Dipole excitations in nuclei: recent Configuration Interaction studies

Kamila Sieja

Institut Pluridisciplinaire Hubert Curien, Strasbourg

ECT*, 24-28.10.2022

- Motivation: Brink-Axel hypothesis
- Calculations of E1/M1 photoabsorption and photoemission SF in CI framework
- Low-energy strength in neon isotopes
- Influence on neutron-capture rates

Pygmy-dipole resonance: motivation

 the pygmy part impacts astrophysical reaction rates and resulting abundances in the r-process

S. Goriely, E. Khan and M. Samyn, Nucl. Phys. A739

(2004) 331

E. Litvinova et al., Nucl. Phys. A823 (2009) 26

- in stellar environements finite temperatures

 (1) reactions on excited states
 (2) Brink-Axel hypothesis
 becomes crucial
- Brink-Axel hypothesis
 (1) the photoabsorption cross section is independent on the initial state
 (2) photoabsorption SF = photoemission SF

E1 in ²⁶Ne: experimental evidence of pygmy

ergy (spin)

QRPA main contribution: 70% of $v s_{1/2}^{-1} p_{3/2}^{1}$

CI calculations in psdpf space

$$Q_{\mu}^{\lambda=1} = \frac{Z}{A} e \sum_{k=1}^{N} r_k Y_{1\mu}(r_k) - \frac{N}{A} e \sum_{k=1}^{Z} r_k Y_{1\mu}(r_k)$$

- full sd diagonalization + full 1hω(+3hω) excitations
- Exact removal of COM components
- Interaction: PSDPF

M. Bouhelal, F. Haas, E. Caurier, F. Nowacki and A. Bouldjedri, Nucl. Phys. A864 (2011) 113.

- 300 Lanczos iterations to get distributions
- Lorentzian smoothing with $\Gamma/2 = 500 \text{keV}$

n

1hw (+3hw)

p

CI calculations in psdpf space

1 h ω : sufficient for low-energy strength 3 h ω : correlations suppress E1 strength

Lanczos strength function method

$$S = |\hat{O}|\psi_i\rangle| = \sqrt{\langle \psi_i|\hat{O}^2|\psi_i\rangle}$$

The operator \hat{O} does not commute with H and $\hat{O}|\psi_i\rangle$ is not necessarily the eigenstate of the Hamiltonian. But it can be developed in the basis of energy eigenstates:

$$\hat{O}|\psi_i\rangle = \sum_f S(E_f)|E_f\rangle,$$

where $S(E_f) = \langle E_f | \hat{O} | \psi_i \rangle$ is called strength function.

If we carry Lanczos procedure using $|O\rangle = \hat{O}|\psi_i\rangle$ as initial vector then *H* is diagonalized to obtain eigenvalues $|E_f\rangle$ and after N iterations we have the also the strength function: $\tilde{S}(E_f) = \langle E_f | \hat{O} | \psi_i \rangle$.

How good is the strength function \tilde{S} after N iterations compared to the exact one S?

Lanczos strength function method

$$S = |\hat{O}|\psi_i\rangle| = \sqrt{\langle \psi_i|\hat{O}^2|\psi_i\rangle}$$

The operator \hat{O} does not commute with H and $\hat{O}|\psi_i\rangle$ is not necessarily the eigenstate of the Hamiltonian. But it can be developed in the basis of energy eigenstates:

$$\hat{O}|\psi_i\rangle = \sum_f S(E_f)|E_f\rangle,$$

where $S(E_f) = \langle E_f | \hat{O} | \psi_i \rangle$ is called strength function.

If we carry Lanczos procedure using $|O\rangle = \hat{O}|\psi_i\rangle$ as initial vector then *H* is diagonalized to obtain eigenvalues $|E_f\rangle$ and after N iterations we have the also the strength function: $\tilde{S}(E_f) = \langle E_f | O \rangle = \langle E_f | \hat{O} | \psi_i \rangle$.

How good is the strength function \tilde{S} after N iterations compared to the exact one S?

CI calculations in psdpf space: COM treatment

$$H = \sum_{i} \varepsilon_{i} c_{i}^{\dagger} c_{i} + \sum_{i,j,k,l} V_{ijkl} c_{i}^{\dagger} c_{j}^{\dagger} c_{l} c_{k} + \beta_{c.m.} H_{c.m.}$$

- 100 Lanczos iterations
- keep all states and compute $\langle \Phi_i | H_{c.m.} | \Phi_i \rangle$
- SF are obtained with LSF method with 300 iterations
- keep states with the largest overlap with the SR state

• compute $\langle \Phi_i | H_{c.m.} | \Phi_i \rangle$ for the states kept

Example: ²²Ne $\langle \Phi_i | H_{c.m.} | \Phi_i \rangle \leq 5 \cdot 10^{-4} \text{MeV}$ for all i

Spuriosity \leq 0.002% for the largest peaks

No spuriosity below $E_{exc} = 50 \text{MeV}$

E1 strength in even neon isotopes

E1 strength at low energy: example of ²⁶Ne

E _{exc} (MeV)	Ν	$B(E1; 0^+_{g.s.} ightarrow 1^-)(e^2 fm^2)$	% of v 1p1h	% of π 1p1h	component
4.64	1	0.041	94	6	$27\%v2s_{1/2}^1p_{3/2}^1$
7.13	3	0.015	63	37	\leq 10%
7.43	4	0.026	63	37	\leq 10%
7.97	5	0.07	44	56	$10\%\pi1p_{1/2}^{-1}1d_{3/2}^{1}$
8.38	7	0.09	90	10	≤ 10%
8.74	9	0.075	82	18	\leq 10%
9.46	13	0.06	68	32	\leq 10%
10.76	21	0.16	61	39	\leq 10%

QRPA first peak: 10.7MeV 67.6% $v2s_{1/2}^1p_{3/2}^1$

QRPA-D1M SR = $5.7e^{2} fm^{2}$ CI SR = $7.4e^{2} fm^{2}$

E1 strength in odd neon isotopes

E1 and M1 sum rules dependence on initial state

C. Johnson, Phys. Lett. 750 (2015) 72

- 3hω correlations reduce E1 sum rule up to 15%
- E1 sum rule stays constant within energy/spin range
- good agreement with previous SM studies

E1 and M1 sum rules dependence on initial state

C. Johnson, Phys. Lett. 750 (2015) 72

- no distinct trend with correlations
- good agreement with previous SM studies

J_i^{π}	first peak	centroid	width	$\Sigma B(E1)$	$\sum (E_{\gamma} \cdot B(E1))$
	(MeV)	(MeV)	(MeV)	(<i>e</i> ² fm²)	(MeV <i>e</i> ² <i>fm</i> ²)
²² Ne					
01+	6.55	21.04	6.20	0.08	0.65
0^{+}_{2}	0.46	20.42	6.07	0.22	1.67
0^{\mp}_{3}	0.35	20.11	6.25	0.26	2.07
04	0.34	20.32	6.06	0.28	2.08
0_{5}^{+}	0.23	19.89	5.95	0.24	1.82

HF minimum with USDB: $\beta = 0.49$ QRPA prediction in ²²Ne:

J_i^{π}	first peak	centroid	width	$\sum B(E1)$	$\Sigma(E_{\gamma} \cdot B(E1))$
	(MeV)	(MeV)	(MeV)	$(e^2 fm^2)$	(MeV <i>e</i> ² <i>fm</i> ²)
²⁶ Ne					
01+	4.64	18.96	7.13	0.48	3.96
2 ⁺	2.59	18.82	6.71	0.45	3.12
4 ⁺	1.67	18.83	6.72	0.48	3.71
02	0.35	19.17	6.79	0.42	3.06
0^{\mp}_{3}	1.61	18.66	6.48	0.43	3.35
04	0.53	18.64	6.55	0.42	2.96

BA hypothesis holds for GDR

E. Litvinova and N. Belov, Phys. Rev. C88 (2013) 031302

J^{π}	first peak (MeV)	EWSR (0-10MeV)
01+	4.64	3.96
0^{+}_{2}	0.35	3.06
0^{\mp}_{3}	1.61	3.35
04	0.53	2.96

- Different behavior at low energy in SM and TCQRPA
- Benchmark of many-body theories needed
- Larger deviations for g.s. strength function

J_i^{π}	first peak	centroid	width	$\sum B(E1)$	$\Sigma(E_{\gamma} \cdot B(E1))$
	(MeV)	(MeV)	(MeV)	(<i>e² fm²</i>)	(MeV <i>e² fm²</i>)
²⁷ Ne					
3/2+	1.26	18.32	6.80	0.55	4.28
$1/2^+_1$	0.27	18.68	6.60	0.41	3.15
$5/2_{1}^{+}$	0.74	18.30	6.40	0.52	3.95
$1/2^{+}_{2}$	1.04	18.22	6.64	0.56	4.26
1/2 7	0.49	17.97	6.27	0.54	3.88

Same behavior as in even-even

Pygmy peak clearly visible for the g.s. distribution only

E1 strength at low-energy

Redistribution of the low-energy photoabsorption strength dependent on initial state structure

E1 strength at low energy: ground vs excited state

$$E_{exc}(0_2^+)=4.29 \text{MeV}$$

 $E_{exc}(1_1^-)=4.64 \text{MeV}$

Many interfering contributions $1 d_{3/2} \rightarrow 1 fp$ only in excited state

E1 strength at low energy: ground vs excited state

 $E_{exc}(0^+_2)=6.12 \text{MeV}$ $E_{exc}(1^-_1)=4.28 \text{MeV}$

Enhanced mixing in the initial state

=> less transition strength to lowest states

Should be observed in any region of the nuclear chart (?)

Impact on neutron capture

Calculating neutron-capture cross sections with microscopic (QRPA) photoabsorption strength functions requires that

$$f_{M1/E1}(E_{\gamma}) = 16\pi/9(\hbar c)^3 S_{M1/E1}(E_{\gamma}) S_{M1/E1} = \langle B(M1/E1) \rangle \rho_i(E_i)$$

K. Sieja, PRL119 (2017) 052502

S. Goriely, S. Hilaire, S. Péru and K. Sieja, PRC98 (2018) 014327

To describe radiative decay, phenomenological low-energy corrections fitted to reproduce SM trends and data are added to microscopic QRPA-Gogny *M*1 and *E*1 PSF:

$$\begin{aligned} f_{E1}(\varepsilon_{\gamma}) &= f_{E1}^{QRPA}(\varepsilon_{\gamma}) + f_0 U / [1 + e^{(\varepsilon_{\gamma} - \varepsilon_0)}] (1) \\ f_{M1}(\varepsilon_{\gamma}) &= f_{M1}^{QRPA}(\varepsilon_{\gamma}) + C e^{-\eta \varepsilon_{\gamma}} \end{aligned}$$

• upper limit (0lim⁺)

$$f_0 = 5 \cdot 10^{-10} \text{MeV}^{-4}$$
, $\varepsilon_0 = 5 \text{MeV}$,
 $C = 3 \cdot 10^{-8} \text{MeV}^{-3}$, $\eta = 0.8 \text{MeV}^{-1}$

• lower limit (0lim⁻)
$$f_0 = 10^{-10} \text{MeV}^{-4}, \epsilon_0 = 3 \text{MeV}, C = 10^{-8} \text{MeV}^{-3}, \eta = 0.8 \text{MeV}^{-1}$$

Impact on radiative neutron capture

QRPA[31]: QRPA+empirical corrections+lowenergy limits (TALYS)

- Radiative decay SF larger than photoabsorption SF
- Effect of higher level density around neutron threshold
- Empirically-corrected QRPA too small in this nucleus

Impact on radiative neutron capture

QRPA[31]: QRPA+empirical corrections+lowenergy limits (TALYS) QRPA[32]: "raw" QRPA from Martini et al.

- PDR has no influence on neutron-capture cross section
- Photoabsorption SF on excited state is a good approximation to radiative decay SF
- Reasonable agreement between CI and empirically-corrected QRPA

Summary

- The Brink-Axel hypothesis holds for E1 sum rules, giant resonances but not in the low-energy region
- Deviation from BA hypothesis for M1 transitions observed for sum rules and PSF
- The PDR seems to be a property of the ground state distribution only (?!)
- Photoabsorption≠phoetoemission : the low-energy effects are reasonably taken into account by empirical treatment (TALYS) but better theory still needed
- The impact on neutron-capture cross section is sizeable

SM studies are continued to benchmark QRPA models of decay strength functions

<u>Thanks to:</u> IN2P3/CNRS IEA project "Radiative Neutron Capture"

My special gratitude goes to the late Etienne Caurier, the author of the ANTOINE code and many other tools used in this study.