The Photon Strength Function & Its Impact on Stellar Nucleosynthesis

S. Goriely IAA-ULB, Belgium

- Introduction to Nucleosynthesis of the elements heavier than Fe
- Photon strength functions
 - Existing PSF models for applications
 - Experimental constraints
 - Impact on astrophysical rates
- Impact on Nucleosynthesis

In collaboration with S. Hilaire and S. Péru (CEA/DAM)

Nucleosynthesis of the elements heavier than iron

N (number of neutrons)

The slow neutron-capture process (or s-process)

• The s-process is responsible for about half of the elements heavier than iron in the Universe

• Most of the nuclear inputs are based on experimental data, including measured (n,γ) rates

The rapid neutron-capture process (or r-process)

• The r-process is responsible for about half of the elements heavier than iron in the Universe

Nuclear physics input to the r-process nucleosynthesis

 $(n,\gamma) - (\gamma,n) - \beta$ competition & Fission

- β-decay **rates**
- (n,γ) and (γ,n) rates
- Fission (nif, sf, βdf) rates
- Fission Fragments Distributions

Simulations rely almost entirely on theory

 (γ,n)

(n,γ)

~ 5000 nuclei involved – almost no exp. data – still many open questions

The intermediate neutron-capture process (or *i*-process)

• The *i*-process may, or may not, contribute to the SoS but is needed to explain CEMP-rs stars

• Important part of the nuclear inputs are based on predictions, in particular (n,γ) rates

The p-process nucleosynthesis

Many different nuclear needs for the various nucleosynthesis processes

$(E_{\rm f}, J_{\rm f}, \pi_{\rm f})$ E_n **S**_n S_{α} n + (Z,A-1)(Z,A) $\alpha + (Z-2,A-2)$ (Z,A) Compound Nucleus **Target Nucleus Residual Nucleus** $\sigma_{(n,\gamma)} \propto \sum_{\lambda} \frac{T_n(J^{\pi})T_{\gamma}(J^{\pi})}{T_n(J^{\pi}) + T_n(J^{\pi})} \approx \sum_{\lambda} T_{\gamma}(J^{\pi}) \quad \text{since } T_n(J^{\pi}) >> T_{\gamma}(J^{\pi}) \text{ for } E_n \sim \text{keV}$ $S_n + E_n \xrightarrow{(E,J,\pi)}$ $T_{\gamma} = \sum_{\gamma} \int_{0}^{S_{n}+E_{n}} 2\pi \varepsilon_{\gamma}^{2L+1} f_{XL}(\varepsilon_{\gamma}) \rho(S_{n}+E_{n}-\varepsilon_{\gamma},J,\pi) d\varepsilon_{\gamma}$

Hauser-Feshbach model for radiative neutron capture reactions

Nuclear astrophysics apps require NLDs & PSF for ~ 8000 nuclei

The Lorentzian model of the dipole strength function

- El strength function
 - Standard Lorentzian $(E_0, \Gamma_0, \sigma_0)$
 - Lorentzian with *E*-dependent width
 - Generalized Lorentzian with *T* and *E*-dep. width

 \rightarrow at the basis of GLO, EGLO, MLO, SMLO, Hybrid, ... models

• M1 strength function

SLO (Kopecky & Uhl 1990) - SMLO (SG & Plujko 2019)

$$\overrightarrow{f_{M1}}(\varepsilon_{\gamma}) = \frac{1}{3\pi^2 \hbar^2 c^2} \sigma_{sc} \frac{\varepsilon_{\gamma} \Gamma_{sc}^2}{(\varepsilon_{\gamma}^2 - E_{sc}^2)^2 + \varepsilon_{\gamma}^2 \Gamma_{sc}^2} + \frac{1}{3\pi^2 \hbar^2 c^2} \sigma_{sf} \frac{\varepsilon_{\gamma} \Gamma_{sf}^2}{(\varepsilon_{\gamma}^2 - E_{sf}^2)^2 + \varepsilon_{\gamma}^2 \Gamma_{sf}^2}$$

Scissors mode for deformed nuclei

Spin-Flip mode

Two variants considered here- GLO (Kopecky & Uhl 1990) - Still extensively usedfor both E1 & M1- SMLO (SG & Plujko 2019) - Updated version

The Mean Field + QRPA model of the dipole strength function

Large-scale *E*1/*M*1 Mean-Field + QRPA calculations

Skyrme-HFB + QRPA

Gogny-HFB + QRPA

RMF +QRPA

QRPA calculations can accurately reproduce experimental data, provided empirical corrections are made, *i.e.*

- Empirical *energy shift* (beyond QRPA excitations and phonon couplings)
- Empirical damping of collective motions \rightarrow *broadening*
- Empirical deformation effects for *spherical calculations*
- Approximation / Interpolation for *odd systems*

Large-scale Gogny-HFB + QRPA calculations: *Consistent axially deformed calculation* for e-e nuclei with $8 \le Z \le 110$ on the basis of the D1M Gogny force: **D1M+QRPA**

Possible additional low-energy contribution to the **dipole de-excitation strength function**

Violation of the Brink hypothesis (e.g. Isaak et al., 2019)

 $\vec{f}_{E1}(\varepsilon_{\gamma}) \neq \vec{f}_{E1}(\varepsilon_{\gamma})$ $\vec{f}_{E1} = \vec{f}_{E1}(\varepsilon_{\gamma}, T_f)$

SM-inspired low-energy correction of the de-excitation strength

 $f_{E1} = f_{E1}^{QRPA} + f_{E1}(\varepsilon_{\gamma} \to 0) \text{ Non-zero limit of the } E1 \text{ strength at } \varepsilon_{\gamma} \to 0$ $f_{M1} = f_{M1}^{QRPA} + f_{M1}(\varepsilon_{\gamma} \to 0) \text{ Upbend of the } M1 \text{ strength at } \varepsilon_{\gamma} \to 0$

Schwengner et al. (2013, 2017), Brown et al. (2014), Sieja (2017, 2018), Karampagia et al. (2017), Midtbø et al. (2018)

SM-inspired low-energy correction of the de-excitation strength

 $f_{E1} = f_{E1}^{QRPA} + f_{E1}(\varepsilon_{\gamma} \to 0) \quad \text{Non-zero limit of the } E1 \text{ strength at } \varepsilon_{\gamma} \to 0$ $f_{M1} = f_{M1}^{QRPA} + f_{M1}(\varepsilon_{\gamma} \to 0) \quad \text{Upbend of the } M1 \text{ strength at } \varepsilon_{\gamma} \to 0$

SM-inspired low-energy correction of the de-excitation strength

Non-negligible impact of the low-*E* enhancement of the PSF for low- S_n targets essentially if it compensates the ε_{γ}^3 factor in T_{γ} , i.e if there is an "upbend"

$$T_{\gamma} = \sum_{J^{\pi}XL} \int_{0}^{S_{n}+E_{n}} 2\pi \varepsilon_{\gamma}^{2L+1} f_{XL}(\varepsilon_{\gamma}) \rho(S_{n}+E_{n}-\varepsilon_{\gamma},J,\pi) d\varepsilon_{\gamma}$$

Major questions related to the dipole PSF for astrophysics applications (~8000 nuclei)

E1 strength

- → Centroid energy and width of the GDR for experimentally unknown nuclei ?
- → Presence of a *E1* pygmy resonance or more generally low-*E* tail of the GDR ?
- \rightarrow Non-zero limit of the *E1* strength (*T*-effect ?)

M1 strength

- \rightarrow Properties of the *M1* Spin-flip strength ?
- \rightarrow Properties of *M1* Scissors mode ?
- \rightarrow Non-zero limit of the *M1* strength: upbend ?

"Validation" of the theoretical dipole Photon Strength Function on

IAEA Reference Database developed within the 2016-2019 CRP ...to be updated (2022)

- 1. Photodata in the GDR region (10-20MeV): E1 for ~159 nuclei
- 2. ARC/DRC data: $\varepsilon_{\gamma} \sim 5-8$ MeV; *E1 & M1* for 88 nuclei
- 3. Oslo data: $\varepsilon_{\gamma} < S_n$; *E1+M1* for 72 nuclei
- 4. NRF data: $\varepsilon_{\gamma} < S_n$; *E1+M1* for 23 nuclei
- 5. $\Sigma B(M1)$ scattering data: $\varepsilon_{\gamma} \sim 2$ -4MeV for ~47 nuclei
- 6. (p, γ) data: *E1*+*M1* at $\varepsilon_{\gamma} \sim 5$ -10MeV for 22 nuclei (A = 46 90)
- 7. (p,p') data for ⁹⁶Mo, ¹²⁰Sn, ²⁰⁸Pb: *E1* & *M1* at $\varepsilon_{\gamma} \sim 5$ -20MeV
- 8. MSC & MD spectra: E1+M1 for ~15 nuclei with ~4 $J^{\pi/nuc}$ (NLD)
- 9. Neutron capture spectra: E1+M1 for 5 nuclei & diff J^{π} (NLD)
- 10. Average radiative width $\langle \Gamma_{\gamma} \rangle$: $0 \leq \varepsilon_{\gamma} \leq S_n E1 + M1$ for ~ 230 nuc (NLD)
- 11. 30keV (n, γ) MACS $0 \le \varepsilon_{\gamma} \le S_n E1 + M1$ for ~240 nuc (NLD)

IAEA Reference Database for Photon Strength Functions

Requires further "evaluation" and detailed uncertainty analysis

Comparison of D1M+QRPA and SMLO with Photodata

Comparison of D1M+QRPA and SMLO with NRF data

The long-standing problem of the average radiative width $\langle \Gamma_{\gamma} \rangle$

$$\langle \Gamma_{\gamma} \rangle = \frac{D_0}{2\pi} \sum_{X,L,J,\pi} \int_0^{S_n + E_n} T_{XL}(\varepsilon_{\gamma}) \times \rho(S_n + E_n - \varepsilon_{\gamma}, J, \pi) d\varepsilon_{\gamma}$$

230 nuclei

Full diamonds = CT + BSFG Open diamonds = HFB + Combinatorial

Comparison of D1M+QRPA+0lim and SMLO with $<\Gamma_{\gamma}>$ data

$$\langle \Gamma_{\gamma} \rangle = \frac{D_0}{2\pi} \sum_{X,L,J,\pi} \int_0^{S_n + E_n} T_{XL}(\varepsilon_{\gamma}) \times \rho(S_n + E_n - \varepsilon_{\gamma}, J, \pi) d\varepsilon_{\gamma}$$

SMLO

Full diamonds = HFB + Combinatorial

Both PSF models reproduce ~230 < Γ_{γ} > within ~ 30-50%

Comparison of D1M+QRPA+0lim and SMLO with MACS

Both PSF models reproduce \sim 240 MACS within \sim 40-50%

Comparison of radiative n-capture MACS <σ> between D1M+QRPA+0lim and SMLO / GLO

Increase of $<\sigma>$

- Extra *E*1 strength at low-*E*
- *M*1 upbend & scissors mode not included in GLO

Very similar $<\sigma>$

- Similar M1 scissors mode
- Similar M1 upbend
- Similar description of GDR

Impact of the *M1* upbend (and *E1* zero-limit) on the (n, γ) MACS at $T=10^{9}$ K

Significant impact of the *M*1 upbend on $\langle \sigma \rangle$ for n-rich nuclei

Impact of PSF on the *i*-process in low-Z low-M AGB stars

Non-negligible impact of the largest E1 and M1 strength at low energies with D1M+QRPA+0lim

Impact on the r-process nucleosynthesis

Impact on the r-process nucleosynthesis in type-II SN

Impact of PSF on the *r***-process in Neutron Star Mergers**

- E1 QRPA at low-E•
- M1 scissors & upbend •

Increase production of

- Lanthanides & 3rd peak
- Actinides & chronometers

Impact of PSF on the *p*-process in Type-II Supernovae

Relatively small impact:

- Similar (γ ,n) predictions for n-deficient nuclei ($r \le 2$)
- No zero-limit for photo-excitations

Impact of PSF on the *p*-process in Type-Ia Supernovae

Relatively small impact:

- Similar (γ ,n) predictions for n-deficient nuclei ($r \le 2$)
- No zero-limit for photo-excitations

γ-ray strength function for the *n-deficient* nuclei Pygmy Dipole Resonance

D1M+QRPA E1& M1 strength in Ar

 $^{A}Cl(p,\gamma)^{A+1}Ar$ reaction rates

γ-ray strength function for the n-deficient nuclei Pygmy dipole resonance and E1 limit and M1 upbend

D1M+QRPA+upbend strength in Ar

 $^{A}Cl(p,\gamma)^{A+1}Ar$ reaction rates

Impact of the *PSF* on the (p, γ) MACS at $T = 2.10^{9}$ K

Significant impact for light n-deficient nuclei ($Z \le 50$):

- *M*1 upbend
- Pygmy resonance or low-*E* tail of the GDR

Possible implication for the rp-process in X-ray bursts ... to be followed

Conclusions

PSF models have been developed and shown to globally describe experimental data and to affect radiative n-capure cross sections:

- \rightarrow Low-energy *E1* QRPA strength for exotic n-rich nuclei: up to x 50
- → Non-zero limit of the *E1* strength from SM has small impact : $\sim 20-50\%$
- → Spin-flip *M1* strength has small impact on (n,γ) cross section : ~10%
- \rightarrow *M1* Scissors mode can impact (n, γ) cross section : up to x 2
- \rightarrow *M1* upbend can affect cross sections of exotic n-rich nuclei: up to x 100

Future work will require

- Understanding the discrepancies between some experimental techniques, in particular Oslo vs NRF
- Experimental constraints on the low-*E* PSF and, in particular, the zero limit *E1 & M1* (upbend ?)
- Improved microscopic description of the de-excitation strength
- Large-scale calculations beyond 1p-1h QRPA (2RPA, QPM, ...)