Systematics of the dipole polarizability

TECHNISCHE UNIVERSITÄT DARMSTADT

Outline:

- Inelastic proton scattering
- Research Center for Nuclear Physics
- The case of ⁵⁸Ni:
 - State-by-state analysis
 - Multipole decomposition analysis
- Dipole polarizability
- Summary and outlook

Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 279384907 - SFB 1245.

Introduction

- Inelastic proton scattering at
 - $\triangleright~$ Scattering angles close to 0°
 - $\,\triangleright\,\,$ Proton energies of $\approx 300\,MeV$
- Kinematics favours excitation of
 - Electric dipole transitions
 - Isovector-spinflip M1 transitions
- Consistent measurement below and above the particle separation threshold

Introduction

- Inelastic proton scattering at
 - $\triangleright~$ Scattering angles close to 0°
 - $\,\triangleright\,\,$ Proton energies of $\approx 300\,MeV$
- Kinematics favours excitation of
 - Electric dipole transitions
 - Isovector-spinflip M1 transitions
- Consistent measurement below and above the particle separation threshold

Electric dipole transitions in (p,p')

- Relativistic Coulomb excitation
- Virtual photon method

 $\frac{\mathrm{d}^2\sigma_{\mathrm{E1}}}{\mathrm{d}\Omega\mathrm{d}E} = \frac{1}{E}\frac{\mathrm{d}N_{\mathrm{E1}}}{\mathrm{d}\Omega}\sigma_{\mathrm{abs}}^{\mathrm{E1}}$

$$\frac{\mathrm{d}B(\mathrm{E1})}{\mathrm{d}E} = \frac{9\hbar c}{16\pi^2} \frac{\sigma_{\mathrm{abs}}^{\mathrm{E1}}}{E}$$

Dipole polarizability

Dipole polarizability

$$lpha_{
m D}=rac{\hbar c}{2\pi^2}\intrac{\sigma_{
m abs}^{
m E1}}{E^2}{
m d}E$$

- Correlated to
 - Neutron skin thickness
 - Symmetry energy
- Systematics over isotopic chains: ^{40,48}Ca,⁶⁸Ni, ⁹⁰Zr, stable even mass Sn, ²⁰⁸Pb

X. Roca-Maza et al., Phys. Rev. C88, 024316 (2013)

Magnetic dipole transitions in (p,p')

- Isovector spin-flip M1 transitions
- Isospin analog to Gamow-Teller transition

$$\begin{split} B(\text{GT}) &= \frac{C_{\text{GT}}^2}{2(2T_f + 1)} |\langle f||| \sum_k^A \sigma_k \tau_k |||i\rangle|^2 \\ B(\text{M1}_{\sigma\tau}) &= \frac{C_{\text{M1}}^2}{4(2T_f + 1)} |\langle f||| \sum_k^A \sigma_k \tau_k |||i\rangle|^2 \end{split}$$

• Unit cross section method with $\hat{\sigma}_{M1} \approx \hat{\sigma}_{GT}$

 $\frac{\mathrm{d}\sigma_{\mathrm{M1}}^{\mathrm{IV}}}{\mathrm{d}\Omega}(0^{\circ}) = \hat{\sigma}_{\mathrm{M1}}F_{\mathrm{M1}}(0^{\circ}, E_{x})\boldsymbol{B}(\mathbf{M1}_{\sigma\tau})$

J. Birkhan et al., Phys. Rev. C 93, 041302(R) (2016)

H. Fujita et al., Phys. Rev. C 75, 034310 (2007) Y. Fujita et al., Prog. Part. Nucl. Phys. 66, 549 (2011)

Research Center for Nuclear Physics (RCNP)

Experiment at Grand Raiden Spectrometer ⁵⁸Ni

- Proton beam with $E_p = 295 \, \text{MeV}$
- Spectrometer angles: 0°, 2.5°, and 4.5°
- Raw data analysis:
 H. Matsubara, Dissertation,
 Osaka University (2010)
- Excitation energy spectra for seven scattering angles between 0.4° and 5.15°
- A. Tamii et al., Nucl. Instr. Meth A 605, 236 (2009)

Spectrometer setup at 0°

⁵⁸Ni Spectra

October 26, 2022 | TU Darmstadt | IKP | I. Brandherm | 8

- Statewise analysis between 5 MeV and 13.3 MeV
- 185 transitions found
 - 147 present in at least five spectra
- Multipolarities: Angular distributions
- DWBA calculations
 V. Yu. Ponomarev (2019)

- Identification of low energy M1 transitions works well
- Identification of low energy E1 transitions more difficult

- Dipole character from angular distributions
- Multipolarity unique from combination with other experiments

- Nuclear resonance fluorescence (γ, γ'):
 F. Bauwens et al., Phys. Rev. C 62, 024302 (2000)
 M. Scheck et al., Phys. Rev. C 88, 044304 (2013)
 J. Sinclair, priv. comm. (2019)
- ► Inelastic electron scattering (e, e') : W.Mettner et al., Nucl. Phys. A473, 160 (1987)
- ► (p, p') at 160 MeV + ⁵⁸Ni(³He,t)⁵⁸Cu: H.Fujita et al., Phys. Rev. C 75, 034310 (2007)

E1, M1

M1, M2

E1, IVSM1

- Dipole character from angular distributions
- Multipolarity unique from combination with other experiments

- Nuclear resonance fluorescence (γ, γ'):
 F. Bauwens et al., Phys. Rev. C 62, 024302 (2000)
 M. Scheck et al., Phys. Rev. C 88, 044304 (2013)
 J. Sinclair, priv. comm. (2019)
- ► Inelastic electron scattering (e, e') : W.Mettner et al., Nucl. Phys. A473, 160 (1987)
- ► (p,p') at 160 MeV + ⁵⁸Ni(³He,t)⁵⁸Cu: H.Fujita et al., Phys. Rev. C 75, 034310 (2007)

M1, M2

E1, M1

E1, IVSM1

IVSM1 Distribution Shell model calculations and experiment

- Isospins from (p, p') + ⁵⁸Ni(³He,t)⁵⁸Cu
 H.Fujita et al., Phys. Rev. C 75, 034310 (2007)
- Shell model calculations
 G. Martinez-Pinedo
 R. Mancino
- GXPF1A and KB3G interaction
- Quenching factor 0.75

100 iterations

IVSM1 Running Sum Shell model calculations and experiment

IVSM1 Running Sum Shell model calculations and experiment

- ► (*p*,*p*′): conversion into electromagnetic *B*(M1)
 - Isoscalar contributions negligible
 - Pure spin excitation
 - ▷ J. Birkhan et al., Phys. Rev. C 93, 041302(R) (2016)
- (e, e') and (γ, γ'):
 Spin and orbital contributions

- ► (*p*,*p*′): conversion into electromagnetic *B*(M1)
 - Isoscalar contributions negligible
 - Pure spin excitation
 - ▷ J. Birkhan et al., Phys. Rev. C 93, 041302(R) (2016)
- (e, e') and (γ, γ'):
 Spin and orbital contributions
- ► B(E1) in (p, p') enhanced compared to (γ, γ')

- ▶ $(\gamma, \gamma')/(p, p')$: E1 transitions
- (e, e') measured under backward angles
 - Sensitive to transverse cross section
 - ⊳ M1, M2

? Electric transitions with a strong transverse component

- $(\gamma, \gamma')/(p, p')$: E1 transitions
- (e, e') measured under backward angles
 - Sensitive to transverse cross section
 - ⊳ M1, M2

? Electric transitions with a strong transverse component

⁵⁸Ni Spectra

Multipole decomposition analysis

- Spectrum in 200 keV bins
- ► Fit of DWBA curves to experimental angular distributions

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\theta_{\mathrm{cm}}, E_x)\Big|_{\mathrm{Exp.}} = \sum_{J^{\pi}} \alpha^{J^{\pi}} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\theta_{\mathrm{cm}}, E_x, J^{\pi})\Big|_{\mathrm{DWBA}}$$

 $\blacktriangleright~\chi^2_{\rm red}$ weighted contribution for each multipolarity

$$\left\langle \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\theta, E_{x})^{J^{\pi}} \right\rangle = rac{\sum_{i} \omega_{i} rac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\theta, E_{x})_{i}^{J^{\pi}}}{\sum_{i} \omega_{i}} \quad \text{with} \quad \omega = rac{1}{\chi_{\mathrm{red}}^{2}}$$

MDA uncertainty from weighted variance

Multipole decomposition analysis

- Subtraction of ISGMR and ISGQR
 Y.-W. Lui et al., Phys. Rev. C 73, 014314 (2006)
- Below 13 MeV: isovector spin-flip M1 resonance
- Phenomenological background from quasi-free scattering
 S. Bassauer et al., Phys. Rev. C 102, 034327 (2020)
- Above 20 MeV: large uncertainties
 - Limited input from theory

Results for ⁵⁸Ni

Systematics of the dipole polarizability

October 26, 2022 | TU Darmstadt | IKP | I. Brandherm | 22

Comparison to Migdal model

 Hydrodynamic model with interpenetraiting proton and neutron fluids

$$\alpha_D = \frac{e^2 R^2 A}{40 \cdot a_{\rm sym}} \propto A^{5/3} \, {\rm fm}^3$$

- a_{sym}: Symmetry energy parameter in the Bethe-Weizsäcker mass formula
- ► S.Dietrich and B.Bermann, At. Data Nucl. Data Tables 38, 199 (1988) $\alpha_D = 2.4 \times 10^{-3} \cdot A^{5/3} \text{ fm}^3$

• Fit:
$$\alpha_D = 3.0(3) \times 10^{-3} \cdot A^{5/3} \text{ fm}^3$$

Comparison to Migdal model

▶ More realistic model: *a*_{sym} mass dependent

$$a_{
m sym}(A) = S_{
u}\left(1 - rac{\kappa}{A^{1/3}}
ight), \quad \kappa = rac{S_s}{S_{
u}}$$

$$lpha_D = rac{0.0518 \cdot A^2}{S_
u(A^{1/3}-\kappa)}\,\mathrm{fm}$$

J.Tian et al., $\kappa = 1.27$ Phys. Rev. C 90, 024313 (2014) (I.) A.W. Steiner et al. $\kappa = 0.545$ Phys. Rep. 411, 325 (2005) (II.) A.W. Steiner et al.,

Phys. Rep. 411, 325 (2005)

 $S_{\nu} = 28.3 \, \text{MeV}$ $S_{\nu} = 24.1 \, \text{MeV}$

 $S_{\nu} = 27.3 \, \text{MeV}$ $\kappa = 1.68$

October 26, 2022 | TU Darmstadt | IKP | I. Brandherm | 24

Comparison to Migdal model

More realistic model: a_{sym} mass dependent

 $S_{\nu} = 24.1 \, \text{MeV}$

 $S_{\nu} = 27.3 \, \text{MeV}$

 $S_v = 27.3(8) \,\mathrm{MeV}$

 $\kappa = 0.545$

 $\kappa = 1.68$

 $\kappa = 1.69(6)$

$$lpha_D = rac{0.0518\cdot A^2}{S_
u(A^{1/3}-\kappa)}\,\mathrm{fm}^3,\quad\kappa=rac{S_s}{S_
u}$$

J. Tian et al., $S_{
m v} = 28.3\,{
m MeV}$ Phys. Rev. C 90, 024313 (2014) $\kappa = 1.27$

(I.) A.W. Steiner et al., Phys. Rep. 411, 325 (2005)

(II.) A.W. Steiner et al., Phys. Rep. 411, 325 (2005)

Fit

Summary

- Inelastic proton scattering at extreme forward angles is a tool to probe the dipole response in nuclei
- Electric and magnetic dipole response of ⁵⁸Ni
- Experimental systematic of the dipole polarizability: ^{40,48}Ca,⁶⁸Ni, ⁹⁰Zr, ^{112,114,116,118,120,124}Sn, ²⁰⁸Pb, and in the near future ⁵⁸Ni

Outlook

- Constraints for the symmetry energy parameters and neutron skin thickness
- Test of ab-initio calculations of E1 response and dipole polarizability

Outlook

- Constraints for the symmetry energy parameters and neutron skin thickness
- Test of ab-initio calculations of E1 response and dipole polarizability

Thank you for your attention!

October 26, 2022 | TU Darmstadt | IKP | I. Brandherm | 29