

Cascade models for atomic transitions in kaonic atoms

Simone Manti 17 October 2022

Model the cascade of the exotic atom with a Monte Carlo

- 1962 M. Leon and H. A. Bethe, Phys. Rev. 127, 636
- 1980 E. Borie and M. Leon, Phys. Rev. A 21, 1460

• 1989 - G. Reifenröther, E. Klempt, Nucl. Phys. A, 503, 3-4

• 1997 - T. P. Terada and R. S. Hayano, Phys. Rev. C 55, 73

2002 - Jensen T., Markushin V., Eur. Phys. J. D 21, 271–283 1

Cascade model for exotic atoms (KN)

Exotic atom = Atom + X⁻
$$r_n = \frac{n^2}{\mu Z}$$
 $E_n = -\frac{\mu Z^2}{2n^2}$
X⁻ = μ^- , π^- , K⁻,

Radiative rate from scaling the (Z,µ) hydrogen rate

 $\Gamma_{n_{i}l_{i} \to n_{f}l_{f}}^{rad} = \mu Z^{4} \Gamma_{n_{i}l_{i} \to n_{f}l_{f}}^{rad}(H) \qquad \Gamma_{n_{i}l_{i} \to n_{f}l_{f}}^{rad}(H) = \frac{4}{3} \alpha^{3} R_{if}^{2} \omega_{if}^{3}$ $\Gamma_{n,n-1 \to n-1,n-2}^{circ} = \frac{\mu Z^{4} \alpha^{3}}{3} \frac{2^{4n} n^{2n-4} (n-1)^{2n-2}}{(2n-1)^{4n-1}} \qquad \Delta I = 0, \pm 1$

 $(\mathsf{X}^-\mathsf{X})_{n_il_i} o (\mathsf{X}^-\mathsf{X})_{n_fl_f} + \gamma$

Auger rate from the e-K coulombic interaction

$$(\mathbf{x}^{-}\mathbf{X})_{n_{i}l_{i}}2e^{-} \to (\mathbf{x}^{-}\mathbf{X})_{n_{f}l_{f}}e^{-} + e^{-} \qquad \Gamma^{\text{Auger}} = \left|\int\int\chi_{f}^{*}(\mathbf{r}_{1})\psi_{f}^{*}(\mathbf{r}_{2})\frac{1}{r_{12}}\chi_{i}(\mathbf{r}_{2})\psi_{i}(\mathbf{r}_{1})d\mathbf{r}_{1}d\mathbf{r}_{2}\right|^{2}$$

G. R. Burbidge and A. H. de Borde, Phys. Rev. 89, 189 -1953

17 October 2022

Simone Manti

Nuclear absorption rate from recursion relations

C.J. Batty, Nuclear Physics A, 372, 3, - 1981

Refilling rate to include the effect of the density

The atomic efield couples the n² degenerate sublevels

Jensen, T. and Markushin V., Eur. Phys. J. D 19, 165–181 - 2002

17 October 2022

Simone Manti

The Stark effect for the hydrogen atom

Simone Manti

The atomic cascade is converged after 10⁵ events

Yields of interest as function of the n_{init} and Γ^{refill}

Simone Manti

Cascade results: comparison with experiment

Conclusion

1. Cascade models to connect theory and experiment

2. Different rates for different mechanisms

3. Comparison with the experimental yields

Conclusion

1. Cascade models to connect theory and experiment

2. Different rates for different mechanisms

3. Comparison with the experimental yields

Thanks for the attention!

