta \times \operatorname{Re} \hat{V}^{K N(l=1)}
$$

Vary β within SIDDHARTA uncertainty of $K^{-} p$

- allowed region: $-0.17<\beta<1.08$
(negative β may contradict with scattering data)

β	$K^{-} p$		$K^{-} d$	
	ΔE	Γ	ΔE	Γ
1.08	287	648	676	1020
1.00	283	607	670	1016
-0.17	310	430	506	980

- deviation of ΔE of $K^{-} d \sim 170 \mathrm{eV}$
- Planned precision: $60 \mathrm{eV}(30 \mathrm{eV})$ at J-PARC (SIDDHARTA-2)

Measurement of $K^{-} d$ will provide strong constraint on $I=1$

Contents

$\bar{K} N$ potentials

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);
K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);

Few-body calculations for $K^{-} p$ and $K^{-} d$
T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

- Precision of DT formulae
- Sensitivity to $I=1$ potential

Femtoscopy of $K^{+} d$ and $K^{-} d$

- Rescattering and correlation functions

Summary

$\bar{K} N$ potentials and their applications

$K^{ \pm} d$ scattering length

$K^{ \pm} d$ scattering length by fixed-center approximation S.S. Kamalov, E. Oset, A. Ramos, NPA 690, 494 (2001)
T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

$$
a_{K^{ \pm} d}=\frac{\mu_{K^{ \pm} d}}{M_{K^{ \pm}}} \int d^{3} \boldsymbol{r} \rho_{d}(r) \frac{\tilde{a}_{p}+\tilde{a}_{n}+\frac{2 \tilde{a}_{p} \tilde{a}_{n}-\tilde{b}_{x}^{2}(r)}{r}-\frac{2 \tilde{a}_{p l n} \tilde{b}_{x}^{2}(r)}{r^{2}}}{1-\frac{\tilde{a}_{p} \tilde{a}_{n}}{r^{2}}+\frac{\tilde{a}_{p l n} \tilde{b}_{x}^{2}(r)}{r^{3}}}, \quad \tilde{b}_{x}^{2}(r)=\frac{\tilde{a}_{x}^{2}}{1+\frac{\tilde{a}_{0}}{r}}
$$

- good approximation around $K^{ \pm} d$ threshold

Diagrammatically:
Impulse
Rescattering

- Weak 2-body t (scattering length) : impulse should work
- Strong 2-body t : rescattering becomes important
$\bar{K} N$ potentials and their applications

Comparison of $K^{+} d$ and $K^{-} d$

Two-body scattering lengths
K. Aoki, D. Jido, PTEP 2019, 013D01 (2019)
T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

	$a_{p}[\mathrm{fm}]$	$a_{n}[\mathrm{fm}]$	$a_{x}[\mathrm{fm}]$	$a_{0}[\mathrm{fm}]$
$K^{+} d$	-0.310	-0.195	-0.115	-0.195
$K^{-} d$	$-0.66+i 0.89$	$-0.58+i 0.78$	$-0.85+i 0.26$	$-0.40+i 1.03$

- $K^{-} d$ system has stronger 2-body interactions than $K^{+} d$ $K^{ \pm} d$ scattering lengths

	Impluse $[\mathrm{fm}]$	Full $[\mathrm{fm}]$
$K^{+} d$	-0.61	-0.54
$K^{-} d$	$-0.10+2.02 i$	$-1.42+1.61 i$

- Impulse works for $K^{+} d$ (weak), but not for $K^{-} d$ (strong)

LL formula suitable for $K^{+} d$ correlation function?
$\bar{K} N$ potentials and their applications

Relation to correlation functions?

3-body equation and correlation functions

"Genuine three-body correlation"

- multiple rescattering of 2-body interaction?
- 3-body force (act only in 3-body system)?

Summary

Realistic $\bar{K} N$ potentials are constructed

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);
K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);

Rigorous Few-body calculations of $K^{-} d$

[1] J. Revai, PRC 94, 054001 (2016)

Potential	$\Delta E-i \Gamma / 2[\mathrm{eV}]$
$V_{\bar{K} N-\pi \Sigma}^{1, \text { SIDD }}$	$767-464 i[1]$
$V_{\bar{K} N D-\pi \Sigma}^{2, S I D}$	$782-469 i[1]$
$V_{\bar{K} N-\pi \Sigma-\pi \Lambda}^{\text {chiral }}$	$835-502 i[1]$
Kyoto $\bar{K} N$	$670-508 i[2]$

[2] T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

- DT formulae work well for $K^{-} p$, but not for $K^{-} d$
 - $\Delta E-i \Gamma / 2$ is sensitive to $\bar{K} N(I=1)$ potential

