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Introduction

• We start with the definition of the pp correlation function:

Cpp(k) =

∫
d3y SR(y)|Ψ|2

with SR the source function defined as

SR(y) =
1

(4πR2)3/2
e−(y/2R)2

and Ψ the pp scattering wave function

Ψ =
∑
[LSJ]

uLSJ(y)[YL(ŷ)χS ]J = Ψ0 +
J∑

[LSJ]

ΨLSJ

with Ψ0 the free scattering wave function. In ΨLSJ the interaction has been considered up
to J.

2 / 39



The pp Correlation Function
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Introduction

• We now consider the pd correlation function:

Cpd(k) =

∫
d3y SR(y) | < pd |Ψpd > |2

with SR the source function defined as

SR(y) =
1

(4πR2)3/2
e−(y/2R)2

Ψpd is the pd scattering wave function

Ψpd =
∑
[K ]

u[K ](ρ)B[K ](Ω) = Ψ0
pd +

J∑
[LSJ]

ΨLSJ

[ρ,Ω] are the hyperspherical coordinates, [K ] the set of quantum numbres and Ψ0 is the
free scattering wave function. In ΨLSJ the interaction has been considered up to J.
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Introduction

• Finally we consider the ppp correlation function:

Cppp(Q) =

∫
ρ5dρdΩ Sρ0(ρ)|Ψppp|2

with Q the hyper-momentum, Sρ0 the source function defined as

Sρ0(ρ) =
1

π3ρ6
0

e−(ρ/ρ0)2

Ψppp is the ppp scattering wave function

Ψppp =
∑
[K ]

u[K ](ρ)B[K ](Ω) = Ψ0 +

J,K∑
J,[K ]

ΨJ
[K ]

To be noticed that Ψ0 is not well known. In ΨJ
[K ] the interaction has been considered up

to J and K
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Comparison to data (preliminary)
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Introduction

• In the pp correlation function the main ingredient is the Ψpp scattering function.
Accordingly Cpp(k) is sensitive to the NN interaction.

• The NN interaction is described using Chiral pertubation theory. The strength of the
different terms, the low-energy constants (LECs), are set to describe the world NN data,
around 5000 scattering data plus the deuteron binding energy.

• In the pd and ppp correlation functions the main ingredients are the Ψpd and Ψppp

scattering functions. Accordingly Cpd(k) and Cppp(Q) should be sensitive to the NN
interaction (and NNN interaction).

• The three-nucleon system has played a central role in our understanding of the nuclear
interaction. It is the next, simpler system in which the capability of this interaction to
describe the nuclear dynamics can be analyzed.

• The pertubative series includes many-body forces, in particular three-body forces. They
play a fundamental role in the correct description of the three-nucleon system (and
heavier systems).

8 / 39



The NN interaction

• In the 90’s the first realistic potentials appeared, phenomenological and, few years later,
based on the chiral perturbative series
• They describe the NN scattering data with a χ2 ≈ 1

-40

0

40

80

120

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  

NLO 

NNLO
N3LO
N4LO

 1S0

-20

0

20

40

60

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  

NLO 
NNLO
N3LO
N4LO 3P0

-30

-20

-10

0

10

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  

NLO 
NNLO

N3LO
N4LO

 1P1

-30

-20

-10

0

10

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  
NLO 

NNLO
N3LO
N4LO

 3P1

-100

0

100

200

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  

NLO 
NNLO
N3LO
N4LO

 3S1

-40

-30

-20

-10

0

10

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  

NLO 

NNLO

N3LO
N4LO

 3D1

-5

0

5

10

M
ix

in
g 

Pa
ra

m
et

er
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  

NLO 

NNLO
N3LO
N4LO

ε1

0

5

10

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  
NLO 

NNLO

N3LO
N4LO 1D2

0

10

20

30

40

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  
NLO 

NNLO
N3LO
N4LO

 3D2

0

10

20

30

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  

NLO 

NNLO

N3LO
N4LO

 3P2

-4

-2

0

M
ix

in
g 

Pa
ra

m
et

er
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  

NLO 

NNLO

N3LO
N4LO

ε2

-8

-4

0

4

8

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300 400
Lab. Energy (MeV)

LO  
NLO 
NNLO

N3LO

N4LO
 3D3

D. Entem, R. Machleidt and Y. Nosyk, Phys. Rev. C 96, 024004 (2017)

9 / 39



The NN interaction
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The NN interaction
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The Three-Nucleon System

• In parallel with the studies in the NN system, strong efforts have been done to solve the
three-nucleon system

• The solution of the Faddeev and Faddeev-Yakubovsky equations in configuration and
momentum space are one of the reference methods in the solution of the three- and
four-nucleon problem.

• New methods appeared using the variational principle, among them the Hyperspherical
Harmonic expansion resulted of great flexibility to study the discrete and the continuum
spectrum of the three- and four-nucleon systems.

• Other methods very useful in heavier systems are the GFMC method and the NCSM
method

• Different groups using different methods have produced benchmarks useful to set the
theoretical uncertanties.
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3H and 4He Bound States and n − d scattering length

Potential(NN) Method 3H[MeV] 4He[MeV] 2and [fm]
AV18 HH 7.624 24.22 1.258

FE/FY Bochum 7.621 24.23 1.248
FE/FY Lisbon 7.621 24.24

CDBonn HH 7.998 26.13
FE/FY Bochum 8.005 26.16 0.925
FE/FY Lisbon 7.998 26.11
NCSM 7.99(1)

N3LO-Idaho HH 7.854 25.38 1.100
FE/FY Bochum 7.854 25.37
FE/FY Lisbon 7.854 25.38
NCSM 7.852(5) 25.39(1)

Potential(NN+NNN)
AV18/UIX HH 8.479 28.47 0.590

FE/FY Bochum 8.476 28.53 0.578
CDBonn/TM HH 8.474 29.00

FE/FY Bochum 8.482 29.09 0.570
N3LO-Idaho/N2LO HH 8.474 28.37 0.675

NCSM 8.473(5) 28.34(2)
Exp. 8.48 28.30 0.645±0.010
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The Chiral ExpansionNuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4
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The Three-Nucleon Force

• The NN interaction has been constructed from a detailed description of the NN scattering
data. The perturbative series has been extended to fifth order (N4LO) and more than 20
LECs have been used to fit the data and deuteron binding energy.

• The three-nucleon interaction (TNI) appears at N2LO with two LECS determined in order
to reproduce two observables, for example the 3He binding energy and the nd scattering
length.

• The extension of the three-nucleon interaction (TNI) to consider higher terms in the
chiral expansion is at present an intense subject of research.
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Nd Scattering

• Applications of the realistic NN interaction plus three-nucleon forces to describe the 3N
scattering data result in a χ2 >> 1
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Nd Scattering

χ2 per datum obtained in the description of the pd vector and tensor analyzing powers

Energy potential Ay iT11 T20 T21 T22
1 MeV AV18 276 112 3.5 4.5 2.8

AV18+UR 190 61 1.0 2.5 0.7
N3LO Idaho 197 68.7 4.0 2.5 1.5
N3LO+N2LO 139.9 49.5 2.7 2.5 0.9

3 MeV AV18 313 205 4.8 6.7 12
AV18+UR 271 144 5.4 11 2.4
N3LO 186 108.3 1.9 2.8 4.4
N3LO+N2LO 114 85.8 3.6 8.3 1.6

5 MeV AV18 211 99 6.8 12 7.8
AV18+UR 186 59 26 36 1.5

7 MeV AV18 303 90 19 38 1.9
AV18+UR 239 56 40 81 4.2

9 MeV AV18 292 165 42 70 38
AV18+UR 218 134 63 86 7.2

10 MeV AV18 288 29 10 6.2 24
AV18+UR 224 23 13 6.1 7.6

• The complicate structure of the three-nucleon force has to be further analysed

• Recently the contact three-nucleon interaction at N4LO has been worked out

• The spin structure is sufficient flexible to guarantee a better description of the polarization observables at low energies.

• Would be possible to fit these three-body LECs to pd scattering data in order to obtain values of the χ2 per datum similar to those obtained in the
two-nucleon sector?
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The Three-Nucleon Force

p-d scattering at 3 MeV fitting the subleading TNI terms obtaining a χ2 per datum ≈ 1.7
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The Three-Nucleon System

The Jacobi coordinates (~xi , ~yi )
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The Jacobi coordinates allow to separate the center of mass motion

H = T + V = TCM −
~2

m

(
∇2

x1
+∇2

y1

)
+
∑
i<j

V (i , j) +
∑

i<j<k

W (i , j , k)
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The Three-Nucleon System

The three-nucleon wave function:

Ψ(~x , ~y) = ψ(~x1, ~y1) + ψ(~x2, ~y2) + ψ(~x3, ~y3)

The amplitudes ψ(~xi , ~yi ) are called Faddeev amplitudes. They can be decomposed in
angular-spin-isospin channels

ψ(~xi , ~yi ) =
∑
α

φ(xi , yi )
[
[Yl1(x̂i )Yl2(ŷi )]L ⊗ χSjk

S

]
JJz
ξ
Tjk

TTz

χ
Sjk
S and ξ

Tjk

TTz
are the spin and isospin functions of the three nucleons.

• Each channel α = [l1, l2, L,Sjk , S ,Tjk ,T ] is compatible with J and parity.
• l1 + Sjk + Tjk = odd for antisymmetrization.
• The two-dimensional amplitudes φ(xi , yi ) can be obtained solving the Faddeev equations

or by a variational description.
• The number of channels is not limited and some truncation criteria is needed

(convergence in some observables).
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The Hyperspherical Harmonic Functions

The kinetic term of the center of mass Hamiltonian

T = −~2

m

(
∇2

x1
+∇2

y1

)
can be written as

T = −~2

m

(
∂2

∂ρ2
+

5

ρ

∂

∂ρ
+

Λ2(Ω)

ρ2

)
We have introduced the hyperradius and the hyperspherical coordinates [ρ,Ω] = [ρ, φ, x̂i , ŷi ]{

xi = ρ cosφi
yi = ρ sinφi

and the grand angular operator Λ2(Ω).
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The Hyperspherical Harmonic Functions

The eigenvectors of Λ2(Ω) are the hyperspherical harmonic (HH) functions(
Λ2(Ω) + K (K + 4)

)
Y[K ](Ω) = 0

The HH functions, having well defined angular momentum, are

Y LM
[K ] (Ωi ) = Nn,l1,l2

(2)P l1,l2
n (φi ) [Yl1(x̂i )Yl2(ŷi )]LM

The set of quantum numbers is [K ] = [n, l1, l2, L,M]. The HH functions form a complete basis
useful to expand the three-nucleon wave function.

ψ(~xi , ~yi ) =
∑
[K ]

u[K ](ρ)YJπ

[K ](Ωi )

The functions YJπ

[K ](Ωi ) are hyperangular-spin-isospin function

YJπ

[K ](Ωi ) =
[
Y LM

[K ] (Ωi )⊗ χSjk
S

]
JJz
ξ
Tjk

TTz

with quantum numbers [K ] = [n, l1, l2, L,M, Sjk , S ,Tjk ,T ].
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The pd Three-Nucleon Wave Function

ΨLSJ(~x , ~y) =
∑
[K ]

u[K ](ρ)
∑
i

YJπ

[K ](Ωi )+

+
∑
iL′S ′

[
[φd(~xi )⊗ χ1/2]S ′ YL′(ŷi )

]
J

[δLL′δSS ′FL(yi ) + T LS
L′S ′OL′(yi )]

here φd(~xi ) is the deuteron wave function and T LS
L′S ′ is the T -matrix.

For energies below the deuteron breakup u[K ](ρ→∞)→ 0 whereas for energies above the
deuteron breakup it describes the breakup amplitude. The transition amplitude is

MSS ′
SzS ′z

(θ) = fc(θ)δSS ′δSzS ′z +

√
4π

k

∑
LL′J

CLL′J T LS
L′S ′YL′M′(θ, 0)

with fc the Coulomb amplitude. For example, the unpolarized cross section is
dσ/dΩ(θ) = tr(MM†)/6 and Ay (θ) = tr(MσyM

†)/6
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pd Correlation Analysis

a) The free case: The free scattering wave function for pd is

Ψ0
s =

4π√
6

∑
`mS

i `[φd(~x)⊗ χ1/2]S
F`(η, ky)

ky
Y`m(ŷ)Y ∗`m(k̂)

with F`(η, ky) a regular Coulomb wave function and η = e2/(3~2k/4m).
Integrating on spin, deuteron and angular variables, the norm results

|Ψ0
s |2 =

∑
`

(ky)−2F 2
` (η, ky)(2`+ 1)

0 5 10 15 20
z=ky

0

0.2

0.4

0.6

0.8

1
|Ψ

0 |2

 η  = 0.023
 η  = 0.23
  η  = 2.3

24 / 39



pd Correlation Analysis

b) Considering antisymmetrization

Ψ0
s = Ψ0

1 + Ψ0
2 + Ψ0

3 =
4π√

3

∑
i`mS

i `[φd(~xi )⊗ χ1/2]S
F`(η, kyi )

kyi
Y`m(ŷi )Y

∗
`m(k̂)

where φd is the deuteron wave function and ~k is the relative momentum between the two
clusters.
The correlation function is defined as

C 0
pd(k) = 3× 1

6

∫
d3y SR(y)

∑
spin

∫
d3x | < φd(1, 2)χ(3)|Ψ0

s > |2

and the normalization condition

lim
k→∞

C 0
pd(k) =

∫
d3y SR(y)

1

6

∑
spin

∫
d3x |φd(1, 2)|2 = 1 ,

since φd is normalized and
∫
d3y SR(y) = 1.
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The interacting case

The interacting pd wave function is

Ψm2,m1 =
√

4π
∑
LSJ

iL
√

2L + 1e iσL(1m2
1

2
m1|SJz)(L0SJz |JJz)ΨLSJ(~x , ~y)

where ΨLSJ is the three-body wave functions

ΨLSJ(~x , ~y) =
∑
[K ]

u[K ](ρ)BJπ[K ](Ω)+

+
∑
iL′S ′

[
[φd(~xi )⊗ χ1/2]S ′ YL′(ŷi )

]
J

(ky)−1[δLL′δSS ′FL(yi ) + T LS
L′S ′OL′(yi )]

where B[K ](Ω) are a set of antisymmetrized HH functions and T LS
L′S ′ are the T-matrix elements.
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The asymptotic behaviour of the wave functions ΨLSJ is chosen so that if we turn off the
nuclear interaction they reduce to

ΨLSJJz →
1√
3

∑
ij`

{
YL(ŷ`)

[
φ(ij)χ(`)

]
S

}
JJz

FL(η, ky`)

ky`
,

in fact in such a case u[K ] = T LS
L′S ′ = 0 and Ψm2,m1 reduces to Ψ0

s .

In the calculation, we include the effect of the nuclear interaction up to a given J̄. For J > J̄,
the free and full wave functions is equivalent.

It is convenient to resum all the terms proportional to FL(η, ky`) in order to reproduce the free
wave function. Let us define

Ψ̃LSJJz =
∑
[K ]

u[K ](ρ)B[K ](Ω)

+
1√
3

∑
iL′S ′

T LS
L′S ′

{
YL′(ŷi )

[
φ(i)χ(i)

]
S ′

}
JJz

OL′(η, kyi )

kyi
,

27 / 39



where we have subtracted from the wave function the “free” part. The full wave function can
be cast in the form

Ψm2,m1(x, y) = Ψ0
s +

J≤J̄∑
LSJ

√
4πiL
√

2L + 1e iσL(1m2
1

2
m1|SJz)(L0SJz |JJz)Ψ̃LSJJz

The correlation function is calculated using two steps: the wave function is projected on the
dp chanel

Ψm′2m
′
1,m2m1

(k , y) =

∫
d3x

[
φm′2(1, 2)χm′1

(3)
]

Ψm2,m1(x, y)

Then the overlap with the source is computed

Cpd(k) = 3× 1

6

∑
m′2m

′
1

∑
m2m1

∫
d3y SR(y)|Ψm′2m

′
1,m2m1

(k, y)|2
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The ppp Wave Function

The total wave function is

Ψ(~x , ~y) =
∑
i

ψ(~xi , ~yi ) = ρ−5/2
∑
[K ]

u[K ](ρ)BJπ[K ](Ω)

with BJπ[K ] antisymmetric HH-spin functions

The ppp wave is completely determined from the hyperradial functions u[K ](ρ). And they are
determined from the boundary conditions as ρ→∞.

For a given energy, E = ~2Q2/m, and in the nnn case

u[K ](ρ→∞)→
√
Qρ [JK+2(Qρ) + tan δKYK+2(Qρ)]

In the ppp case the asymptotic equations are coupled not allowing this simple picture
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ppp Correlation Analysis

Using the property of the HH functions

Ψ0
s = e i

~Q·~ρ =
(2π)3

(Qρ)2

∑
[K ]

iKJK+2(Qρ)Y[K ](Ω)Y∗[K ](Q̂)

where ~Q · ~ρ = ~k1 · ~x + ~k2 · ~y and JK+2 a Bessel function.

• For the case of three nucleons we have to include the correct symmetrization.

• For the case of three protons we have to include the correct asymptotics

The nnn (or ppp) case:

Ψ0
s =

(2π)3

(Qρ)2

∑
[K ]

iKJK+2(Qρ)B[K ](Ω)B∗[K ](Q̂)

with B[K ](Ω) antisymmetric in the hyperangle-spin space.
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ppp Correlation Analysis

Taken spin traces and performing the hyperangular integration, the norm results

|Ψ0
s |2 =

(2π)6

(Qρ)6

∑
[K ]

J2
K+2(Qρ)NST (K )

where NST (K ) is the number of states.
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ppp Correlation Analysis

For three protons the asymptotic form changes (and it is not known in a close form)
The Coulomb interaction coupled the asymptotic equations through the term∑

ij

e2

rij

In this preliminary study we perform an average of the Coulomb interaction on the hyperangles

Vc(ρ) =

∫
dΩ
∑
ij

e2

rij
|Y0(Ω)|2 =

16

π

e2

ρ

and the plane wave takes the form

e i
~Q·~ρ → Ψ0

s =
1

C3/2(0)

(π)3

(Qρ)5/2

∑
[K ]

iKFK+3/2(η,Qρ)B[K ](Ω)B∗[K ](Q̂)
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ppp Correlation Analysis

Taken spin traces and performing the hyperangular integration, the norm results

|Ψ0
s |2 =

1

C 2
3/2

1

(Qρ)5

∑
K

F 2
K+3/2(η,Qρ)NST (K )

where NST (K ) is the number of states and the Coulomb factor Cλ =
(λ2 + η2)1/2

λ(2λ+ 1)
Cλ−1
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ppp Correlation Analysis

The ppp wave function is

Ψppp =
∑
[K ]

u[K ](ρ)B[K ](Ω) = Ψ0 +
J∑
J

ΨJ

with ΨJ =
∑
[K ]

uJ[K ](ρ)B[K ](Ω)

To determine the hyperradial functions uJ[K ](ρ) we use the Adiabatic Hyperspherical Harmonic
basis

ΨJ = ρ−5/2
∑
ν

wJ
ν (ρ)φν(ρ,Ω)

with the adiabatic functions φν(ρ→∞,Ω)→ B[K ](Ω)
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Integrating on a Hyperradial source

The hyperradial source in the case of three particles is defined as

S123 =
1

π3ρ6
0

e−(ρ/ρ0)2

with ρ2 = 2
3 (r2

12 + r2
23 + r2

31) and the condition∫
S123ρ

5dρ dΩ = 1

The correlation function is defined now as

C123(Q) =

∫
ρ5dρ dΩ S123|Ψs |2
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Integrating on a Hyperradial source

Preliminary results with size source of 2 fm and 1.5 fm
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Comparison to data (preliminary)
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Summary

• Although its apparent simplicity, the three-nucleon problem is of great complexity

• The antisymmetrization of the wave function is perfomed using the HH basis

• In the ppp case the Coulomb interaction couples the asymptotic dynamics increaing the
difficulties of the numerical treatment.

• In this preliminary description the Coulomb interaction was averaged through the
hyperangles

• Moreover only the K = 1, 3 and K = 2 hyperangular channels were included

• The next work is to inlcude more channels and to relax the average of the Coulomb force
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