Microscopic Structure of the Low-Energy Electric Dipole Response of ¹²⁰Sn

Michael Weinert, Miriam Müscher, Gregory Potel, Mark Spieker, Nadia Tsoneva, and Andreas Zilges

> Institute for Nuclear Physics University of Cologne

ECT* Workshop on **Giant** and **Soft Modes** of Excitation in **Nuclear Structure** and Astrophysics Trento, Oct. 2022

Universit

zu Kõ

Supported by the DFG (ZI 510/10-1)

mweinert@ikp.uni-koeln.de

Typical Dipole-Strength Distribution in Atomic Nuclei

- Part of the photon strength function
 - Used to model $(\gamma, n)/(n, \gamma)$ reactions during late *r* process
- General nuclear structure phenomena
 - How are specific features generated?

Overview

• A short history of complementary experiments on the LEDR

- Microscopic structure:
 - ¹¹⁹Sn(d,p γ) and ¹²⁰Sn(γ , γ ')
 - Quasiparticle-Phonon-Model
 - Comparing apples to apples

- Isoscalar response:
 - ¹²⁰Sn($\alpha, \alpha' \gamma$) at E_{α} = 130 MeV

The Low-Energy Electric Dipole Response

- Photon scattering used to chart the LEDR
- Study of total strength and decay behavior
- Comparison to other probes yields deeper insight!
- For example:
 (α,α'γ), (p,p'γ), (¹⁷O,¹⁷O'γ)

J. Endres et al., Phys. Rev. Lett. 105 (2010) 212503

Isoscalar E1 response – Isospin *Splitting*

J. Endres et al., PRC 80 (2009) 034302 ¹³⁸Ba($\alpha, \alpha' \gamma$) ¹³⁸Ba

5000

Energy [keV]

4000

2

3

5

0.7

0.6

 94 Mo(γ, γ')

7000

6000

¹²⁴Sn – Experiment and Theory

Michael Weinert | University of Cologne | AG Zilges

6

¹²⁴Sn – Other Experiments

M. Färber, M. Weinert et al., EPJ A 57 (2021) 191

¹²⁰Sn – NRF and CoulEx

A.M. Krumbholz *et al.*, PLB **744** (2015) 7

Recent confirmation of CoulEx data and high sensitivity remeasurement of NRF

Discrepancy remains!

Caused by nuclear structure?

S. Bassauer et al., PRC 102 (2020) 034327

M. Müscher et al., PRC 102 (2020) 014317

Overview

• A short history of complementary experiments on the LEDR

- Microscopic structure:
 - 119 Sn(d,p γ) and 120 Sn(γ , γ ')
 - Quasiparticle-Phonon-Model
 - Comparing apples to apples

• Isoscalar response:

- ¹²⁰Sn($\alpha, \alpha' \gamma$) at E_{α} = 130 MeV

$$\begin{split} \Psi_{\nu} &= \left\{ \begin{array}{c} \sum_{i} R_{i}(\nu) \ Q_{1Mi}^{+} \\ &+ \sum_{\substack{\lambda_{1}i_{1} \\ \lambda_{2}i_{2}}} P_{\lambda_{2}i_{2}}^{\lambda_{4}i_{1}}(\nu) \Big[Q_{\lambda_{1}\mu_{1}i_{1}}^{+} \times Q_{\lambda_{2}\mu_{2}i_{2}}^{+} \Big]_{1M} \\ &+ \sum_{\substack{\lambda_{1}i_{1}\lambda_{2}i_{2} \\ \lambda_{3}i_{3}I}} T_{\lambda_{3}i_{3}}^{\lambda_{1}i_{1}\lambda_{2}i_{2}I}(\nu) \Big[\left[Q_{\lambda_{1}\mu_{1}i_{1}}^{+} \times Q_{\lambda_{2}\mu_{2}i_{2}}^{+} \right]_{IK} \\ &\times Q_{\lambda_{3}\mu_{3}i_{3}}^{+} \Big]_{1M} \end{array} \right\} \Psi_{0} \end{split}$$

Select protons in ΔE -E to distinguish (d,p) from (d,d')

Select direct excitation and decay into specific state in ¹²⁰Sn

 119 Sn(d,p γ)@8.5MeV – SONIC@HORUS

Doppler shift due to recoiling target nuclei (β =0.0025)

Correction assuming very short lifetime and in-flight decay

Nominal HPGe resolution restored in summed spectrum!

Ground state γ -decay spectrum after Doppler correction and gating on $E_x = E_\gamma$ shows only J=1,2 states

M. Weinert et al., Phys. Rev. Lett. 127 (2021) 242501

¹¹⁹Sn(d,p γ)@8.5MeV – SONIC@HORUS

M. Weinert et al., Phys. Rev. Lett. 127 (2021) 242501

¹¹⁹Sn(d,pγ)

- 64 of 80 observed lines have matching energy to (γ, γ')
- Angular distributions confirm $\Delta L=1$ dominant up to 7.5 MeV
- From CoulEx: M1 contribution likely negligible

 \rightarrow All discretely observed lines are $J^{\pi} = 1^{-}$ states !

¹¹⁹Sn(d,p γ) vs ¹²⁰Sn(γ , γ ')

- Strong state-to-state difference between (d,p γ) and (γ , γ ')
- Missing strength above 7.5 MeV intriguing...

Structure reasons?

NRF data from: M. Müscher et al., PRC 102, 014317 (2020)

Overview

• A short history of complementary experiments on the LEDR

- Microscopic structure:
 - ¹¹⁹Sn(d,p γ) and ¹²⁰Sn(γ , γ ')
 - Quasiparticle-Phonon-Model
 - Comparing apples to apples

• Isoscalar response: - 120 Sn($\alpha, \alpha' \gamma$) at E_{α}= 130 MeV

$$\begin{split} \Psi_{\nu} &= \left\{ \sum_{i} R_{i}(\nu) \ Q_{1Mi}^{+} \\ &+ \sum_{\substack{\lambda_{1}i_{1} \\ \lambda_{2}i_{2}}} P_{\lambda_{2}i_{2}}^{\lambda_{q}i_{1}}(\nu) \Big[Q_{\lambda_{1}\mu_{1}i_{1}}^{+} \times Q_{\lambda_{2}\mu_{2}i_{2}}^{+} \Big]_{1M} \\ &+ \sum_{\substack{\lambda_{1}i_{1}\lambda_{2}i_{2} \\ \lambda_{3}i_{3}I}} T_{\lambda_{3}i_{3}}^{\lambda_{1}i_{1}\lambda_{2}i_{2}I}(\nu) \Big[\left[Q_{\lambda_{1}\mu_{1}i_{1}}^{+} \times Q_{\lambda_{2}\mu_{2}i_{2}}^{+} \right]_{IK} \\ &\times Q_{\lambda_{3}\mu_{3}i_{3}}^{+} \Big]_{1M} \right\} \Psi_{0} \end{split}$$

¹¹⁹Sn(d,p γ) – Quasiparticle-Phonon-Model

QRPA Phonons

¹¹⁹Sn(d,p γ) – Quasiparticle-Phonon-Model

Each QPM state is built from contributions that represent

 $\Psi_{\nu} = \left\{ \sum_{i} R_{i}(\nu) Q_{1Mi}^{+} + \sum_{\substack{\lambda_{1}i_{1} \\ \lambda_{2}i_{2}}} P_{\lambda_{2}i_{2}}^{\lambda_{q}i_{1}}(\nu) \left[Q_{\lambda_{1}\mu_{1}i_{1}}^{+} \times Q_{\lambda_{2}\mu_{2}i_{2}}^{+} \right]_{1M} + \sum_{\substack{\lambda_{1}i_{1}\lambda_{2}i_{2} \\ \lambda_{3}i_{3}I}} T_{\lambda_{3}i_{3}}^{\lambda_{1}i_{1}\lambda_{2}i_{2}I}(\nu) \left[\left[Q_{\lambda_{1}\mu_{1}i_{1}}^{+} \times Q_{\lambda_{2}\mu_{2}i_{2}}^{+} \right]_{IK} \times Q_{\lambda_{3}\mu_{3}i_{3}}^{+} \right]_{1M} \right\} \Psi_{0}$

one phonon

two phonons

three phonons

Theory provided by N. Tsoneva

¹²⁰Sn QPM – Electromagnetic Response

B(E1) \uparrow running sums from (γ , γ ') and (p,p')-CoulEx

QPM reproduces CoulEx data nicely!

CoulEx: A.M. Krumbholz *et al.*, PLB **744** (2015) 7 Bremsstrahlung: M. Müscher *et al.*, PRC **102**, 014317 (2020)

¹²⁰Sn – QPM One-Phonon Distribution

Distribution of only the dominant 1ph contributions to QPM states

Concentrated around 6-7 MeV

Theory provided by N. Tsoneva

Michael Weinert | University of Cologne | AG Zilges

¹¹⁹Sn(d,p γ) – QPM+Reaction Theory

Each QPM state is built from contributions that represent

one phonon

 $\Psi_{\nu} = \left\{ \sum_{i} R_{i}(\nu) Q_{1Mi}^{+} + \sum_{\substack{\lambda_{1}i_{1} \\ \lambda_{2}i_{2}}} P_{\lambda_{2}i_{2}}^{\lambda_{q}i_{1}}(\nu) \left[Q_{\lambda_{1}\mu_{1}i_{1}}^{+} \times Q_{\lambda_{2}\mu_{2}i_{2}}^{+} \right]_{1M} + \sum_{\substack{\lambda_{1}i_{1}\lambda_{2}i_{2} \\ \lambda_{3}i_{3}I}} T_{\lambda_{3}i_{3}}^{\lambda_{1}i_{1}\lambda_{2}i_{2}I}(\nu) \left[\left[Q_{\lambda_{1}\mu_{1}i_{1}}^{+} \times Q_{\lambda_{2}\mu_{2}i_{2}}^{+} \right]_{IK} + \left[Q_{\lambda_{3}\mu_{3}i_{3}}^{+} \right]_{1M} \right\} \Psi_{0}$

two phonons

three phonons

(d,p) reaction selects only one phonon contributions that are accessible from the ground state of ¹¹⁹Sn! $\frac{d\sigma_{\nu}}{d\Omega}(\theta) = \frac{\mu_{i}\mu_{f}}{(2\pi\hbar^{2})^{2}} \frac{k_{f}}{k_{i}} \times \left| u_{3p_{1/2}} R_{3p_{1/2}}(\nu) \psi_{\frac{1}{2}\frac{1}{2}}^{3p_{1/2}} \mathcal{T}_{p_{1/2}}(\theta) + u_{3p_{3/2}} R_{3p_{3/2}}(\nu) \psi_{\frac{1}{2}\frac{3}{2}}^{3p_{3/2}} \mathcal{T}_{p_{3/2}}(\theta) \right|^{2}$

Theory provided by N. Tsoneva and G. Potel

¹²⁰Sn – QPM One-Phonon Distribution

Theory provided by N. Tsoneva

Experiment and Theory – Apples and Apples

Theory provided by N. Tsoneva and G. Potel

M. Weinert *et al.*, Phys. Rev. Lett. **127** (2021) 242501

Experiment and Theory – Apples and Apples

Theory provided by N. Tsoneva and G. Potel

M. Weinert *et al.*, Phys. Rev. Lett. **127** (2021) 242501

QPM – Detailed Access to Wave Functions

Michael Weinert | University of Cologne | AG Zilges

Microscopic Structure of the LEDR of ¹²⁰Sn

QPM Transition Densities

What have we learned so far?

$$\begin{split} \Psi_{\nu} &= \left\{ \sum_{i} R_{i}(\nu) Q_{1Mi}^{+} \\ &+ \sum_{\substack{\lambda_{1}i_{1} \\ \lambda_{2}i_{2}}} P_{\lambda_{2}i_{2}}^{\lambda_{q}i_{1}}(\nu) \Big[Q_{\lambda_{1}\mu_{1}i_{1}}^{+} \times Q_{\lambda_{2}\mu_{2}i_{2}}^{+} \Big]_{1M} \\ &+ \sum_{\substack{\lambda_{1}i_{1}\lambda_{2}i_{2} \\ \lambda_{3}i_{3}I}} T_{\lambda_{3}i_{3}}^{\lambda_{1}i_{1}\lambda_{2}i_{2}I}(\nu) \Big[\left[Q_{\lambda_{1}\mu_{1}i_{1}}^{+} \times Q_{\lambda_{2}\mu_{2}i_{2}}^{+} \right]_{IK} \\ &\times Q_{\lambda_{3}\mu_{3}i_{3}}^{+} \Big]_{1M} \right\} \Psi_{0} \end{split}$$

What's next?

Further (d,pγ) studies:

- ^{115,117}Sn(d,pγ) SONIC@HORUS
- ¹¹⁸Sn(γ , γ ') NRF at γ -ELBE
- ⁶¹Ni(d,pγ) at ROSPHERE, IFIN-HH

Let's try this: ¹¹⁹Sn(p,dγ)¹¹⁸Sn with BaGeL+K600 at iThemba Labs, Capetown

Overview

• A short history of complementary experiments on the LEDR

- Microscopic structure:
 - ¹¹⁹Sn(d,p γ) and ¹²⁰Sn(γ , γ ')
 - Quasiparticle-Phonon-Model
 - Comparing apples to apples

- Isoscalar response:
 - 120 Sn($\alpha, \alpha' \gamma$) at E_{α} = 130 MeV

$$\begin{split} \Psi_{\nu} &= \left\{ \sum_{i} R_{i}(\nu) \ Q_{1Mi}^{+} \\ &+ \sum_{\substack{\lambda_{1}i_{1} \\ \lambda_{2}i_{2}}} P_{\lambda_{2}i_{2}}^{\lambda_{i}i_{1}}(\nu) \Big[Q_{\lambda_{1}\mu_{1}i_{1}}^{+} \times Q_{\lambda_{2}\mu_{2}i_{2}}^{+} \Big]_{1M} \\ &+ \sum_{\substack{\lambda_{1}i_{1}\lambda_{2}i_{2} \\ \lambda_{3}i_{3}I}} T_{\lambda_{3}i_{3}I}^{\lambda_{1}i_{1}\lambda_{2}i_{2}I}(\nu) \Big[\left[Q_{\lambda_{1}\mu_{1}i_{1}}^{+} \times Q_{\lambda_{2}\mu_{2}i_{2}}^{+} \right]_{IK} \\ &\times Q_{\lambda_{3}\mu_{3}i_{3}}^{+} \Big]_{1M} \right\} \Psi_{0} \end{split}$$

CAGRA+GR Campaign @ RCNP, Osaka

- GrandRaiden Spectrometer
- High energy resolution under forward angles incl. 0°

CAGRA Clover array

- 12 clover type detectors + BGO shields
- 4 large volume LaBr₃ detectors

¹²⁰Sn(α,α'γ) E_α = 130 MeV $θ_α$ = 4.5°

Over **1100 hours** of beam time!

120 Sn($\alpha, \alpha' \gamma$) – Ground-State Decay Spectrum

Low statistics above 5 MeV, but above background

Isoscalar response evident!

Integrated cross sections for excitation and ground-state decay

Mostly flat isoscalar response, large uncertainties

Summed cross section approx. 5 times lower than 124 Sn($\alpha, \alpha' \gamma$)!

State-to-State QPM+Reaction Predictions

No pronounced difference between $(\alpha, \alpha'\gamma)$ and (γ, γ') suggested Total isoscalar response reproduced from only the 1ph TRDs!

How does the (this) QPM render 124 Sn($\alpha, \alpha' \gamma$)?

Summary

