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Hierarchy of energy scales and nuclear many-body problem

• The major conflict: reductionism vs 
“emergentism”


Separation of energy scales => effective field theories

vs


The physics on a certain scale is governed by the next 
higher-energy scale

• Possible solution: 

Keep/establish connections between the scales 

via emergent phenomena 

H = K + V
Hamiltonian:

center of mass internal degrees of freedom: 

next energy scale

String theory:

merging strings

NO “Interaction”

Standard Model:
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interaction, singularities & 
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“ab initio”
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The frontiers of fundamental physics

The Standard Model: explains (almost) all experimental data, 
provides a consistent and  powerful framework based on the 
gauge origin of EM, weak and strong interactions.


Some experimental facts point out that the SM is incomplete or is 
an effective theory with respect to some more fundamental 
theory:


• Non-zero neutrino mass;

• Dark matter & dark energy;

• Gravity can not be quantized and included in the SM .


Other open Big questions:


• Why does the universe exist?

• Why is it so large?

• Are there extra dimensions?

• Why time is one-way?


The frontiers:  the big, the small, and the complex.

Making very large and very small compatible; emergence at 
various scales:


• Big Bang

• Black Holes

• Stars: Interface of subatomic physics and astrophysics.

God setting up the Universe

Fig. from R. Penrose: The Road to Reality

The Standard Model



Emergent phenomena in strongly-correlated quantum systems

 Emergence in interacting many-body systems: drastically 
different behavior of the entire system originating from collective 
behavior and interactions of the constituent local degrees of 
freedom. 


The emergence is associated with resolving conceptual difficulties 
in various contexts, such as quark confinement, scattering 
amplitudes, topological phases of materials, superfluidity and 
superconductivity. Therefore, understanding emergence has a 
broad impact.


Answering Big Questions at fundamental physics frontiers by 
extensions of the Standard Model to include gravity, connecting 
explicitly UV and IR physics: emergent character of space(-time). 
Fundamentality of emergence.

Bulk-boundary correspondence:

Nuclear fission:



The underlying mechanism of NN-interaction : 
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Nuclear applications:

The full many-body scheme has 
not been (yet) executed neither 
for the “bare” meson-exchange 
(ME) interaction nor for any 
other bare interaction. 


A good starting point - the use of 
effective ME interactions 
adjusted to nuclear bulk 
properties on the mean-field 
level (J. Walecka, M. Serot, …, 
P. Ring) and to supplement the 
many-body correlation theory 
with proper subtraction 
techniques (V. Tselyaev), in the 
covariant framework.



Exact equations of motion (EOM) for binary interactions: one-body problem

(*)

Irreducible kernel (Self-energy, exact): Free propagator

G110(t� t0) = �ihT 1(t) 
†
10(t

0)i
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As we will see in the following, it is useful to determine
the equation of motion for this function with respect to
t
0:
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Using the commutator

[H, 
†
10 ] = "10 

†
10 + [V, †

10 ], (23)

one arrives at the EOM for R110(t� t
0):
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Combining it with the first EOM (20) and performing the
Fourier transformation to the energy (frequency) domain
with respect to the time di↵erence t� t

0, we obtain

G110(!) = G
(0)
110(!) +

X

220

G
(0)
12 (!)T220(!)G

(0)
2010(!), (25)

where we introduced the free (uncorrelated) one-fermion

propagator G
(0)
110(!) = �110/(! � "1) and the interaction

kernel (one-body T-matrix, not to be confused with the
time ordering operator):
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Here and in the following we use the superscript ”(0)”
to denote the static parts of the interaction kernels and
”(r)” for their dynamical time-dependent parts, which
are associated with retardation e↵ects in our approach.
The EOM (25) which, in the operator form, is

G(!) = G
(0)(!) +G

(0)(!)T (!)G(0)(!), (27)

can be transformed to the Dyson equation:

G(!) = G
(0)(!) +G

(0)(!)⌃(!)G(!) (28)

with the interaction kernel ⌃(!), such as

T (!) = ⌃(!) + ⌃(!)G(0)(!)T (!), (29)

from which it follows that the operator ⌃ represents the
one-fermion self-energy (also called mass operator) as
the irreducible (with respect to one-fermion line) part
of the kernel T : ⌃ = T

irr. Analogously to Eq. (26), the
self-energy is decomposed into the instantaneous mean-
field part ⌃(0) and the energy-dependent dynamical part
⌃(r)(!):

⌃110(!) = ⌃(0)
110 + ⌃(r)

110(!). (30)

Notice here that the decomposition of the kernels (26,30)
into the static and time- (energy-) dependent, or dynam-
ical, parts is a generic feature and the direct consequence

of the time-independence of the bare interaction V of Eq.
(6).

The first static (instantaneous) terms of both kernels
coincide and read:

T
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Here we need first to evaluate the commutator [V, 1]
which, with help of the anticommutation relations (3),
can be obtained as

[V, 1] =
1

2

X

ikl

v̄i1kl 
†
i
 l k, (32)

where the Latin indices have the same meaning as the
number indices and the definition of the antisymmetrized
interaction matrix elements v̄1234 = v1234 � v1243 was
taken into account. Evaluating the anticommutator

[ †
j
 l k, 

†
10 ]+ =  

†
j
 l�10k �  †

j
 k�10l, (33)

one gets:

[[V, 1], 
†
10 ]+ = �

X
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v̄1i10l 
†
i
 l. (34)

Thus, the first (instantaneous) part ⌃(0) of the mass op-
erator (30) is associated with the mean field contribution:

⌃(0)
110 = �h[[V, 1], 

†
10 ]+i =

X

il

v̄1i10l⇢li, (35)

where ⇢li = h †
i
 li is the ground-state one-body density

and we have applied the (anti)symmetry properties of the
antisymmetrized interaction matrix elements: v̄1234 =
�v̄1243 = �v̄2134 = v̄2143. The second (dynamical) part
⌃(r)(!) of the mass operator comprises all retardation
e↵ects induced by the nuclear medium.
In order to understand the dynamical part ⌃(r)(!) of

the self-energy ⌃(!), let us first evaluate its reducible

counterpart T
(r)
110 (t � t

0). Here we can use the result of
Eq. (32) for the commutator [V, 1], and the following
result for the second commutator:
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or, returning to the number indices,

T
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4
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⇥ hT †(2) (4) (3) †(30) †(40) (20)iv̄40302010 ,
(38)

Koltun-Migdal-Galitsky sum rule: the binding energy This self-energy is:


• Ab-initio Exact & Universal

• valid in relativistic regimes

• including fermionic EOMs


in the Standard Model“Ab-initio DFT”



Particle-hole response

(correlation function):

Equation of motion (EOM) for the particle-hole response

(ph)

spectra of excitations, 

masses, decays, …

(**)

EOM: Bethe-Salpeter-Dyson Eq.

Irreducible kernel (exact):Free propagator

t-dependent (dynamical) term:

Long-range correlations

contains the full solution of (**) including the dynamical term!

Self-consistent mean field F(0), where

Instantaneous term (“bosonic” mean field):

Short-range correlations

⇢12,1020 = �220⇢110 � i lim
t0!t+0

R201,210(t� t0)
F (r)
12,1020(t� t0) =

X

ij

F (r;ij)
12,1020(t� t0)
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Non-perturbative treatment of two-point G(n) in the dynamical kernels

Quantum many-body problem in a nutshell: Direct EOM for G(n) generates G(n+2) in the 
(symmetric) dynamical kernels and further high-rank correlation functions (CFs); an equivalent 

of the BBGKY hierarchy. NEquations = NParticles & Coupled 🙈  !!!


Non-perturbative solution:

 Cluster decomposition 

G(3)  = G(1) G(1) G(1)  + G(2) G(1)   +    Ξ(3)


G(4)  = G(1) G(1) G(1) G(1) + G(2) G(2)  + G(3) G(1)  + Ξ(4)

v vR(ph)=

v v(pp)= G

Emergence of effective 

“particles” (phonons, vibrations):


Emergence of superfluidity:

Exact mapping: particle-hole (2q) quasibound states

P. C. Martin and J. S. Schwinger, 
Phys. Rev.115, 1342 (1959).

N. Vinh Mau, Trieste Lectures 
1069, 931 (1970)

P. Danielewicz and P. Schuck, 
Nucl. Phys. A567, 78 (1994)

…

G GR(3) (pp)
(ph)

+

~~G(4) +

~~

G (pp)

G (pp)R(ph)

R (ph)

Truncation on two-body level
“SCGF” This work



Emergence of effective degrees of freedom

E.L., P. Schuck, PRC 100, 064320 (2019) 

E.L., Y. Zhang, PRC 104, 044303 (2021)

Cf.: The Standard Model elementary interaction vertices: boson-exchange interaction is the input:

�, g,W±, Z0
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~~
“Fish” diagrams Second-order

Possibly derivable?

Dynamical self-energy: 

Quasiparticle-vibration coupling (QVC)

Emergent phonon vertices and propagators: calculable from the underlying H, which does not contain phonon 
degrees of freedom

H =
X

12

h12 
†
1 2 +

1

4

X

1234

v̄1234 
†
1 

†
2 4 3

H =
X

12

h̃12 
†
1 2 +

X

��0

W��0Q
†
�Q�0 +

X

12�

h
⇥�

12 
†
1Q

†
� 2 + h.c.

i
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“Ab-initio” 

Effective

Derivable,

unlike the NFT



Superfluid systems 

Mapping on the QVC in the canonical basis

Superfluid dynamical kernel: adding particle-number violating contributions

Quasiparticle dynamical self-energy (matrix):

normal and pairing phonons are unified

Cf.: Quasiparticle static self-energy (matrix) in HFB

E.L., Y. Zhang, PRC 104, 044303 (2021)

Y. Zhang et al., PRC 105, 044326 (2022)


Γ

ν ν’µ

Γ ν’’W



Transformation to quasiparticle basis

Bogolyubov

transformation:

Propagator becomes diagonal

Dyson Eqs. decouple

for η=1 and η=-1:

Eq. for η=-1 is redundant

Dynamical self-energy: acquires the 

same form as the non-superfluid one!

Superfluid 

quasiparticle-vibration

coupling (QVC) vertices:

Γ

ν ν’µ

Γ ν’’

E.L., Y. Zhang, PRC 104, 044303 (2021)


HFB basis



Higher-order correlations: toward a complete theory

Dyson-Bethe-Salpeter Equation: R(ω) = R0(ω) + R0(ω) [V+Φ(ω)-Φ(0) ] R(ω)

21,2 ’1 ’

1 ’ ’

2 2 ’

1 1 ’

2 2 ’

1 1 ’

2 ’ ’
2 2 ’

1 1 ’

2 2 ’

1 1 ’

+ + +Conventional NFT

Generalized approach for the correlated propagators


n-th order:  E.L. PRC 91, 034332 (2015)


Ab-initio formulation,

Φ(3) implementation; 2q+2phonon correlations:

E.L., P. Schuck, PRC 100, 064320 (2019)


+

2 2 ’

1 1 ’

R(n) +

2 2 ’

1 1 ’

2 2 ’

1 1 ’

+R(n) R
(n)

2 2 ’

1 1 ’

212 ’1 ’ R (n)(n+1)Extended NFT:

ab initio <= static kernel dynamic kernel => higher complexity



Excitation spectrum: Hierarchy of configuration complexity

Fragmentation mechanism

Fractals: Koch curve

2q:

Gross structure

2q+phonon:

Fine structure

2q+2phonon:

22

(131)

where ⌘ = 5hr2i/3 and the second term in the brackets
eliminates the spurious translational mode [93].

A su�ciently large quasiparticle basis in both Fermi
(particle) and Dirac (antiparticle) sectors should be used
in solving Eqs. (116, 126). Although the dynami-
cal kernels �(!), which induce fragmentation of two-
quasiparticle configurations, may be cut o↵ outside a
window confined by the energy of interest, the static
kernel Ṽ has to be included in the complete or nearly
complete two-quasiparticle space [29]. The latter ker-
nel is responsible for the correct location of the simple
(R(Q)RPA) modes of the strength distribution and asso-
ciated mainly with the medium-range correlations, while
the former kernels introduce the long-range e↵ects caus-
ing the redistribution of the strength. Here the complete-
ness means that the two-quasiparticle basis, in which
Eqs. (116, 126) are solved, should include all the single-
quasiparticle states which participate in the RMF self-
consistent procedure. In our case the basis spans the
single-quasiparticle states with the angular momenta up
to 41/2 in both Fermi and Dirac sectors, the same range
where the parameters of the Lagrangian have been fitted.
The respective energy range of the two-quasiparticle ex-
citations is confined by ⇠250 MeV in the Fermi sector
and by ⇠-1950 MeV in its Dirac counterpart. Keep-
ing the complete two-quasiparticle basis in Eqs. (116,
126) guarantees full self-consistency, in particular, the
proper decoupling of the dipole translational mode from
the intrinsic dipole excitations in R(Q)RPA [10, 92]. This
fact can be verified numerically, for instance, by cal-
culating the isoscalar dipole strength distribution pro-
duced by the response to the operator of Eq. (131),
where the radial form factor is corrected for the center
of mass motion. Without this correction one typically
sees a dominant peak located at zero energy, as we show
in the left panel of Fig. 15 in comparison to the right
panel, where the response to the corrected isoscalar op-
erator is displayed, for 48Ca. One can see that in the
latter case the zero-energy translational mode is sup-
pressed. Moreover, this property is kept in the extended
R(Q)TBA and EOM/R(Q)TBA3 models - indeed, the
subtraction procedure of Eqs. (120, 126) leads to the
purely R(Q)RPA kernel in the ! ! 0 limit. This feature
is known since early implementations of the time blocking
method with the subtraction [71]. However, in R(Q)TBA
and EOM/R(Q)TBA3 the translational mode may be
fragmented because, like the physical states, it can be
coupled to the phonons. Although, due to the subtrac-
tion procedure, the main peak of the translational mode
remains at zero energy, its fragments may spread around
it. As the excited states calculated with the uncorrected
and corrected isoscalar dipole operators look di↵erent in
both the R(Q)TBA and EOM/R(Q)TBA3, in the present
implementations these models do not guarantee complete
decoupling of the spurious mode from the physical states.
A solution to this problem was proposed in Ref. [94] in
the form of a projection operator applied to the dynami-
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FIG. 15. The low-energy isoscalar dipole strength distri-
butions in 48Ca calculated in R(Q)RPA, R(Q)TBA and
EOM/R(Q)TBA3 with� = 200 keV for the uncorrected (left)
and corrected (right) for the spurious translational mode op-
erators of Eq. (131).
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FIG. 16. Giant dipole resonance in 42,48Ca nuclei calculated
within R(Q)RPA, R(Q)TBA and EOM/R(Q)TBA3 with � =
500 keV, in comparison to experimental data of Ref. [83, 95].

cal kernel, that prevents the coupling of complex config-
urations to the translational mode and, thus, removes its
admixture to the physical states. Performing this trans-
formation is beyond the scope of the present article, but
will be considered in future work. The sensitivity of our
present implementation to the two-quasiparticle basis in-
completeness was inspected and revealed that an energy
cut-o↵ of this basis by ⇠100 MeV in the Fermi sector and
⇠-1800 MeV in its Dirac counterpart does not introduce
noticeable changes in the excitation spectra, that can be
used for more economical calculations.
The results of calculations for the electromagnetic

dipole response in 42,48Ca are displayed in Fig. 16. The
strength distribution obtained within EOM/RQTBA3

(red solid curves) is plotted against the results of RQRPA
(black dot-dashed curves) and RQTBA (blue dashed
curves) and compared to experimental data (green curves
and circles) of Ref. [83] in terms of the dipole photoab-
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FIG. 19. The low-energy dipole spectrum of 68Ni nucleus
calculated within RQRPA, RQTBA and EOM/RQTBA3 with
� = 200 keV. Top: the isoscalar dipole strength distribution,
bottom: the electromagnetic dipole strength distribution in
comparison to experimental data of Ref. [108].

strength below 15 MeV, which is often associated with
the pygmy dipole resonance and the neutron skin oscilla-
tion, lies above the neutron emission threshold that is
located experimentally at ⇠7.8 MeV [83]. Thus, this
strength forms mostly a continuous spectrum. It can
be seen that RQRPA provides a too poor description of
the observed strength: it gives a distinct peak at about
9.5 MeV while the experimental strength of Ref. [108]
shows a nearly flat distribution with a slow growth to-
ward higher energies up to 13 MeV, where it relatively
sharply increases by a factor of two. RQTBA approach
produces a significant improvement of the description
of the strength: the main RQRPA peak is fragmented
and the overall strength distribution comes out much
flatter following better the experimental trend. The
EOM/RQTBA3, in turn, smoothes the strength distri-
bution further improving the agreement with data. The
only remaining drawback is that the total strength be-
tween 6 and 10 MeV is somewhat overestimated. Fur-
ther refinement of the model should clarify whether more
spreading toward lower energies can be induced by more
complex configurations and the exact treatment of the
continuum [71, 110] or the static e↵ective interaction of
the NL3 type, the minimal RMF parametrization with
only 6 parameters, employed for these calculations is re-
sponsible for the remaining discrepancy.

In the top panel of Fig. 19 we show the ISE1 coun-
terpart of the low-energy dipole strength in 68Ni. Re-
markably, the coarse-grain pattern of the isoscalar dipole
strength is very similar to that of the electromagnetic
one. A similar sharp peak appears in RQRPA at about
9.5 MeV and similar fragmentation e↵ects are induced
by the 2q⌦phonon and 2q⌦2phonon configurations. In
the final EOM/RQTBA3 calculation a relatively distinct
peak at approximately 7.5 MeV remains on the back-
ground of the flat isoscalar strength distribution, that is

not the case for the EME1 strength. While there is no ex-
perimental data for the ISE1 strength in 68Ni, some theo-
retical studies are available. In particular, Ref. [109] pro-
vides RPA and QRPA calculations of the isoscalar dipole
strength for a chain of nickel isotopes including 68Ni. In
the low-energy region both QRPA based on the Gogny
D1S forces and continuum RPA with the SLy4 Skyrme
interaction give a dominant peak around 10.5 MeV, that
agrees reasonably well with our RQRPA calculation. For
the EME1 strength the authors of Ref. [109] obtain a
two-peak structure at the energies corresponding to the
major and a minor peaks of their ISE1 strength distribu-
tion. However, fragmentation e↵ects, if they were added
beyond R(Q)RPA, would, probably, change those pat-
terns, as it typically occurs in various implementations of
the PVC mechanism. The insights about the exact con-
tinuum e↵ects provided in this work are very important
and point out to the necessity of an accurate continuum
treatment.
Other types of interactions may be also considered in a

future work. Density-dependent parametrizations of the
meson-exchange interaction [111, 112] or point-coupling
[113, 114] should provide a better performance in the de-
scription of the modes related to the symmetry energy as
they imply more careful fits of the isovector sector [115].
Ideally, the realization of the presented approach should
be based on a microscopic interaction, in order to in-
crease the predictive power. Numerical implementations
based on microscopic interactions should provide a rea-
sonable approximation to the two-body density matrix at
the starting point. There can be various strategies, such
as the Similarity Renormalization Group [56], Brückner
G-matrix [116, 117] or the Unitary Correlation Opera-
tor Method [63, 64] with subsequent solution of the RPA
equations and extracting the two-body densities. The
capabilities of various potentials describing the nucleon-
nucleon scattering data to successfully perform within
the presented approach will be also addressed by future
e↵ort.
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problem. The equation of motion method is reviewed for
the one-fermion and two-time two-fermion Green func-
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Excitation spectrum: Hierarchy of configuration complexity

Fragmentation mechanism

Fractals: Koch curve

2q:

Gross structure

2q+phonon:

Fine structure

2q+2phonon:
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(131)

where ⌘ = 5hr2i/3 and the second term in the brackets
eliminates the spurious translational mode [93].

A su�ciently large quasiparticle basis in both Fermi
(particle) and Dirac (antiparticle) sectors should be used
in solving Eqs. (116, 126). Although the dynami-
cal kernels �(!), which induce fragmentation of two-
quasiparticle configurations, may be cut o↵ outside a
window confined by the energy of interest, the static
kernel Ṽ has to be included in the complete or nearly
complete two-quasiparticle space [29]. The latter ker-
nel is responsible for the correct location of the simple
(R(Q)RPA) modes of the strength distribution and asso-
ciated mainly with the medium-range correlations, while
the former kernels introduce the long-range e↵ects caus-
ing the redistribution of the strength. Here the complete-
ness means that the two-quasiparticle basis, in which
Eqs. (116, 126) are solved, should include all the single-
quasiparticle states which participate in the RMF self-
consistent procedure. In our case the basis spans the
single-quasiparticle states with the angular momenta up
to 41/2 in both Fermi and Dirac sectors, the same range
where the parameters of the Lagrangian have been fitted.
The respective energy range of the two-quasiparticle ex-
citations is confined by ⇠250 MeV in the Fermi sector
and by ⇠-1950 MeV in its Dirac counterpart. Keep-
ing the complete two-quasiparticle basis in Eqs. (116,
126) guarantees full self-consistency, in particular, the
proper decoupling of the dipole translational mode from
the intrinsic dipole excitations in R(Q)RPA [10, 92]. This
fact can be verified numerically, for instance, by cal-
culating the isoscalar dipole strength distribution pro-
duced by the response to the operator of Eq. (131),
where the radial form factor is corrected for the center
of mass motion. Without this correction one typically
sees a dominant peak located at zero energy, as we show
in the left panel of Fig. 15 in comparison to the right
panel, where the response to the corrected isoscalar op-
erator is displayed, for 48Ca. One can see that in the
latter case the zero-energy translational mode is sup-
pressed. Moreover, this property is kept in the extended
R(Q)TBA and EOM/R(Q)TBA3 models - indeed, the
subtraction procedure of Eqs. (120, 126) leads to the
purely R(Q)RPA kernel in the ! ! 0 limit. This feature
is known since early implementations of the time blocking
method with the subtraction [71]. However, in R(Q)TBA
and EOM/R(Q)TBA3 the translational mode may be
fragmented because, like the physical states, it can be
coupled to the phonons. Although, due to the subtrac-
tion procedure, the main peak of the translational mode
remains at zero energy, its fragments may spread around
it. As the excited states calculated with the uncorrected
and corrected isoscalar dipole operators look di↵erent in
both the R(Q)TBA and EOM/R(Q)TBA3, in the present
implementations these models do not guarantee complete
decoupling of the spurious mode from the physical states.
A solution to this problem was proposed in Ref. [94] in
the form of a projection operator applied to the dynami-
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FIG. 16. Giant dipole resonance in 42,48Ca nuclei calculated
within R(Q)RPA, R(Q)TBA and EOM/R(Q)TBA3 with � =
500 keV, in comparison to experimental data of Ref. [83, 95].

cal kernel, that prevents the coupling of complex config-
urations to the translational mode and, thus, removes its
admixture to the physical states. Performing this trans-
formation is beyond the scope of the present article, but
will be considered in future work. The sensitivity of our
present implementation to the two-quasiparticle basis in-
completeness was inspected and revealed that an energy
cut-o↵ of this basis by ⇠100 MeV in the Fermi sector and
⇠-1800 MeV in its Dirac counterpart does not introduce
noticeable changes in the excitation spectra, that can be
used for more economical calculations.
The results of calculations for the electromagnetic

dipole response in 42,48Ca are displayed in Fig. 16. The
strength distribution obtained within EOM/RQTBA3

(red solid curves) is plotted against the results of RQRPA
(black dot-dashed curves) and RQTBA (blue dashed
curves) and compared to experimental data (green curves
and circles) of Ref. [83] in terms of the dipole photoab-
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� = 200 keV. Top: the isoscalar dipole strength distribution,
bottom: the electromagnetic dipole strength distribution in
comparison to experimental data of Ref. [108].

strength below 15 MeV, which is often associated with
the pygmy dipole resonance and the neutron skin oscilla-
tion, lies above the neutron emission threshold that is
located experimentally at ⇠7.8 MeV [83]. Thus, this
strength forms mostly a continuous spectrum. It can
be seen that RQRPA provides a too poor description of
the observed strength: it gives a distinct peak at about
9.5 MeV while the experimental strength of Ref. [108]
shows a nearly flat distribution with a slow growth to-
ward higher energies up to 13 MeV, where it relatively
sharply increases by a factor of two. RQTBA approach
produces a significant improvement of the description
of the strength: the main RQRPA peak is fragmented
and the overall strength distribution comes out much
flatter following better the experimental trend. The
EOM/RQTBA3, in turn, smoothes the strength distri-
bution further improving the agreement with data. The
only remaining drawback is that the total strength be-
tween 6 and 10 MeV is somewhat overestimated. Fur-
ther refinement of the model should clarify whether more
spreading toward lower energies can be induced by more
complex configurations and the exact treatment of the
continuum [71, 110] or the static e↵ective interaction of
the NL3 type, the minimal RMF parametrization with
only 6 parameters, employed for these calculations is re-
sponsible for the remaining discrepancy.

In the top panel of Fig. 19 we show the ISE1 coun-
terpart of the low-energy dipole strength in 68Ni. Re-
markably, the coarse-grain pattern of the isoscalar dipole
strength is very similar to that of the electromagnetic
one. A similar sharp peak appears in RQRPA at about
9.5 MeV and similar fragmentation e↵ects are induced
by the 2q⌦phonon and 2q⌦2phonon configurations. In
the final EOM/RQTBA3 calculation a relatively distinct
peak at approximately 7.5 MeV remains on the back-
ground of the flat isoscalar strength distribution, that is

not the case for the EME1 strength. While there is no ex-
perimental data for the ISE1 strength in 68Ni, some theo-
retical studies are available. In particular, Ref. [109] pro-
vides RPA and QRPA calculations of the isoscalar dipole
strength for a chain of nickel isotopes including 68Ni. In
the low-energy region both QRPA based on the Gogny
D1S forces and continuum RPA with the SLy4 Skyrme
interaction give a dominant peak around 10.5 MeV, that
agrees reasonably well with our RQRPA calculation. For
the EME1 strength the authors of Ref. [109] obtain a
two-peak structure at the energies corresponding to the
major and a minor peaks of their ISE1 strength distribu-
tion. However, fragmentation e↵ects, if they were added
beyond R(Q)RPA, would, probably, change those pat-
terns, as it typically occurs in various implementations of
the PVC mechanism. The insights about the exact con-
tinuum e↵ects provided in this work are very important
and point out to the necessity of an accurate continuum
treatment.
Other types of interactions may be also considered in a

future work. Density-dependent parametrizations of the
meson-exchange interaction [111, 112] or point-coupling
[113, 114] should provide a better performance in the de-
scription of the modes related to the symmetry energy as
they imply more careful fits of the isovector sector [115].
Ideally, the realization of the presented approach should
be based on a microscopic interaction, in order to in-
crease the predictive power. Numerical implementations
based on microscopic interactions should provide a rea-
sonable approximation to the two-body density matrix at
the starting point. There can be various strategies, such
as the Similarity Renormalization Group [56], Brückner
G-matrix [116, 117] or the Unitary Correlation Opera-
tor Method [63, 64] with subsequent solution of the RPA
equations and extracting the two-body densities. The
capabilities of various potentials describing the nucleon-
nucleon scattering data to successfully perform within
the presented approach will be also addressed by future
e↵ort.

VIII. SUMMARY AND OUTLOOK

In this article we revisit, compare and advance non-
perturbative approaches to the quantum many-body
problem. The equation of motion method is reviewed for
the one-fermion and two-time two-fermion Green func-
tions in a strongly-correlated medium. The dynami-
cal kernels of the final EOM’s containing three- and
four-body propagators are approximated by the non-
perturbative cluster expansions truncated on the two-
body level. The resulting EOM’s form a closed set of
equations for one- and two-fermion propagators, where
the latter include the particle-hole, particle-particle, and
hole-hole components.
This approach is confronted with another class of

closely related methods developed originally as exten-
sions of the Landau-Migdal Fermi-liquid theory by the
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A high-quality self-consistent (Q)RPA is the 
key to quantitative success: 


N. Paar, T. Niksic, D. Vretenar, P. Ring et al.

Rep. Prog, Phys. 70, 691 (2007)

PRC 69, 054303 (2004)

PRC 67, 034312 (2003)

PRC 63, 047301 (2001)


Beyond-RQRPA: fully parameter-free


The RQRPA solutions are the building blocks.


Reasonable energies and transition 
probabilities of the RQRPA modes are 
extremely important for the quantitative 
success.


Beyond-RQRPA correlations can be included 
based on the same computational framework.


Cross-check: Momentum-space vs 
configuration (Dirac) space solutions.



Spin-isospin excitations: Gamow-Teller resonance in neutron-rich nickel


2q:

2q+phonon

C. Robin, E.L., 

EPJA 52, 205 
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More correlations: Emergent “time machine”

Ground state correlations induced by QVC:

backward-going diagrams (V. Tselyaev, 1989)

C. Robin, E.L., Phys. Rev. Lett. 123, 202501 (2019) 

Gamow-Teller  strength in 90-Zr:

The backward-going diagrams are solely responsible 

for the β+ strength in neutron-rich nuclei

Time

π ν

β-β+

New unblocking mechanism:



Atomic nuclei on quantum computer: 

accessing emergence via entanglement

Variational Quantum Eigensolver (VQE) + Quantum Equation of Motion (qEOM): 

P. Ollitrault et al., Phys. Rev. Res. 2, 043140 (2020)

Two-level 

Lipkin Hamiltonian:

exactly solvable

ε

Implementation for N = 4 (IBM-Q): RPA vs SRPA vs exact

M. Hlatshwayo et al., 

Phys. Rev. C 106, 024319 (2022)



Single-(quasi)particle states. New implementation: FAM-QRPA+QVC

for deformed nuclei

(i) Relativistic meson-nucleon Lagrangian + (ii) Relativistic Hartree-Bogoliubov (RHB) + (iii) 
Quasiparticle random phase approximation (QRPA): J = 2+ - 5-, K = [0,J] . Finite amplitude 
method (FAM):  A. Bjelčić et al., CPC 253, 107184 (2020). Relativistic DD-PC1 interaction.


(iv) QVC vertex extraction:


Variation of the HFB

Hamiltonian at the


QRPA pole

(v) Dyson Eq. solution                         [E.L., Y. Zhang, PRC 104, 044303 (2021)]


38Si

β2 = 0.31



Single-(quasi)particle states in 38Si

Dominant level

Sum rules: 

Fragmentation of quasiparticle states:

RHB vs RHB+QVC Nilsson diagram: RHB

Nilsson diagram: RHB+QVC (dominant only)
Fragmentation mechanism: schematic

Y. Zhang et al., PRC 105, 044326 (2022)




Single-(quasi)particle states in 249,251Cf

Deformed one-quasiparticle states: covariant and non-
relativistic mean-field calculations vs experiment:A. Afanasjev et al.: Long-standing problem 

of the description of single-particle states 
in deformed nuclei.


Systematic studies for 249Bk and 251Cf in 
the mean-field approximation:

Y. Zhang et al., PRC 105, 044326 (2022)


Beyond mean field: RHB+QVC

calculations. Dominant fragments in 251Cf 
and 249Cf. 

The spectroscopic factors are quenched even 
stronger than in spherical nuclei. Can this be 
measured? 

250Cf

β2 = 0.29



Finite amplitude method extended beyond QRPA (preliminary): 

QVC

Generalized FAM (FAM-QVC)

QVC amplitude

(leading approximation):

E.L., Y. Zhang, arXiv:2208.07843

Proof of principle: 

GMR in 24-Mg

in a restricted model space


   Ongoing:

• Convergence improvement

• Optimization

• Cross-check routines
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Dipole Strength at T>0:  48Ca and 132Sn

New transitions due to the thermal unblocking effects


More collective and non-collective modes contribute to the 
PVC self-energy (~400 modes at T=5-6 MeV)


Broadening of the resulting GDR spectrum


Development of the low-energy part => a feedback to GDR

The spurious translation mode is properly decoupled as the 
mean field is modified consistently


The role of the new terms in the Φ amplitude increases with 
temperature


The role of dynamical correlations and fragmentation remain 
significant in the high-energy part

Thermal unblocking:

0th approximation: 
Uncorrelated propagator

E.L., H. Wibowo, Phys. Rev. Lett. 121, 082501 (2018)

H. Wibowo, E.L., Phys. Rev. C 100, 024307 (2019)


Static + dynamic (FT-RTBA)Static  only (FT-RRPA)
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New transitions due to the thermal unblocking effects


More collective and non-collective modes contribute to the 
PVC self-energy (~400 modes at T=5-6 MeV)


Broadening of the resulting GDR spectrum


Development of the low-energy part => a feedback to GDR

The spurious translation mode is properly decoupled as the 
mean field is modified consistently


The role of the new terms in the Φ amplitude increases with 
temperature


The role of dynamical correlations and fragmentation remain 
significant in the high-energy part

Thermal unblocking:

0th approximation: 
Uncorrelated propagator

E.L., H. Wibowo, Phys. Rev. Lett. 121, 082501 (2018)

H. Wibowo, E.L., Phys. Rev. C 100, 024307 (2019)
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O. Wieland et al., PRL 97, 012501 (2006):

GDR in 132Ce  



Dipole strength in r-process nuclei

giant  dipole

resonance

pygmy  dipole

resonance

?

low-energy

enhancement
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(n,γ) stellar reaction rates

E. L., et al. Nucl. Phys. A 823, 26 (2009)

factor ~4

factor ~2

Lorentzian

Microscopic
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Strength functions at finite temperature

Grand Canonical average:

Response redefined:

Dipole

The “upbend”:

E. L, H. Wibowo, Phys. Rev. Lett. 121, 
082501 (2018)

H. Wibowo, E. L., Phys. Rev. C 100, 
024307 (2019)
E. L., C. Robin, H. Wibowo, Phys. Lett. B 
800, 135134 (2020)

E.L., C. Robin, Phys. Rev. C 103, 
024326 (2021)

Gamow-Teller

Qβ



Gamow-Teller and Spin Dipole Resonances at T>0: 78Ni and 132Sn

Qβ
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Pairing gap at Τ = 0, T>0 and critical temperature


E.L., P. Schuck, Phys. Rev. C 104, 044330 (2021)



Outlook
Summary:


 The nuclear field theory (NFT) is formulated and advanced in the Equation of Motion (EOM) 
framework, with the emphasis on emergent collectivity. Not the “self-consistent Green’s 
functions”. Not Second RPA. 

 The emergent collective effects renormalize interactions in correlated media, underly the 
spectral fragmentation mechanisms, affect superfluidity and weak decay rates. 

 Relativistic NFT is generalized to finite temperature and applied to neutral and charge-
exchange response of medium-heavy nuclei.

 Weak rates at astrophysical conditions are extracted: the correlations beyond mean field are 
found significant.

Uncertainties (of the many-body theory) are quantified via building a hierarchy of 
approximations of growing complexity.


Current and future developments:


Deformed nuclei: correlations vs shapes; first results just released (Yinu Zhang et al.);

Efficient algorithms; quantum computing (Manqoba Hlatshwayo et al.);

 Implementation of the EC rates into the core-collapse supernovae simulations;

Toward an “ab initio” description: implementations with bare NN-interactions (in-medium 
beyond-the-leading order, non-perturbative);

Superfluid pairing at T>0 to extend the application range (r-process); 

Relativistic EOM’s, bosonic EOM’s, beyond Standard Model, …
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