ECT* workshop EXOTICO @ Trento, Italy

"EXOTIc atoms meet nuclear COllisions for a new frontier precision era in low-energy strangeness nuclear physics"

17 Oct, 2022

High-resolution exotic atom X-ray spectroscopy at J-PARC

X-ray microcalorimeter

Shinji OKADA (Chubu Univ.) for HEATES / J-PARC E62 collaboration

Measurements of Strong-Interaction Effects in Kaonic-Helium Isotopes at Sub-eV Precision with X-Ray Microcalorimeters

T. Hashimoto,^{1,2,*} S. Aikawa,³ T. Akaishi,⁴ H. Asano,² M. Bazzi,⁵ D. A. Bennett,⁶ M. Berger,⁷ D. Bosnar,⁸ A. D. Butt,⁹ C. Curceanu,⁵ W. B. Doriese,⁶ M. S. Durkin,⁶ Y. Ezoe,¹⁰ J. W. Fowler,⁶ H. Fujioka,³ J. D. Gard,⁶ C. Guaraldo,⁵ F. P. Gustafsson,⁷ C. Han,² R. Hayakawa,¹⁰ R. S. Hayano,¹¹ T. Hayashi,¹² J. P. Hays-Wehle,⁶ G. C. Hilton,⁶ T. Hiraiwa,¹³ M. Hiromoto,⁴ Y. Ichinohe,¹⁴ M. Iio,¹⁵ Y. Iizawa,³ M. Iliescu,⁵ S. Ishimoto,¹⁵ Y. Ishisaki,¹⁰ K. Itahashi,² M. Iwasaki,² Y. Ma,² T. Murakami,¹¹ R. Nagatomi,⁴ T. Nishi,¹⁶ H. Noda,¹⁷ H. Noumi,¹³ K. Nunomura,¹⁰ G. C. O'Neil,⁶ T. Ohashi,¹⁰ H. Ohnishi,¹⁸ S. Okada,^{19,2,†} H. Outa,² K. Piscicchia,⁵ C. D. Reintsema,⁶ Y. Sada,¹⁸ F. Sakuma,² M. Sato,¹⁵ D. R. Schmidt,⁶ A. Scordo,⁵ M. Sekimoto,¹⁵ H. Shi,⁷ K. Shirotori,¹³ D. Sirghi,⁵ F. Sirghi,⁵ K. Suzuki,⁷ D. S. Swetz,⁶ A. Takamine,² K. Tanida,¹ H. Tatsuno,¹⁰ C. Trippl,⁷ J. Uhlig,²⁰ J. N. Ullom,⁶ S. Yamada,¹⁴ T. Yamaga,² T. Yamazaki,¹¹ and J. Zmeskal⁷

(J-PARC E62 Collaboration)

Contents of this talk

- 1. Introduction
- 2. X-ray microcalorimeter
- 3. Experiment : J-PARC E62
- 4. Results
- 5. Summary & Outlook

1. Introduction

Kaonic atom X-rays

Scattering length & potential

Heavier kaonic atoms → Attractive optical potential

Kaonic helium : experiments

Kaonic helium : theoretical values

Special interest in connection with light kaonic nuclei

- ✓ Is there large shift > 1 eV, and width > 5 eV ?
- ✓ Sign of the shift ? (attractive shift \rightarrow no p-wave nuclear bound state?)

→ eV-scale energy resolution is mandatory

Need one-order better precision

Need one-order better precision

2. X-ray microcalorimeter

- 1. incident particles absorbed
- 2. Energy $\Delta E \rightarrow$ Phonon

3. Tiny temperature rise is measured by a highly sensitive temperature sensor **TES**

Reference : Bennet et al., Rev. Sci. Instrum. 83, 093113 (2012)

Reference : Bennet et al., Rev. Sci. Instrum. 83, 093113 (2012)

Adiabatic Demagnetization Refrigerator (ADR)

✓ Cooled down to 70 mK with ADR & pulse

<u>102 DENALI</u>

Pulse Tube ADR Cryostat

Vacuum Jacket Size 33 cm X 22 cm X 66 cm Tall

Experimental Volume 24 cm X 15 cm X 14 cm Tall

1st Stage Cooling Power 25 W @ 55 K

2nd Stage Cooling Power 0.7 W @ 4.2 K

GGG Cooling Capacity **1.2 J @ 1 K** (< 500 mK @ GGG)

ADR Base Temperature <50 mK

FAA Cooling Capacity 118 mJ @ 100 mK

TES

chip

TES array (NIST)

- √ 1 pixel : 300 x 320 um² (~ 0.1 mm²)
- ✓ Mo-Cu bilayer TES
- ✓ 4-µm-thick Bi absorber (eff.~ 85% @ 6 keV)

✓ 240 pixels
 ✓ 23 mm² eff. area

0~1 cm

small pixel size -> multi-pixel array

NIST

photo credit:

D.R. Schmidt

TES array (NIST)

~1 cm

- ✓ 1 pixel : <u>300 x 320 um² (~ 0.1 mm²)</u>
- ✓ Mo-Cu bilayer TES
- ✓ 4-µm-thick Bi absorber (eff.~ 85% @ 6 keV)

✓ <u>240 pixels</u>
 ✓ 23 mm² eff. area

The typical K-atom X-ray rate is ~ 1 count / hour / array

NIST

photo credit:

D.R. Schmidt

Issue & solution

3. E62 experiment

First case to use TES in charged-particle rich environment

✓ How the TES responses to a charge-particle hit ?
 ✓ Can the TES keep its excellent performance ?

2013	Start collaboration with NIST				
2014	Demonstration experiment @ PSI (pionic atom)				
2015	Approved as J-PARC E62 \rightarrow J. Low. Temp. Phys. 184 , 930 (2016) \rightarrow PTEP 2016 , 091D01 (2016)				
2016	Commissioning with K ⁻ beam @ J-PARC				
2017	→ IEEE Trans. Appl. Supercond. 27 (4) 2100905 (2017)				
2018	Physics data taking for K ⁻ atom @ J-PARC, ~18 days				
	→ J. Low Temp. Phys. 199 , 1018 (2020) → Phys. Rev. Lett. 128 , 112503 (2022)				

Collaboration

HEATES / J-PARC E62 collaboration

Nuclear/hadron physicists + TES experts + Astro physicists

70 collaborators in total

J-PARC hadron experimental facility

TES & He target cell

Target region with shield, MLI, SDDs

4. Results

Operation of cryogenic systems

(28 He refills & 27 mag cycles)

In-beam energy calib. (X-ray tube)

✓ X-ray tube was always ON during the experiment
 ✓ Pixel-by-pixel calibration every 4~8 hours

TES in-beam performance

After all the analysis optimization (mainly reduction of charge-particle effects)

Resolution geometrical map

Resolution at CoKa no box : doesn't work at all (12 pixel)

Detector response is well described by a gaussian and a low-energy exponential tail

Charged particle hit

Charged particle hit

If charged particle hit on the Si substrate, heat will spread out throughout the array, making small bump signals in many pixels If charged particle hit on the detector pixel, it deposits ~10 keV energy (Bi 4um), which become severe background in the spectrum

Pulse height distribution in array

Charged particle identification

- No difference in the primary pulses between X-rays and charged particles
- If we look at neighboring pixels, we can reject half of the charged particles

Timing resolution

Timing vs. dE (energy deposit)

requiring the energy deposit to be larger than 16 MeV to select low momentum kaons which are likely to stop in the target.

Background reduction

Kaonic X-ray spectra

Syst. error : mainly from the uncertainty in absolute energy scale

Comparison with past experiments

Outlook with TES

- Present system is applicable up to 15 keV, limited by TES saturation and stopping power of 4 um thick Bi absorber
 - Strong interaction in light kaonic atoms (K^{- 6/7}Li)
 - Charged kaon mass (K-N, K-O, K-Ne, ...)
- New system for higher energy up to 100 keV region is under development for muonic atom project (QED test under strong electric field)
 - Upper level of high-Z kaonic atoms to separate 1N/mN contributions (proposed in NPA 915 (2013) 170–178)
 - Ξ -atoms (Ξ -C) etc...

TES under development

	J-PARC E62	Gamma-ray	50 keV	20 keV
Saturation energy	20 keV	150 keV	70 keV	50 keV
Absorber material	Bi	Sn	Au/ Bi	Au/Bi
Absorber thickness	4 um	120~250 um	3 um / 15 um	1.5 um / 15 um
Absorber area	320 x 305 um	1.3 x 1.3 mm	700 x 700 um	700 x 700 um
Pixel number	240	96	150	150
Total collection area	23 mm ²	160 mm ²	70 mm²	70 mm ²
ΔE (FWHM)	5 eV @ 6 keV	40 eV @ 130 keV	20 eV @ 40 keV	8 eV @ 20 keV

✓ New cryostat, new readout system
✓ Available soon (for µ-atoms)
✓ Multiple units can be installed

Douglas Bennett @ NIST

Summary & Outlook

J-PARC E62

- ✓ precision spectroscopy of kaonic ³He & ⁴He 3d→2p X-rays
- \checkmark ~ 6 eV FWHM resolution (@ 6 keV) with a cryogenic detector TES
- \checkmark realized sub-eV precision for 2p shifts and width
- \checkmark large shift and width were excluded: $|\Delta E_{2p}| < 1$ eV, $\Gamma_{2p} < 5$ eV
- \checkmark published the final results in 2022

Outlook (TES)

 \checkmark New projects (µ-atom/molecule) following E62 success is launched

✓ ~30 keV region TES, ~100 keV region TES system will be available in next year → further µ-, K- Σ-, Ξ- atoms, K- mass etc.

Collaboration

Manfred	Berger		
Fredrik	Gustafsson	Stefan Meyer Institut	Austria
Hexi	Shi		
Ken	Suzuki		
Carina	Trippl		
Johann	Zmeskal		
Damir	Bosnar	University of Zagreb	Croatia
Massimiliano	Bazzi		
Catalina	Curceanu		
Carlo	Guaraldo		Italy
Mihai	lliescu	INFN-LNF	
Kristian	Piscicchia		
Alessandro	Scordo		
Diana	Sirghi		
Florin	Sirghi		
Arslan Dawood	Butt	Politecnico di Milano	
Jens	Uhlig	Lund University	Sweden
Douglas	Bennett		
William	Doriese		
Malcolm	Durkin		
Joseph	Fowler		
J.D.	Gard		
James	Hays-Wehle	NIET	ue
Gene	Hilton		03
Galen	O'Neil		
Carl	Reintsema		
Dan	Schmidt		
Daniel	Swetz		
Joel	Ullom		
Shinji	Okada	Chubu University	
Tadashi	Hashimoto		
Kiyoshi	Tanida	JAEA	
Tasuku	Hayashi	JAXA/ISAS	lanan
Masami	lio		Japan
Shigeru	Ishimoto	KEK	
Masaharu	Sato		
Michiko	Sekimoto		

Takaya	Akaishi		
Masayuki Hiromoto Hirofumi Noda		Osaka University	
Toshihiko	Hiraiwa		
Hiroyuki	Noumi	RCNP	-
Kotaro	Shirotori		
Hidemitsu	Asano		
Chengdong	Han		
Kenta	Itahashi		
Masahiko	lwasaki		
Yue	Ма	DIVEN	
Takahiro Nishi		RIKEN	
Haruhiko	Outa		Japan
Fuminori	Sakuma		
Aiko	Takamine		
Takumi	Yamaga		
Yuto	Ichinohe	Bikkyo University	
Shinya	Yamada		
Ryugo	Hayano		
Tomoki	Murakami	The University of Tokyo	
Toshimitsu	Yamazaki		
Hiroaki	Ohnishi	Toboku University	
Yuta	Sada		
Yuichiro	Ezoe		
Ryota	Hayakawa		
Yoshitaka	Ishisaki	Tokyo Metropolitan University	
Којі	Nunomura		
Takaya	Ohashi		
Hideyuki	Tatsuno		
Shuu	Aikawa		
Hiroyui Fujioka		Tokyo Tech	
Yutaro	lizawa		