Particle-vibration coupling effects on dipole strength function at finite temperature in the covariant density functional theory framework

Herlik Wibowo

Workshop at ECT*: Giant and Soft Modes of Excitation in Nuclear Structure and Astrophysics October 28th, 2022

in collaboration with Elena Litvinova

Outline

- Motivation
- Nuclear mean field at finite temperature
- Correlations beyond mean field
- Numerical results
- Summary and outlooks

W. Nazarewicz, Nucl. Part. Phys. 43, 044002 (2016)

Motivation

- The atomic nucleus occupies the threshold between the fundamental and the emergence.
- Nuclear excitation spectra can be studied by subjecting the atomic nucleus to an external perturbation and observing its response.

Credit: Alan Stonebraker/APS

• Models based on the one-loop approximation (such as (quasiparticle) random phase approximation or (Q)RPA) cannot describe the spreading width of giant resonances and low-lying strength distributions. • The most important correlations beyond RPA are induced by the particle-vibration coupling (PVC). The leading PVC contribution can be provided by the relativistic (quasiparticle) time blocking approximation (R(Q)TBA) [E. Litvinova, P. Ring, and V. Tselyaev, PRC 78 014312 (2008) and PRC 75, 064302 (2007)].

• The radiative neutron capture reaction rates of the rprocess nucleosynthesis are immensely affected by the microscopic structure of the low-energy spectra of compound nuclei [S. Goriely and E. Khan, Nucl. Phys. A 706, 217 (2002)].

Motivation: to understand the temperature evolution of the excitation spectra of spherical medium-mass and heavy nuclei, in particular, the low-energy sector.

Hot Nucleus and Nuclear Temperature

heavy-ion fusion reaction or radiative neutron capture process.

$$\rho(A, E^*) \simeq \frac{e^{2\sqrt{aE^*}}}{\sqrt{48E^*}}; \quad a \approx A/(8-1)$$

- Definition of temperature:

$$T = \left(\frac{1}{\rho} \frac{\partial \rho}{\partial E^*}\right)^{-1}$$

P. F. Bortignon, A. Bracco, and R. A. Broglia, *Giant Resonances: Nuclear Structure at Finite Temperature*

• A hot nucleus is a highly excited compound nucleus formed as an intermediate state during

 $12) \text{ MeV}^{-1}$ (Bethe's Fermi gas formula)

• For example, for A = 100 and $E^* = 10$ MeV, the Bethe's Fermi gas formula estimates the density of levels $\rho(A, E^*)$ of 10⁷ states per MeV. Here, we have used $a \approx A/10 \text{ MeV}^{-1}$.

Relation between
$$E^*$$
 and T
 $E^* \approx a T^2$

Nuclear mean field at finite temperature

- effective meson-exchange and photon exchange at finite temperature.
- Effective Lagrangian density $\mathscr{L}_{effective}$:

$$\mathscr{L}_{effective} = \mathscr{L}_{nucleons} + \mathscr{L}_{mesons} + \mathscr{L}_{interactions}$$

Nuclear Physics, Vol. 16 (1986); Ring, Prog. Part. Nucl. Phys. **37**, 193 (1996)

• The hot nucleus is considered as a system of Dirac nucleons interacting via

Quantum numbers (J, π, T)

Meson	J	π	T
Sigma (σ)	0	+1	0
Omega (ω)	1	-1	0
Rho (ρ)	1	-1	1

• Mean-field approximation: $\phi_{\text{mesons}} \rightarrow \langle \phi_{\text{mesons}} \rangle$ • Equation of motion for nucleons:

Dirac Equation

$$\hat{h}^{D}\varphi_{k}(\mathbf{r}) = \varepsilon_{k}\varphi_{k}(\mathbf{r})$$
$$\hat{h}^{D} = \boldsymbol{\alpha} \cdot \boldsymbol{p} + \beta(M + \widetilde{\Sigma}(\mathbf{r}))$$

Relativistic Mass Operator

$$\widetilde{\Sigma}(\mathbf{r}) = S(\mathbf{r}) + \beta V(\mathbf{r})$$

$$S(\mathbf{r}) = g_{\sigma}\sigma(\mathbf{r})$$

$$V(\mathbf{r}) = g_{\omega}\omega^{0}(\mathbf{r}) + g_{\rho}\tau_{3}\rho_{3}^{0}(\mathbf{r})$$

$$+ \frac{1}{2}(1 + \tau_{3})eA^{0}(\mathbf{r})$$

Mean-field approximation

Klein-Gordon Equations

$$\begin{aligned} \left(-\nabla^2 + m_{\sigma}^2 \right) \sigma(\mathbf{r}) &= -g_{\sigma} \rho_s(\mathbf{r}) - dU(\sigma)/d\sigma \\ \left(-\nabla^2 + m_{\omega}^2 \right) \omega^0(\mathbf{r}) &= g_{\omega} \rho_v(\mathbf{r}) \\ \left(-\nabla^2 + m_{\rho}^2 \right) \rho_3^0(\mathbf{r}) &= g_{\rho} \rho_3(\mathbf{r}) \\ -\nabla^2 A^0(\mathbf{r}) &= e \rho_c(\mathbf{r}) \end{aligned} \qquad \begin{aligned} U(\sigma) &= \frac{1}{3} g_2 \sigma^3 + \frac{1}{4} g_3 \sigma^4 \\ \text{Boguta and Bodmer, Nucl.} \\ \text{Phys. A 292, 413 (1977)} \end{aligned}$$

Four Baryonic Densities

$$\rho_{s}(\mathbf{r}) = \sum_{k} n_{k} \overline{\varphi}_{k}(\mathbf{r}) \varphi_{k}(\mathbf{r})$$

$$\rho_{v}(\mathbf{r}) = \sum_{k} n_{k} \varphi_{k}^{\dagger}(\mathbf{r}) \varphi_{k}(\mathbf{r})$$

$$\rho_{3}(\mathbf{r}) = \sum_{k} n_{k} \varphi_{k}^{\dagger}(\mathbf{r}) \tau_{3} \varphi_{k}(\mathbf{r})$$

$$\rho_{c}(\mathbf{r}) = \sum_{k} n_{k} \varphi_{k}^{\dagger}(\mathbf{r}) \frac{1}{2} (1 + \tau_{3}) \varphi_{k}(\mathbf{r})$$

Correlations beyond mean field

Full Dyson equation:

is equivalent to two Dyson equations:

T. Matsubara, Prog. Theor. Phys. **14**, 351 (1995)

The phonon energies ω_m and the phonon transition densities ρ^m can be determined from Finite Temperature Relativistic RPA (FT-RRPA).

Nuclear Response at Finite Temperature

 $\hat{V}^0 e^{-i\omega t} + \hat{V}^{0\dagger} e^{i\omega t}$

Hot Nucleus

Nuclear Excitation Modes

* M. N. Harakeh and A. van der Woude: Giant Resonances

- E. Litvinova, C. Robin, and H. Wibowo, Phys. Lett. B 800, 135134 (2020).
- H. Wibowo and E. Litvinova, Phys. Rev. C **100**, 024307 (2019).
- E. Litvinova, P. Schuck, and H. Wibowo, EPJ Web of Conferences 223, 01033 (2019).
- E. Litvinova and H. Wibowo, Eur. Phys. J. A **55**, 223 (2019).
- E. Litvinova and H. Wibowo, Phys. Rev. Lett. **121**, 082501 (2018).

Transition strength distribution at T > 0

Strength Function at T > 0

$$\widetilde{S}(E) = \frac{1}{1 - e^{-E/T}} \lim_{\Delta \to +0} \frac{1}{2}$$

$\frac{1}{\pi} \operatorname{Im} \sum_{1234} V_{21}^{0*} \mathscr{R}_{12,34} (E + i\Delta) V_{43}^{0}$

The Role of Exponential Factor

E. Litvinova and H. Wibowo, EPJA 55, 223 (2019)

Bethe-Salpeter Equation (BSE) for particle-hole \mathscr{R}

BSE for Correlated Propagator \mathscr{R}^e

BSE for Full Response \mathscr{R} $\mathcal{R} = \mathcal{R}^e - \mathcal{R}^e \mathcal{U} \mathcal{R}$

Imaginary-time blocking approximation

Problem: Diagrams with no imaginary-time ordering

Imaginary-time Projection Operator

 $\widetilde{\mathscr{D}}(12,34) = \Theta(12,34;T) \widetilde{\mathscr{R}}^{0\sigma_1\sigma_2}(12,34)$

 $\Theta(12, 34; T) = \delta_{\sigma_1, -\sigma_2} \theta(\sigma_1 \tau_{41}) \theta(\sigma_1 \tau_{32}) \left[n(\sigma_1 \varepsilon_2, T) \theta(\sigma_1 \tau_{12}) + n(\sigma_2 \varepsilon_1, T) \theta(\sigma_2 \tau_{12}) \right]$

Allowed Diagrams

Final equation for the response function

$$\mathscr{R}(\omega) = \widetilde{\mathscr{R}}^{0}(\omega) + \widetilde{\mathscr{R}}^{0}(\omega)$$

$$\widetilde{\mathscr{R}}^{0}_{12,34}(\omega) = -\delta_{13}\delta_{24}\frac{n_2(T) - \omega}{\omega - \varepsilon_1}$$

Strength Function and Transition Density

 $\delta \rho_{k_1k_2}(a)$ Density matrix variation:

Uncorrelated density matrix variation: BSE equation in terms of $\delta \rho(\omega)$ and $\delta \rho^0(\omega)$: $\delta\rho(\omega) = \delta\rho^0(\omega) + \widetilde{\mathscr{R}}^0(\omega)$

 $S(E) = -\frac{1}{\pi} \lim_{\Delta \to +0} \operatorname{Im} \sum_{k_1 k_2} V_{k_2 k_1}^{0*} \delta \rho_{k_1 k_2}(E + i\Delta)$ Spectral density S(E):

Transition density $\rho_{k_1k_2}^{fi}$: $\rho_{k_1k_2}^{fi} = \lim_{\Lambda \to +C} \int \rho_{k_1k_2}^{fi} = \int \rho_{k_1k_$

$$(\omega) = -\sum_{k_3k_4} \mathscr{R}_{k_1k_2,k_3k_4}(\omega) V_{k_4k_3}^0$$

$$\delta \rho_{k_1 k_2}^0(\omega) = -\sum_{k_3 k_4} \widetilde{\mathscr{R}}_{k_1 k_2, k_3 k_4}^0(\omega) V_{k_4 k_3}^0$$

$$\omega)\left[\widetilde{\mathcal{U}} + \widetilde{\Phi}(\omega) - \widetilde{\Phi}(0)\right]\delta\rho(\omega)$$

$$\sqrt{\frac{\Delta}{\pi \cdot S(\omega_{fi})}} \mathrm{Im} \delta \rho_{k_1 k_2}(\omega_{fi} + i\Delta)$$

FT-RTBA generalized normalization condition:

 $1 = \sum_{k_1 k_2 k_3 k_4} \rho_{k_1 k_2}^{fi*} \mathcal{N}_{k_1 k_2, k_3}$

FT-RPA norm:

 $\mathcal{N}_{k_1k_2,k_3k_4} = --$

FT-RPA normalization condition:

$$\sum_{j=k_{3}k_{4}} - \frac{d\widetilde{\Phi}_{k_{1}k_{2},k_{3}k_{4}}(\omega)}{d\omega} \bigg|_{\omega=\omega_{fi}} \rho_{k_{3}k_{4}}^{fi}$$

$$\frac{\delta_{k_{1}k_{3}}\delta_{k_{2}k_{4}}}{(\varepsilon_{k_{2}},T) - n(\varepsilon_{k_{1}},T)}$$

$$\sum_{ph} \frac{|\rho_{ph}^{fi}|^{2} - |\rho_{hp}^{fi}|^{2}}{n_{h}(\varepsilon_{h},T) - n_{p}(\varepsilon_{p},T)} = 1$$

$$z_{ph}^{fi}$$

Numerical Scheme (Finite-temperature Relativistic Time Blocking Approximation \rightarrow FT-RTBA)

Self-consistent calculations

Thermal RMF equations: ✓ Dirac equation ✓ Klein-Gordon equations ✓ Four baryonic densities \checkmark Occupation numbers $n_k(T)$ \checkmark Constraint: $\Sigma_k n_k = A$

NL3 parametrization (G. A. Lalazissis, J. König, P. Ring, PRC 55, 540, 1997)

BSE without PVC (FT-RRPA)

 $\{\varphi_k(r), \varepsilon_k\}$

 $\{\varphi_k(r), \varepsilon_k\}$

BSE with PVC

 $\{\omega_m, g^m\}$

- Outputs: • Strength functions
- transition densities

$$m = 2^+, 3^-, 4^+, 5^-, 6^+$$

Electromagnetic dipole response of ⁶⁸Ni

H. Wibowo and E. Litvinova, PRC **100**, 024307 (2019)

- The enhancement of the lowenergy spectral density becomes stronger as temperature increases.
- The high-frequency peak remains fragmented because of the PVC at all

temperatures.

• The giant dipole resonance starts to "disappear" at temperature 6 MeV.

Width of giant dipole resonance in ^{120,132}Sn

$\Gamma(T)$ [MeV] of the GDR in ¹²⁰ Sn nucleus				
T [MeV]	FT-RRPA	FT-RTBA		
0	2.70	4.43		
1.0	2.26	3.08		
2.0	3.09	4.07		
3.0	6.94	8.46		
4.0	14.46	16.92		

• The width $\Gamma(T)$ at T = 1 MeV in ¹²⁰Sn is smaller than at T = 0

• After T = 1 MeV in ¹³²Sn and T = 2 MeV in ¹²⁰Sn, there is a fast increase of $\Gamma(T)$.

Proton and neutron transition densities in ⁶⁸Ni

Proton (p) and neutron (n) *ph* and *ph* configurations for low-energy peaks

T = 0; E = 6.89 MeV	T = 1 MeV; $E = 7.16$ MeV	T = 2 MeV; $E = 7.70$ MeV	T = 3 MeV; $E = 3.49$ Me
$10.3\% (2p_{3/2} \to 2d_{5/2}) \ n$	56.8% $(2p_{1/2} \rightarrow 3s_{1/2}) n$	$4.9\% (1f_{5/2} \to 2d_{5/2}) \ n$	$31.1\% (3s_{1/2} \to 3p_{3/2})$
$9.8\% (2s_{1/2} \to 2p_{3/2}) \ p$	$4.4\% (1f_{7/2} \to 1g_{9/2}) \ n$	$3.2\% (1f_{7/2} \to 1g_{9/2}) \ n$	$15.7\% (2d_{5/2} \to 3p_{3/2})$
$7.1\% (1f_{7/2} \to 1g_{9/2}) p$	$2.2\% (1f_{5/2} \to 2d_{5/2}) \ n$	$2.9\% (2p_{3/2} \to 2d_{5/2}) \ n$	$0.1\% (3s_{1/2} \to 3p_{1/2})$
$6.2\% (1f_{5/2} \to 2d_{5/2}) \ n$	$1.4\% (1f_{7/2} \to 1g_{9/2}) p$	$2.1\% (1f_{5/2} \to 2d_{3/2}) \ n$	$0.01\% (1f_{7/2} \to 1g_{9/2})$
$6.1\% (1f_{7/2} \to 1g_{9/2}) \ n$	$1.0\% (1f_{5/2} \to 2d_{3/2}) \ n$	$1.7\% (1f_{7/2} \to 1g_{9/2}) p$	$0.01\% (1g_{9/2} \to 1h_{11/2})$
$4.6\% (1f_{5/2} \to 2d_{3/2}) \ n$	$0.9\% (2p_{3/2} \to 3s_{1/2}) \ n$	$1.3\% (2p_{1/2} \to 2d_{3/2}) \ n$	
$1.0\% (2p_{1/2} \to 2d_{3/2}) \ n$	$0.9\% (2p_{1/2} \to 2d_{3/2}) \ n$	$1.1\% (2s_{1/2} \to 2p_{3/2}) p$	
$0.9\% (1d_{3/2} \to 2p_{1/2}) p$	$0.7\% (2p_{1/2} \to 4s_{1/2}) \ n$	$0.9\% (2p_{3/2} \to 3s_{1/2}) \ n$	
$0.9\% (1d_{3/2} \to 2p_{3/2}) p$	$0.5\% (2p_{3/2} \to 2d_{5/2}) \ n$	$0.2\% (1d_{3/2} \to 2p_{1/2}) \ p$	
$0.7\% (2p_{3/2} \to 3s_{1/2}) \ n$	$0.3\% (1d_{3/2} \to 2p_{3/2}) p$	$0.2\% (1d_{3/2} \to 2p_{3/2}) p$	
$0.4\% (1f_{5/2} \to 3d_{3/2}) \ n$	$0.2\% (1d_{3/2} \to 2p_{1/2}) \ p$	$0.1\% (1f_{5/2} \to 3d_{3/2}) \ n$	
$0.3\% (2s_{1/2} \to 2p_{1/2}) \ p$	$0.1\% (2p_{1/2} \to 5s_{1/2}) \ n$		
$0.2\% (2p_{3/2} \to 3d_{5/2}) \ n$			
$0.2\% (1f_{5/2} \to 3d_{5/2}) \ n$			
$0.2\% (2p_{3/2} \to 2d_{3/2}) \ n$			
$0.2\% (1f_{7/2} \to 2d_{5/2}) p$			
$0.1\% (1f_{7/2} \to 2d_{5/2}) \ n$			

49.2%

69.4%

18.6%

MeV; $E = 2.55$ MeV	T = 5]	MeV; $E = 3.87$ Me
$(2f_{7/2} \rightarrow 2g_{9/2}) n$	61.9%	$(2q_{9/2} \rightarrow 2h_{11/2})$
$(3p_{1/2} \rightarrow 3d_{3/2}) n$	3.0%	$(3f_{7/2} \rightarrow 4d_{5/2})$
$(2f_{5/2} \rightarrow 2g_{7/2}) n$	0.4%	$(2g_{7/2} \rightarrow 3f_{5/2})$
$(2d_{3/2} \rightarrow 3p_{1/2}) n$	0.3%	$(2d_{3/2} \rightarrow 2f_{5/2})$
$(1g_{7/2} \rightarrow 2f_{5/2}) n$	0.2%	$(1h_{11/2} \rightarrow 1i_{13/2})$
	0.1%	$(3d_{3/2} \rightarrow 2f_{5/2})$
	65.9%	
	MeV; $E = 2.55$ MeV $(2f_{7/2} \rightarrow 2g_{9/2}) n$ $(3p_{1/2} \rightarrow 3d_{3/2}) n$ $(2f_{5/2} \rightarrow 2g_{7/2}) n$ $(2d_{3/2} \rightarrow 3p_{1/2}) n$ $(1g_{7/2} \rightarrow 2f_{5/2}) n$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

42.8%

H. Wibowo and E. Litvinova, PRC 100, 024307 (2019)

Summary

- We model a compound nucleus in the framework of the thermal relativistic meanfield theory. The single-particle occupation probabilities are given by the Fermi-Dirac occupation number.
- We have generalized the time blocking method for finite-temperature case and derived the single-frequency Bethe-Salpeter equation to calculate the response function of a thermally excited compound nucleus.
- Our method called the finite-temperature relativistic time-blocking approximation (FT-RTBA) has been implemented numerically for calculating dipole response of medium-mass and heavy nuclei.

Outlooks

- To include the PVC effects into Relativistic Continuum Quasiparticle RPA (RCQRPA).
- To include the finite-temperature effects into the RCQRPA+PVC framework using Matsubara Green's function formalism.
- To perform accurate calculations of radiative strength function (RSFs) for the modeling of the neutron-capture cross-sections in the r-process nucleosynthesis.

$$\Sigma_{k_{1}k_{2}}^{e}(\varepsilon_{\ell}) = \sum_{k_{3},m} \left\{ g_{k_{1}k_{3}}^{m*} g_{k_{2}k_{3}}^{m} \frac{N(\omega_{m},T) + 1 - n(\varepsilon_{k_{3}},T)}{i\varepsilon_{\ell} - \varepsilon_{k_{3}} + \mu - \omega_{m}} + g_{k_{3}k_{1}}^{m} g_{k_{3}k_{2}}^{m*} \frac{n(\varepsilon_{k_{3}},T) + N(\omega_{m},T)}{i\varepsilon_{\ell} - \varepsilon_{k_{3}} + \mu - \omega_{m}} \right\}$$

 $N(\omega_m, T) =$

 $\mathscr{U}_{k_1k_2,k_3k_4}^e(\omega_n,\varepsilon_\ell,\varepsilon_{\ell'}) = \sum_m \frac{g_{k_4}^m}{i\varepsilon_\ell}$

$$= \frac{1}{e^{\omega_m/T} - 1}$$

$$\frac{m}{i\varepsilon_{\ell'}}g_{k_3k_1}^{m*} - \sum_{m} \frac{g_{k_2k_4}^{m*}g_{k_1k_3}^m}{i\varepsilon_{\ell'} - i\varepsilon_{\ell'} - \omega_m}$$

 $\widetilde{\Phi}_{k_1k_2,k_3k_4}(\omega_n) = \widetilde{\Phi}_{k_1k_2,k_3k_4}^{(1)}(\omega_n) + \widetilde{\Phi}_{k_1k_2,k_3k_4}^{(2)}(\omega_n) + \widetilde{\Phi}_{k_1k_2,k_3k_4}^{(3)}(\omega_n)$

$$\widetilde{\Phi}_{k_{1}k_{2},k_{3}k_{4}}^{(1)}(\omega_{n}) = \frac{\delta_{\sigma_{k_{1}},-\sigma_{k_{2}}}\sigma_{k_{1}}}{n(\varepsilon_{k_{4}},T)-n(\varepsilon_{k_{3}},T)} \Biggl\{ \sum_{m} g_{k_{4}k_{2}}^{m} g_{k_{3}k_{1}}^{m*} \left[N(\omega_{m},T) + n(\varepsilon_{k_{4}},T) \right] \\
\times \frac{n(\varepsilon_{k_{1}},T)-n(\varepsilon_{k_{4}}-\omega_{m},T)}{i\omega_{n}-\omega_{m}-\varepsilon_{k_{1}k_{4}}} + \sum_{m} g_{k_{4}k_{2}}^{m} g_{k_{3}k_{1}}^{m*} \left[N(\omega_{m},T) + n(\varepsilon_{k_{3}},T) \right] \\
\times \frac{n(\varepsilon_{k_{3}}-\omega_{m},T)-n(\varepsilon_{2},T)}{i\omega_{n}+\omega_{m}-\varepsilon_{k_{3}k_{2}}} + \sum_{m} g_{k_{1}k_{3}}^{m} g_{k_{2}k_{4}}^{m*} \left[N(\omega_{m},T) + 1 - n(\varepsilon_{k_{3}},T) \right] \\
\times \frac{n(\omega_{m}+\varepsilon_{k_{3}},T)-n(\varepsilon_{k_{2}},T)}{i\omega_{n}-\omega_{m}-\varepsilon_{k_{3}k_{2}}} + \sum_{m} g_{k_{1}k_{3}}^{m} g_{k_{2}k_{4}}^{m*} \left[N(\omega_{m},T) + 1 - n(\varepsilon_{4},T) \right] \\
\times \frac{n(\varepsilon_{k_{1}},T)-n(\omega_{m}+\varepsilon_{k_{4}},T)}{i\omega_{n}-\omega_{m}-\varepsilon_{k_{1}k_{4}}} \Biggr\},$$
(3.112)

$$\widetilde{\Phi}_{k_{1}k_{2},k_{3}k_{4}}^{(2)}(\omega_{n}) = \frac{\delta_{\sigma_{k_{1}},-\sigma_{k_{2}}}\sigma_{k_{1}}\delta_{k_{2}k_{4}}}{n(\varepsilon_{k_{4}},T)-n(\varepsilon_{k_{3}},T)} \Biggl\{ \sum_{k_{5},m} g_{k_{3}k_{5}}^{m*} g_{k_{1}k_{5}}^{m} [N(\omega_{m},T)+1-n(\varepsilon_{k_{5}},T)] \\
\times \frac{n(\varepsilon_{k_{4}},T)-n(\varepsilon_{k_{5}}+\omega_{m},T)}{i\omega_{n}-\omega_{m}+\varepsilon_{k_{4}k_{5}}} + \sum_{k_{5},m} g_{k_{5}k_{3}}^{m} g_{k_{5}k_{4}}^{m*} [N(\omega_{m},T)+n(\varepsilon_{k_{5}},T)] \\
\times \frac{n(\varepsilon_{k_{4}},T)-n(\varepsilon_{k_{5}}-\omega_{m},T)}{i\omega_{n}+\omega_{m}+\varepsilon_{k_{4}k_{5}}} \Biggr\},$$
(3.11:
$$\widetilde{\Phi}_{k_{1}k_{2},k_{3}k_{4}}^{(3)}(\omega_{n}) = \frac{\delta_{\sigma_{k_{1},-\sigma_{k_{2}}}\sigma_{k_{1}}}\delta_{k_{3}k_{1}}}{n(\varepsilon_{k_{4}},T)-n(\varepsilon_{k_{3}},T)} \sum_{k_{6},m} \Biggl\{ g_{k_{2}k_{6}}^{m*} g_{k_{4}k_{6}}^{m} [N(\omega_{m},T)+1-n(\varepsilon_{k_{6}},T)] \\
\times \frac{n(\omega_{m}+\varepsilon_{k_{6}},T)-n(\varepsilon_{k_{3}},T)}{i\omega_{n}+\omega_{m}-\varepsilon_{k_{3}k_{6}}} + g_{k_{6}k_{2}}^{m} g_{k_{6}k_{4}}^{m*} [N(\omega_{m},T)+n(\varepsilon_{k_{6}},T)] \\
\times \frac{n(\varepsilon_{k_{6}}-\omega_{m},T)-n(\varepsilon_{k_{3}},T)}{i\omega_{n}-\omega_{m}-\varepsilon_{k_{3}k_{6}}}\Biggr\},$$
(3.11:

$$\frac{\sigma_{\sigma_{k_{1}},-\sigma_{k_{2}}}\sigma_{k_{1}}\sigma_{k_{2}k_{4}}}{n(\varepsilon_{k_{4}},T)-n(\varepsilon_{k_{3}},T)} \left\{ \sum_{k_{5},m} g_{k_{3}k_{5}}^{m*} g_{k_{1}k_{5}}^{m} [N(\omega_{m},T)+1-n(\varepsilon_{k_{5}},T)] \\ \frac{n(\varepsilon_{k_{4}},T)-n(\varepsilon_{k_{5}}+\omega_{m},T)}{i\omega_{n}-\omega_{m}+\varepsilon_{k_{4}k_{5}}} + \sum_{k_{5},m} g_{k_{5}k_{3}}^{m} g_{k_{5}k_{1}}^{m*} [N(\omega_{m},T)+n(\varepsilon_{k_{5}},T)] \\ \frac{n(\varepsilon_{k_{4}},T)-n(\varepsilon_{k_{5}}-\omega_{m},T)}{i\omega_{n}+\omega_{m}+\varepsilon_{k_{4}k_{5}}} \right\},$$

$$\frac{\delta_{\sigma_{k_{1}},-\sigma_{k_{2}}}\sigma_{k_{1}}\delta_{k_{3}k_{1}}}{n(\varepsilon_{k_{4}},T)-n(\varepsilon_{k_{3}},T)} \sum_{k_{6},m} \left\{ g_{k_{2}k_{6}}^{m*} g_{k_{4}k_{6}}^{m} [N(\omega_{m},T)+1-n(\varepsilon_{k_{6}},T)] \\ \frac{n(\omega_{m}+\varepsilon_{k_{6}},T)-n(\varepsilon_{k_{3}},T)}{i\omega_{n}+\omega_{m}-\varepsilon_{k_{3}k_{6}}} + g_{k_{6}k_{2}}^{m} g_{k_{6}k_{4}}^{m*} [N(\omega_{m},T)+n(\varepsilon_{k_{6}},T)] \\ \frac{n(\varepsilon_{k_{6}}-\omega_{m},T)-n(\varepsilon_{k_{3}},T)}{i\omega_{n}-\omega_{m}-\varepsilon_{k_{3}k_{6}}} \right\},$$

$$(3.11)$$

$$\widetilde{\Phi}_{k_1k_2,k_3k_4}^{(3)}(\omega_n) =$$

$$\frac{\sigma_{\sigma_{k_{1}},-\sigma_{k_{2}}}\sigma_{k_{1}}\sigma_{k_{2}k_{4}}}{n(\varepsilon_{k_{4}},T)-n(\varepsilon_{k_{3}},T)} \left\{ \sum_{k_{5},m} g_{k_{3}k_{5}}^{m*} g_{k_{1}k_{5}}^{m} [N(\omega_{m},T)+1-n(\varepsilon_{k_{5}},T)] \\ \frac{n(\varepsilon_{k_{4}},T)-n(\varepsilon_{k_{5}}+\omega_{m},T)}{i\omega_{n}-\omega_{m}+\varepsilon_{k_{4}k_{5}}} + \sum_{k_{5},m} g_{k_{5}k_{3}}^{m*} g_{k_{5}k_{1}}^{m*} [N(\omega_{m},T)+n(\varepsilon_{k_{5}},T)] \\ \frac{n(\varepsilon_{k_{4}},T)-n(\varepsilon_{k_{5}}-\omega_{m},T)}{i\omega_{n}+\omega_{m}+\varepsilon_{k_{4}k_{5}}} \right\},$$

$$(3.113)$$

$$\frac{\delta_{\sigma_{k_{1}},-\sigma_{k_{2}}}\sigma_{k_{1}}\delta_{k_{3}k_{1}}}{n(\varepsilon_{k_{4}},T)-n(\varepsilon_{k_{3}},T)}\sum_{k_{6},m} \left\{ g_{k_{2}k_{6}}^{m*} g_{k_{4}k_{6}}^{m} [N(\omega_{m},T)+1-n(\varepsilon_{k_{6}},T)] \\ \frac{n(\omega_{m}+\varepsilon_{k_{6}},T)-n(\varepsilon_{k_{3}},T)}{i\omega_{n}+\omega_{m}-\varepsilon_{k_{3}k_{6}}} + g_{k_{6}k_{2}}^{m*} g_{k_{6}k_{4}}^{m*} [N(\omega_{m},T)+n(\varepsilon_{k_{6}},T)] \\ \frac{n(\varepsilon_{k_{6}}-\omega_{m},T)-n(\varepsilon_{k_{3}},T)}{i\omega_{n}-\omega_{m}-\varepsilon_{k_{3}k_{6}}} \right\},$$

$$(3.113)$$

$$\xi_{k_1k_2,k_3k_4}^{m\eta_m} = \delta_{k_1k_3}$$

$$g_{k_1k_2}^{m(\sigma_k)} = \delta_{\sigma_k,+1} g_{k_1k_2}^m + \delta_{\sigma_k,-1} g_{k_2k_1}^{m*}$$

 $g_{k_4k_2}^{m(\eta_m)} - g_{k_1k_2}^{m(\eta_m)} \delta_{k_4k_2}$

