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The Nucleon Excitations with
Hamiltonian EFT



Hadron Physics

mainly focused on hadron scatterings, spectra, structures,
interactions, etc.

traditional perturbation
expansion in series of (αs)n?

• constituent quark model

• effective field theory

• lattice QCD

• QCD sum rule
• large Nc
• ...
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Lattice QCD

• LQCD starts from the first principle of QCD
• model independent, reliable
• LQCD gives hadron spectra and quark distribution functions

at finite volumes, large quark masses, discrete spaces
• not directly related to physical observables
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Connection between Scattering Data and Lattice QCD Data

Lattice QCD

• large pion mass: extrapolation
• finite volume
• discrete space

Lattice QCD Data → Physical Data

• Lüscher Formalisms and extensions:
Model independent; efficient in single-channel problems

Spectrum → Phaseshifts;
• Effective Field Theory (EFT), Models, etc

with low-energy constants fitted by Lattice QCD data

Physical Data → Lattice QCD Data

• EFT: discretization, analytic extension, Lagrangian modification
• various discretization: eg. discretize the momentum in the loop
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Lattice QCD and Effective Field Theory

Effective field theory deals with extrapolation powerfully.

Finite-volume effect can be studied by discretizing the EFT.

Discrete spacing effects can also be studied with EFT.
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Scattering Data and Lattice QCD data are two important sources for studying resonances.

We should try to analyse them both at the same time.
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Hamiltonian Effective Field Theory

Hamiltonian Effective Field Theory (HEFT)
analyses both experimental data at infinite volume
and lattice QCD results at finite volume at the same time.

• at infinite volume
Lagrangian (via 2-particle irreducible diagrams) →

potentials (via Betha-Salpeter Equation) →
phaseshifts and inelasticities

• at finite volume
potentials discretized (via Hamiltonian Equation)→ spectra
wavefunctions: analyse the structure of the eigenstates on the lattice

• finite-volume and infinite-volume results are connected by the coupling constants etc.
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N∗(1535) with πN Scattering

N∗(1535) is the lowest resonance with I(JP) = 1
2 (

1
2
−
).

• One needs to consider the interactions
among the bare baryon N∗

0 , πN channel, and ηN channel.

G2
πN;N∗

0
(k) =

3g2
πN;N∗

0

4π2f2 ωπ(k)

VS
πN,πN(k, k′) =

3gS
πN

4π2f2
mπ + ωπ(k)
ωπ(k)

mπ + ωπ(k′)
ωπ(k′)

• Phase shifts and inelasticities
are obtained by solving Bethe-Salpeter equation with the interactions.

Tα,β(k, k′;E) = Vα,β(k, k′) +
∑
γ

∫
q2dq

Vα,γ(k, q)
1

E −
√

m2
γ1 + q2 −

√
m2

γ2 + q2 + iϵ
Tγ,β(q, k′;E)
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N∗(1535) with πN scattering at infinite volume
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Our Pole: 1531 ± 29 − i 88 ± 2 MeV. Particle Data Group: 1510±20 − i 85 ± 40 MeV.
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Discretization in finite volume

H0 = diag{m0
N1 , ωπN(k0), ωηN(k0), ωπN(k1), ωηN(k1), ...},

HI =



0 G̃πN(k0) G̃ηN(k0) G̃πN(k1) G̃ηN(k1) . . .

G̃πN(k0) ṼS
πN,πN(k0, k0) 0 ṼS

πN,πN(k0, k1) 0 . . .

G̃ηN(k0) 0 0 0 0 . . .

G̃πN(k1) ṼS
πN,πN(k1, k0) 0 ṼS

πN,πN(k1, k1) 0 . . .

G̃ηN(k1) 0 0 0 0 . . .
...

...
...

...
... . . .


,

where

G̃i(kn) =

√
C3(n)

4π (
2π
L )3/2Gi(kn),

ṼS
i,j(kn, km) =

√
C3(n)C3(m)

4π (
2π
L )3VS

i,j(kn, km).

C3(n) represents the number of summing the squares of three integers to equal n.
10



Spectra at Finite Volumes

3 sets of lattice data at different pion masses and finite volumes
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Spectra at Finite Volumes

3 sets of lattice QCD data at different pion masses and finite volumes
Non-interacting energies of the two-particle channels
Eigenenergies of Hamiltonian effective field theory
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Spectra at Finite Volumes

3 sets of lattice data at different pion masses and finite volumes
Eigenenergies of Hamiltonian effective field theory
Coloured lines indicating most probable states observed in LQCD
We not only provide the mass but also analyze why some states are observed on the lattice
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For more details, please see the following references:

Z. W. Liu, W. Kamleh, D. B. Leinweber, F. M. Stokes, A. W. Thomas and J. J. Wu,
“Hamiltonian effective field theory study of the N∗(1535) resonance in lattice QCD,” Phys.
Rev. Lett. 116 (2016) no.8, 082004

Z. W. Liu, W. Kamleh, D. B. Leinweber, F. M. Stokes, A. W. Thomas and J. J. Wu,
“Hamiltonian effective field theory study of the N∗(1440) resonance in lattice QCD,” Phys.
Rev. D 95 (2017) no.3, 034034

J. j. Wu, D. B. Leinweber, Z. w. Liu and A. W. Thomas,
“Structure of the Roper Resonance from Lattice QCD Constraints,” Phys. Rev. D 97 (2018)
no.9, 094509
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Components of Eigenstates with L ≈ 3 fm
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• The 1st eigenstate at light quark masses is mainly πN scattering states.
• The most probable state at physical quark mass is the 4th eigenstate.

It contains about 60% bare N∗(1535), 20% πN and 20% ηN.
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N∗(1440) Resonance

• N∗(1440), usually called Roper , is the excited state I(JP) = 1
2 (

1
2
+
)

• Naive quark model predicts mN∗(1440) > mN∗(1535)
if they are both dominated by 3-quark core. But contrary to experiment.

To check whether a 3-quark core largely exists in Roper, we consider models

• with a bare Roper

• without any bare baryons

• including the effect of the bare nucleon
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N∗(1440) Resonance
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• with a bare Roper
• without any bare baryons
• including the effect of the bare nucleon
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An original figure from later lattice QCD work
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Pion Photoproduction off Nucleon with Hamiltonian EFT

• combining
• πN → πN
• lattice QCD data
• γ + N → π + N

• γ + N → π + N
• γNN etc. couplings are not adjusted

•
M(γN → πN) ∼ MEM(γN → πN)

+MEM(γN → πN)⊗MFSI(πN → πN)

+MEM(γN → ηN)⊗MFSI(ηN → πN)
• understand the structure of N(1535) and the interactions of πN/ηN at low energies and near

the resonance
• necessities for the photon-nucleus investigation
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Electromagnetic Multipoles

• |γN⟩ → |ϕ (⃗k), N(−k⃗, s′Nz )⟩, kx, ky, kz, s′Nz
• |γN⟩ → |ϕN; k, J, Jz, L⟩ , k, J, Jz, L
• |γN⟩ → |ϕN; k, J, Jz, λ′N⟩ , k, J, Jz, λ′N

Vα,γN(J, λ′N, λγ , λN; k, q) = 2π
∫ 1

−1
d(cos θ)

∑
s′Nz

dJ
λγ−λN,−λ′

N
(θ)d1/2

s′Nz ,−λ′
N
(θ)∗Mα,γN(s′Nz , λN, λγ ; k⃗, q⃗),

VJLS;λγλN
α,γN (k, q) =

√
2L + 1
2J + 1

∑
λ′

N

⟨L,S, 0,−λ′N|J,−λ′N⟩

×Vα,γN(J, λ′N, λγ , λN; k, q).

D. Guo and Z. W. Liu, Phys. Rev. D 105 (2022) no.11, 11
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Numerical results
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The bare core in N∗(1535)
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The bare core in N∗(1535)
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The bare core in N∗(1535)

+...
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The bare core in N∗(1535) cannot be absent in pion photoproduction
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Re with ĝNγN∗ = 0

Im with ĝNγN∗ = 0
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Im with ĝNγN∗ = 0

Re with gρNN = 0

Im with gρNN = 0

20



Estimation of the N∗(1650) contribution
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Λ(1405) with K−p scattering

• The well-known Weinberg-Tomozawa potentials are used.
momentum-dependent, non-separable

vI =
∑
α,β

∫
d3k⃗ d3k⃗′ |α(⃗k)⟩VI

α,β(k, k′) ⟨β(⃗k′)| ,

Vα,β(k, k′) = gα,β
ωαM(k) + ωβM(k′)

8π2f2
√

2ωαM(k)
√
ωβM(k′)

|α⟩=|πΣ⟩, |K̄N⟩, |ηΛ⟩, |KΞ⟩, |πΛ⟩
• two scenarios: with or without a bare baryon

gI =
∑
α,B0

∫
d3k⃗

{
|α(⃗k)⟩GI†

α,B0
(k) ⟨B0| + |B0⟩GI

α,B0(k) ⟨α(⃗k)|
}
,

where
GI
α,B0(k) =

√
3 gI

α,B0

2πf
√
ωπ(k) u(k).

HI
int = gI + vI.

22



Λ(1405) with K−p scattering

We can fit the cross sections of K−p well

both with and without a bare baryon.
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Spectrum on the Lattice

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
m2
π/GeV2

1300

1400

1500

1600

1700

1800

1900

E
/M

eV

non-int. π-Σ energy

non-int. K̄-N energy

non-int. η-Λ energy

non-int. K-Ξ energy

matrix Hamiltonian model

without a bare baryon
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

m2
π/GeV2

1300

1400

1500

1600

1700

1800

1900

E
/M

eV

matrix Hamiltonian model

1st most probable

2nd most probable

3rd most probable

with a bare baryon
Spectra with S = −1, I(JP) = 0( 1

2
−
) in the finite volume.

• The bare baryon is important for interpreting the lattice QCD data at large pion masses.
• Λ(1405) is mainly a K̄N molecular state

containing very little of bare baryon at physical pion mass.

Z. W. Liu, J. M. M. Hall, D. B. Leinweber, A. W. Thomas and J. J. Wu, Phys. Rev. D 95 014506 24



Kaonic Hydrogen

energy shift and width of 1s level were measured at
SIDDHARTA-2

ϵp1S = 283 ± 36(stat)± 6(sys) eV,
Γp

1S = 541 ± 89(stat)± 22(sys) eV ,

• they are related to the
scattering length of K−p

ϵp1S − i
2Γ

p
1S

=
−2α3

e µ
2
K−p aK−p

1 + 2αe µK−p (lnαe − 1) aK−p
,

“double-improved” Deser formula

• With K̄N interactions NOT fine
tuned,
HEFT provides

ϵp1S = 307 eV,
Γp

1S = 533 eV .
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Kaonic Deuteron without Recoil Effect

K̄NN scattering amplitude can be solved by the Faddeev equation

p

n

K−

Tp
p

n

K−

=
p

n

K−

TK−p
p

n

K−

+

p

n

K−

TK−p
Tn

p

n

K−

K−
+

p

n

K− TK−p→K̄0n

Tx
n

p

K−

K̄0

,...

With the static approximation,

aK−d =
md

mK + md

∫
d3⃗r |ψd(⃗r)|2 ÂK−d(r) ,

where
ÂK−d(r) =

ãK−p + ãK−n + (2ãK−pãK−n − b2
x)/r − 2b2

x ãK−n/r2

1 − ãK−pãK−n/r2 + b2
x ãK−n/r3 .

Our results without recoil effect are similar to others

ϵd1S|StaticApprox = 855 eV, Γd
1S|StaticApprox = 1127 eV .
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Recoil Effect
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• The recoil effect is mainly from the single scattering process

⟨Td
K̄N ⟩ ≡

∫
d3q⃗ |ψd(⃗q)|2 TK̄N(⃗q).

• If no Λ(1405) exists,
this kind of recoil effect can be totally neglected.

Z. W. Liu, J. J. Wu,
D. B. Leinweber and
A. W. Thomas,
Phys. Lett. B 808 (2020),
135652

27



Recoil Effect

0 50 100 150 200 250 300
q/MeV

−2

−1

0

1

2

3

4

T
K̄
N
×

(−
π
µ
K̄
N

)/
fm

∫
dΩ q2 |ψd|2 (unnormalised) Im, I = 0

Re, I = 0

Im, I = 1

Re, I = 1

Im, I = 1

Re, I = 1

EK̄N/MeV: 1420 1400 1380 1360

• The recoil effect is mainly from the single scattering process

⟨Td
K̄N ⟩ ≡

∫
d3q⃗ |ψd(⃗q)|2 TK̄N(⃗q).

• If no Λ(1405) exists,
this kind of recoil effect can be totally neglected.

Z. W. Liu, J. J. Wu,
D. B. Leinweber and
A. W. Thomas,
Phys. Lett. B 808 (2020),
135652

27



Comparison
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Kaonic Deuteron scattering length with Recoil Effect

p

n

K−

Tp
p

n

K−

=
p

n

K−

TK−p
p

n

K−

+

p

n

K−

TK−p
Tn

p

n

K−

K−
+

p

n

K− TK−p→K̄0n

Tx
n

p

K−

K̄0

,...

aK−d Single Scattering Single+Multiple Scatterings
Re -0.06 −0.59
Im 2.55 2.70

The imaginary part of aK−d is dominant by the simgle scattering diagram.
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Summary



Summary

In this report, I have briefly discussed

• the low-lying baryons with Hamiltonian EFT
• N∗(1535) contains a 3-quark core;
• N∗(1440) should contain little of 3-quark consistent;
• Λ(1405) is mainly a K̄N molecular state at physical quark mass, while a 3-quark core

dominates at large quark masses.

• Energy Shift and Decay Width of Kaonic Deuteron with Hamiltonian EFT
Recoil effect makes kaonic deuteron much short lived because of the close Λ(1405).
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Thanks for your attentions!
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Backup

Backup
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ALICE Collaboration @ LHC have verified our K−p scattering length
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