Experimental challenges to confront $\overline{K}N$ interaction from UChPT

Albert Feijoo Institut de Física Corpuscular (IFIC), València

EXOTICO – October 17 – 21, 2022, ECT*

1

Aim: Experimental repercussions on the **meson-baryon interaction** in the **S=-1** sector at different energy regimes.10 channels involved in this sector: K^-p , $\overline{K}{}^0n$, $\pi^0\Lambda$, $\pi^0\Sigma^0$, $\pi^+\Sigma^-$, $\pi^-\Sigma^+$, $\eta\Lambda$, $\eta\Sigma^0$, $K^+\Xi^-$, $K^0\Xi^0$

Interaction: **QCD** is a gauge theory which **describes** the **strong interaction** governed by the effects of the color charge of its carriers: quarks and gluons.

Perturbative QCD is inappropriate to treat low energy hadron interactions.

Chiral Perturbation Theory (ChPT) is an effective theory with hadrons as degrees of freedom which respects the symmetries of QCD.

- limited to a moderate range of energies above threshold
- not applicable close to a resonance (singularity in the amplitude)

But it is not so straight forward ...

 $\overline{K}N$ interaction is dominated by the presence of the $\Lambda(1405)$ resonance, located only 27 MeV below the $\overline{K}N$ threshold.

 \rightarrow A nonperturbative resummation is needed!!!

In 1995, the problem was reformulated in terms of a Unitary extension of ChPT in coupled channels. The pioneering work -- *Kaiser, Siegel, Weise,* Nuc. Phys. A 594 (1995) 325.

E. Oset, A. Ramos, Nucl. Phys. A 636, 99 (1998).
J. A. Oller, U. -G. Meissner, Phys. Lett. B 500, 263 (2001).
M. F. M. Lutz, E. Kolomeitsev, Nucl. Phys. A 700, 193 (2002).
B. Borasoy, E. Marco, S. Wetzel, Phys. Rev. C 66, 055208 (2002).
C. Garcia-Recio, J. Nieves, E. Ruiz Arriola and M. J. Vicente Vacas, Phys. Rev. D 67, 076009 (2003).
D. Jido, J. A. Oller, E. Oset, A. Ramos and U. G. Meissner, Nucl. Phys. A 725, 181 (2003).
B. Borasoy, R. Nissler, W. Wiese, Eur. Phys. J. A 25, 79 (2005).
V.K. Magas, E. Oset, A. Ramos, Phys. Rev. Lett. 95, 052301 (2005).
B. Borasoy, U. -G. Meissner and R. Nissler, Phys. Rev. C 74, 055201 (2006).

All of them obtaining in general similar features:

- $\overline{K}N$ scattering data reproduced very satisfactorily
- Two-pole structure of $\Lambda(1405)$

This topic has experienced a renewed interest after recent experimental advances:

 $\varepsilon_{1s} = -283 \pm 36(\text{stat}) \pm 6(\text{syst}) \text{ eV}$ = 541 ± 89(stat) ± 22(syst) eV provided detailed line shape results of the $\Lambda(1405)$ Width *F_{1s}*[eV] 1.5 SIDDHARTA 600 $\Sigma^+ \pi^-$ 2.35<W<2.45 (GeV) M. Bazzi et al., do/dm (µb/GeV) Phys. Lett. B 704, 113 (2011). $\Sigma^{-}\pi^{+}$ $\Sigma \pi$ thresholds ---- PDG Breit-Wigner 400 200 0.5 KEK-PS DEAR E228 -300 -200 -400 -100 $0_{1,3}$ Shift Ets [eV]

Energy shift and width of the 1s state in kaonic hydrogen by SIDDHARTA@DA Φ NE, 20% precision in the K^-p scattering length!!!

> Y. Ikeda, T. Hyodo, W. Wiese, Nucl. Phys. A 881, 98 (2012). A. Cieply and J. Smejkal, Nucl. Phys. A 881, 115 (2012). Zhi-Hui Guo, J. A. Oller, Phys. Rev. C 87, 035202 (2013). T. Mizutani, C. Fayard, B. Saghai and K. Tsushima, Phys. Rev. C 87, 035201 (2013). L. Roca and E. Oset: Phys. Rev. C 87, 055201 (2013), Phys. Rev. C 88, 055206 (2013). M. Mai and U. G. Meissner, Eur. Phys. J. A 51, 30 (2015). A. F., V. Magas, A. Ramos, Phys. Rev. C 92, 015206 (2015); Nucl. Phys. A 954, 58 (2016); Phys. Rev. C 99 (2019) 035211. P.C. Bruns, A. Cieply, Nucl. Phys. A 1019 (2022), 122378.

EXOTICO - October 17 - 21, 2022, ECT*

1.5

Photoproduction $\gamma p \rightarrow K^+ \pi \Sigma$ data by the CLAS@Jlab

1.4

 $\Sigma \pi$ Invariant Mass (GeV/c²)

K. Moriya et al., Phys. Rev. C87, 035206(2013).

Lagrangian:

$$\mathcal{L}^{eff}(B,U) = \mathcal{L}_{MB}^{(1)}(B,U) + \mathcal{L}_{MB}^{(2)}(B,U)$$

 \rightarrow derive an interaction kernel V_{ij}

• Leading order (LO)

$$\mathcal{L}_{MB}^{(1)} = \langle \bar{B}(i\gamma_{\mu}D^{\mu} - M_0)B\rangle + \frac{1}{2}D\langle \bar{B}\gamma_{\mu}\gamma_5\{u^{\mu}, B\}\rangle + \frac{1}{2}F\langle \bar{B}\gamma_{\mu}\gamma_5[u^{\mu}, B]\rangle$$

Formalism: Effective Chiral Lagrangian

Lagrangian:

$$\mathcal{L}^{eff}(B,U) = \mathcal{L}^{(1)}_{MB}(B,U) + \mathcal{L}^{(2)}_{MB}(B,U) \rightarrow \text{derive an interaction kernel } \mathbf{V}_{ij}$$

• Leading order (LO)

$$\mathcal{L}_{MB}^{(1)} = \left\langle \bar{B}(i\gamma_{\mu}D^{\mu} - M_{0})B \right\rangle + \frac{1}{2}D\langle \bar{B}\gamma_{\mu}\gamma_{5}\{u^{\mu}, B\}\rangle + \frac{1}{2}F\langle \bar{B}\gamma_{\mu}\gamma_{5}[u^{\mu}, B]\rangle$$
Weinberg-Tomozawa term (WT)

- 1. Dominant contribution.
- 2. Interaction mediated, basically, by the constant f of the leptonic decay of the pseudoscalar meson

STRANEX: Recent progress and perspectives in STRANge EXotic atoms studies and related topics. October 21 - 25, 2019, ECT* (Trento).

Lagrangian:

$$\mathcal{L}^{eff}(B,U) = \mathcal{L}^{(1)}_{MB}(B,U) + \mathcal{L}^{(2)}_{MB}(B,U) \quad \Rightarrow \text{ derive an interaction kernel } \mathbf{V}_{\mathbf{I}}(B,U) = \mathcal{L}^{(1)}_{MB}(B,U) + \mathcal{L}^{(2)}_{MB}(B,U) \quad \Rightarrow \text{ derive an interaction kernel } \mathbf{V}_{\mathbf{I}}(B,U) = \mathcal{L}^{(1)}_{MB}(B,U) + \mathcal{L}^{(2)}_{MB}(B,U) \quad \Rightarrow \text{ derive an interaction kernel } \mathbf{V}_{\mathbf{I}}(B,U) = \mathcal{L}^{(1)}_{MB}(B,U) + \mathcal{L}^{(2)}_{MB}(B,U) \quad \Rightarrow \text{ derive an interaction kernel } \mathbf{V}_{\mathbf{I}}(B,U) = \mathcal{L}^{(1)}_{MB}(B,U) + \mathcal{L}^{(2)}_{MB}(B,U) \quad \Rightarrow \text{ derive an interaction kernel } \mathbf{V}_{\mathbf{I}}(B,U) = \mathcal{L}^{(1)}_{MB}(B,U) + \mathcal{L}^{(2)}_{MB}(B,U) \quad \Rightarrow \text{ derive an interaction kernel } \mathbf{V}_{\mathbf{I}}(B,U) = \mathcal{L}^{(1)}_{MB}(B,U) + \mathcal{L}^{(2)}_{MB}(B,U) \quad \Rightarrow \text{ derive an interaction kernel } \mathbf{V}_{\mathbf{I}}(B,U) = \mathcal{L}^{(1)}_{MB}(B,U) + \mathcal{L}^{(2)}_{MB}(B,U) \quad \Rightarrow \text{ derive an interaction kernel } \mathbf{V}_{\mathbf{I}}(B,U) = \mathcal{L}^{(1)}_{MB}(B,U) + \mathcal{L}^{(2)}_{MB}(B,U) \quad \Rightarrow \text{ derive an interaction kernel } \mathbf{V}_{\mathbf{I}}(B,U) = \mathcal{L}^{(1)}_{MB}(B,U) + \mathcal{L}^{(2)}_{MB}(B,U) = \mathcal{L}^{(1)}_{MB}(B,U) = \mathcal{L}^{(1)}_{M$$

• Leading order (LO)

$$\mathcal{L}_{MB}^{(1)} = \langle \bar{B}(i\gamma_{\mu}D^{\mu} - M_0)B\rangle + \frac{1}{2}D\langle \bar{B}\gamma_{\mu}\gamma_5\{u^{\mu}, B\}\rangle + \frac{1}{2}F\langle \bar{B}\gamma_{\mu}\gamma_5[u^{\mu}, B]\rangle$$

- 1. Direct diagram (s-channel Born term) $V_{ij}^{\scriptscriptstyle D} = V_{ij}^{\scriptscriptstyle D}(D,F)$
- 2. Cross diagram (u-channel Born term) $V^{\scriptscriptstyle C}_{ij} = V^{\scriptscriptstyle C}_{ij}(D,F)$

Born terms

• Next to leading order (NLO), just considering the contact term

$$\mathcal{L}_{\phi B}^{(2)} = b_D \langle \bar{B}\{\chi_+, B\} \rangle + b_F \langle \bar{B}[\chi_+, B] \rangle + b_0 \langle \bar{B}B \rangle \langle \chi_+ \rangle + d_1 \langle \bar{B}\{u_\mu, [u^\mu, B]\} \rangle$$

$$+ d_2 \langle \bar{B}[u_\mu, [u^\mu, B]] \rangle + d_3 \langle \bar{B}u_\mu \rangle \langle u^\mu B \rangle + d_4 \langle \bar{B}B \rangle \langle u^\mu u_\mu \rangle$$

$$- \frac{g_1}{8M_N^2} \langle \bar{B}\{u_\mu, [u_\nu, \{D^\mu, D^\nu\}B]\} \rangle - \frac{g_2}{8M_N^2} \langle \bar{B}[u_\mu, [u_\nu, \{D^\mu, D^\nu\}B]] \rangle$$

$$- \frac{g_3}{8M_N^2} \langle \bar{B}u_\mu \rangle \langle [u_\nu, \{D^\mu, D^\nu\}B] \rangle - \frac{g_4}{8M_N^2} \langle \bar{B}\{D^\mu, D^\nu\}B \rangle \langle u_\mu u_\nu \rangle$$

$$- \frac{h_1}{4} \langle \bar{B}[\gamma^\mu, \gamma^\nu] Bu_\mu u_\nu \rangle - \frac{h_2}{4} \langle \bar{B}[\gamma^\mu, \gamma^\nu] u_\mu [u_\nu, B] \rangle - \frac{h_3}{4} \langle \bar{B}[\gamma^\mu, \gamma^\nu] u_\mu \langle u_\nu, B \rangle + h.c.$$

- Contributions with g_3 get cancelled
- $b_0, b_D, b_F, d_1, d_2, d_3, d_4, g_1, g_2, g_4, h_1, h_2, h_3, h_4$ are not well established, so they should be treated as parameters of the model!

Finally, unitarized amplitudes can be obtained via the Bethe-Salpeter equation

$$f_{l\pm} = \left[1 - f_{l\pm}^{tree}G\right]^{-1} f_{l\pm}^{tree}$$

where G is the meson-baryon loop function (dimensional regularitzation)

$$G_{l} = \frac{2M_{l}}{(4\pi)^{2}} \left\{ a_{l}(\mu) + \ln \frac{M_{l}^{2}}{\mu^{2}} + \frac{m_{l}^{2} - M_{l}^{2} + s}{2s} \ln \frac{m_{l}^{2}}{M_{l}^{2}} + \frac{q_{\rm cm}}{\sqrt{s}} \ln \left[\frac{(s + 2\sqrt{s}q_{\rm cm})^{2} - (M_{l}^{2} - m_{l}^{2})^{2}}{(s - 2\sqrt{s}q_{\rm cm})^{2} - (M_{l}^{2} - m_{l}^{2})^{2}} \right] \right\}$$
subtraction constants for the dimensional regularization scale $\mu = 1$ GeV in all k channels.

Total cross section:

$$\sigma_{ij} = \frac{M_i M_j q_j}{4 \pi s q_i} \begin{bmatrix} J^{\mathsf{P}=1/2-} & J^{\mathsf{P}=3/2+} & J^{\mathsf{P}=1/2+} & J^{\mathsf{P}=5/2-} & J^{\mathsf{P}=3/2-} \\ [|f_0|^2 + 2|f_{1+}|^2 + |f_{1-}|^2 + 3|f_{2+}|^2 + 2|f_{2-}|^2] \\ \text{S-wave} & \text{P-wave} & \text{D-wave} \end{bmatrix}$$

14th International Conference on Hypernuclear and Strange Physics – HYP2022 June 27 – July 1, 2022, Prague

 $K^-p \rightarrow MB \ (S = -1)$ total cross sections from different groups:

A. F., D. Gazda, V. Magas, A. Ramos, Symmetry 13 (2021) 8, 1434

11

Motivation: $\overline{K}N$ interaction background

 $K^-p \rightarrow K^-p$ scattering amplitudes generated by recent chirally motivated approaches:

A. Cieply, J. Hrtánková, J. Mareš, E. Friedman, A. Gal and A. Ramos, AIP Conf. Proc. 2249, no.1, 030014 (2020).

Motivation: $\overline{K}N$ interaction background

2:

Pole positions of the $\Lambda(1405)$ for some state-of-the-art models:

Motivation: *KN* interaction background

Many efforts have been made in order to extract information about subthreshold amplitudes...

L. Roca and E. Oset, Phys. Rev. C 88, 055206 (2013). *Fit to photoproduction data from CLAS* K. Moriya et al. (CLAS Collaboration), Phys. Rev. C 87, 035206 (2013).

 $K^-n \rightarrow \pi^-\Lambda$ amplitude (pure I = 1 process)

K. Piscicchia et al., Phys.Lett. B782 (2018) 339-345. AMADEUS collaboration, KLOE detector at DAFNE

Experimental challenges: $\pi^0 \Sigma^0$ invariant mass from photoproduction

Exciting results reported by **GlueX Collaboration** in the $\pi^0 \Sigma^0$ invariant mass distribution from the $\gamma p \rightarrow K^+ \pi^0 \Sigma^0$ process!!!

Wickramaarachchi's talks: HYP2022 (Prague) and QNP2022 (Floria)

The fitting procedure supports the composite state nature of the *Λ*(1405)
Very valuable information can be extracted from further experimental and theoretical analysis of these data.

Experimental challenges: $\pi^0 \Sigma^0$ invariant mass from photoproduction

Reproduction of the photoproduction data from CLAS: (K. Moriya et al. (CLAS Collaboration), Phys. Rev. C 87, 035206) (2013)

Experimental challenges: Measurement of the Γ_{1s} and E_{1s} in kaonic deuterium

The SIDDHARTA 2 (at DAFNE) high precision X-ray measurement of the $K^-d 2p \rightarrow 1s$ transition:

• Deviations from the expected electromagnetic energy level will provide information about the strong interaction

FIGURE 1. Cross-section layout of the SIDDHARTA-2 setup installed above the DA Φ NE collider's Interaction Region. The red boxes highlight the SDDs arrays (around the target cell), the Front End Electronic and the veto-2 system behind the solid state detectors. On the side of the setup, Pb walls (black dotted lines) act as passive shielding for the machine electromagnetic background.

M. Miliucci Measur.Sci.Tech. 33 (2022) 9, 095502

FIGURE 2. Preliminary calibrated spectrum for a sample of 5 pb^{-1} integrated luminosity acquired during the SIDDHARTINO run. The K-He⁴ L α transition signal is clearly visible, after the Kaon trigger selection. On the top right inset, the MIPs and Kaons (red) distributions on the K-trigger system.

Experimental challenges: Measurement of the Γ_{1s} and E_{1s} in kaonic deuterium

K^- scattering on the deuteron at low energies:

• The pioneering work – G. Toker, A. Gal, J. M. Eisenberg, Nucl. Phys. A 362, 405 (1981)

The $K^-d \rightarrow \pi^-\Lambda p$ reaction (+ other three-body K⁻ reactions), with s-wave kaons, within Faddeev formalism for charge-independent separable two-body coupled-channel interactions

• S.S. Kamalov, E. Oset, A. Ramos, Nucl. Phys. A 690, 494-508 (2001)

Considering charge exchange process (+ fixed center approximation of Faddeev Equations)

Authors [Ref.]	$A_{K^{-d}}$
Present work (c)	-1.58 + i1.37
Borasoy <i>et al.</i> [37] [BNW (<i>c</i>)]	-1.59 + i1.59
Present work (<i>s</i>)	-1.57 + i1.37
Borasoy <i>et al.</i> [37] [BNW (<i>s</i>)]	-1.67 + i1.52
Doring-Meissner [48]	-1.46 + i1.08
Shevchenko [50] (one-pole)	-1.48 + i1.22
Shevchenko [50] (two-pole)	-1.51 + i1.23
Revai [120] (one-pole)	-1.52 + i0.98
Revai [120] (two-pole)	-1.60 + i1.12
Oset <i>et al.</i> [121]	-1.54 + i1.82
Bahaoui et al. [4]	-1.80 + i1.55

TABLE VII. K^-d scattering length (in fm).

Relevant studies on this topic following the Fadeev scheme with different approximations, different two-body amplitudes...

Mizutani et al., Phys. Rev. C 87, 035201 (2013).

Experimental challenges: K⁻p interaction using femtoscopic correlations from High-Energy Nuclear Collisions

Correlation function in momentum space: two-particle production probability normalized by the product of single-particle production probabilities.

$$C(q) = \int d^3r \sum_j \omega_j S_j(r) |\Psi_j^{(-)}(q;r)|^2$$

Tuning parameters:

- R (size of the source)
- $\omega_{\pi\Sigma}$ source weight in the $\pi\Sigma$ chanels

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi and W. Weise, *Phys. Rev. Lett.* 124, 132501 (2020)

Experimental challenges: antineutrino induced $\Lambda(1405)$ production

These kind of antineutrino production processes were theoretically studied in:

Fig. 17 Feynman diagram for the process $\bar{\nu}_l p \rightarrow l^+ \phi B$.

Suggestion for a measurement: $\Lambda(1405)$ mediated triangle singularity in the $K^-d \rightarrow p\Sigma^-$

21

Motivation: Evolution of our chiral model

Prediction for Isospin filtering processes at higher energy:

ŢŢĨĘ

"We are just at the beginning of the data taking in a higher precision era and it is most probable that exciting outputs were obtained in the near future. The interpretation of the experiments and studies to learn about the nature $\overline{K}N$ interaction is a task that will require the combined efforts of both experimentalists and theoreticians."

Review, Nucl.Phys. A954 (2016) 371-392

Thank you for your attention

