Isovector Giant Dipole Resonance: sum rules

Xavier Roca-Maza

Università degli Studi di Milano INFN sezione di Milano

Giant and soft modes of excitation in nuclear structure and astrophysics ECT*, Trento, Italy October 24th-28th

Table of contents:

- Inverse energy weighted sum rule (m₋₁) or polarizability
 (α): EoS and Δr_{np}
- Energy weighted sum rule (**m**₁): <u>IS versus IV contributions</u>
- Non-energy weighted sum rule (m₀): ?

Figure from (http://www.nupecc.org/pub/np_light_2015.pdf):

This brochure "Light to Reveal the Heart of Matter" is one of the contributions being made by NuPECC, the Nuclear Physics European Collaboration Committee (www.NuPECC.org), to the International Year of Light 2015 (www.light2015.org).

Dielectric theorem:

Inverse Energy Weighted Sum Rule m-1 (polarizability)

Ground state |0> **perturbed** by an **external field** λF ($\lambda \rightarrow 0$) so that perturbation theory holds \rightarrow The **expectation value** of the **Hamiltonian** <H> and of the **operator** <F> can be written:

$$\delta\langle \mathcal{H} \rangle = \lambda^2 \sum_{\nu \neq 0} \frac{|\langle \nu | F | \mathbf{0} \rangle|^2}{E_{\nu} - E_0} + \mathcal{O}(\lambda^3) = \lambda^2 m_{-1} + \mathcal{O}(\lambda^3)$$

$$\delta \langle F \rangle = -2\lambda \sum_{\nu \neq 0} \frac{|\langle \nu | F | 0 \rangle|^2}{E_{\nu} - E_0} + \mathcal{O}(\lambda^2) = -2\lambda m_{-1} + \mathcal{O}(\lambda^2)$$

$$m_{-1} = rac{1}{2} rac{\partial^2 \langle \mathcal{H}
angle}{\partial \lambda^2} \Big|_{\lambda=0} = -rac{1}{2} rac{\partial \langle F
angle}{\partial \lambda} \Big|_{\lambda=0} \longrightarrow rac{1}{m_{-1}} = 2 rac{\partial^2 \langle \mathcal{H}
angle}{\partial \langle F
angle^2}$$

Dipole polarizability, J and \Delta r_{np}:=r_n-r_p

The dipole **polarizability** measures the **tendency** of the nuclear **charge** distribution to be **distorted**.

From a macroscopic point of view $\alpha \sim (\text{electric dipole moment})/(\text{Eexternal})$

→ For guidance, using the **dielectric theorem**, the polarizability can be calculated assuming the Droplet model:

 $lpha_D=rac{8\pi e^2}{0}m_{-1}(E1)$

Meyer et al. NPA385 (1982) 269-284

$$\alpha_{D} \approx \frac{\pi e^{2}}{54} \frac{\langle r^{2} \rangle}{O} A \left(1 + \frac{5}{2} \frac{\Delta r_{np} - \Delta r_{np}^{\text{surf}} - \Delta r_{np}^{\text{Coul}}}{\langle r^{2} \rangle^{1/2} (I - I_{\text{Coul}})} \right)$$

Polarizability increases with the mass (for the dipole $A^{5/3}$, for the <u>quadrupole $A^{7/3}$ </u> and so on ...) and it sets a relation between the EoS parameters J and L

Electric dipole polarizability in 208Pb: Insights from the droplet model - X. Roca-Maza, M. Brenna, G. Colò, M. Centelles, X. Viñas, B. K. Agrawal, N. Paar, D. Vretenar, and J. Piekarewicz

Phys. Rev. C 88, 024316 (2013)

Neutron skin thickness (Δr_{np} := r_n - r_p) and neutron pressure

For a fixed (N-Z)/A, one must expect that the larger the pressure felt by nucleons, the larger the skin

$$egin{aligned} P &= -rac{\partial E}{\partial V} \Big|_A =
ho^2 rac{\partial e(
ho,\delta)}{\partial
ho} \Big|_\delta = \ &
ho^2 rac{\partial}{\partial
ho} ig[e(
ho,0) + S(
ho) \delta^2 ig] = \ &
ho^2 \delta^2 rac{\partial S(
ho)}{\partial
ho} = rac{1}{3}
ho \delta^2 D \end{aligned}$$

→ From the Droplet Model: $\Delta r_{np} \approx \frac{1}{12} \frac{N-Z}{A} \frac{R}{J}L$

The nuclear droplet model for arbitrary shapes

W.D Myers, W.J Swiate

Annals of Physics Volume 84, Issues 1–2, 15 May 1974, Pages 186-210

Neutron Skin of 208Pb, Nuclear Symmetry Energy, and the Parity Radius Experiment X. Roca-Maza, M. Centelles, X. Viñas, and M. Warda Phys. Rev. Lett. 106, 252501 (2011)

Dipole polarizability: How good it is the Droplet Model for α_D?

Fit to experimental data provides J~34 MeV and L~58 MeV.

Dipole polarizability, J and L

Determination of the J vs L relation from experimental data according to EDFs

one can qualitatively understand the result!!

X. Roca-Maza, M. Brenna, G. Colò, M. Centelles, X. Viñas, B. K. Agrawal, N. Paar, D. Vretenar, and J. Piekarewicz Phys. Rev. C 88, 024316 – Published 20 August 2013

X. Roca-Maza, X. Viñas, M. Centelles, B. K. Agrawal, G. Colò, N. Paar, J. Piekarewicz, and D. Vretenar Phys. Rev. C **92**, 064304 – Published 8 December 2015 $S(\langle
ho
anglepprox 0.08~{
m fm}^{-3})pprox 25~{
m MeV}$

Dipole polarizability, J and L

Alternatively: Selection of EDFs (red circles) compatible with experimental data

Selection compatible EDFs and correlation analysis (previous slides) provides comparable estimates for the neutron skin thickness.

	From sele	cted models	From α₀ J vs Δrոր
Nucleus	Δr_{np} (a)	Δr_{np} (b)	Δr_{np} (c)
⁶⁸ Ni ¹²⁰ Sn ²⁰⁸ Pb	0.15–0.19 0.12–0.16 0.13–0.19	$\begin{array}{c} 0.18 \pm 0.01 \\ 0.14 \pm 0.02 \\ 0.16 \pm 0.02 \end{array}$	$\begin{array}{c} 0.16 \pm 0.04 \\ 0.12 \pm 0.04 \\ 0.16 \pm 0.03 \end{array}$

Dipole polarizability: do we understand it?

J. Birkhan, M. Miorelli, S. Bacca, S. Bassauer, C. A. Bertulani, G. Hagen, H. Matsubara, P. von Neumann-Cosel, T. Papenbrock, N. Pietralla, V. Yu. Ponomarev, A. Richter, A. Schwenk, and A. Tamii

Phys. Rev. Lett. 118, 252501 - Published 23 June 2017

Trend with N?

20.5

20.0

19.5

From proton scattering at

forward angles

10

9

8

 α_D (fm³)

Physics Letters B 810 (2020) 135804

Dipole polarizability: systematics with A do we understand it?

Energy weighted sum rule and α_D:

Energy weighted sum rule: Is the dipole operator suitable to excite a skin mode?

The m₁:

$$m_1 = \sum_{\nu} (E_{\nu} - E_0) |\langle \nu | F | 0 \rangle|^2 = \langle 0 | F^{\dagger}[\mathcal{H}, F] | 0 \rangle$$

The dipole operator

$$\hat{F}_{1M} = \frac{eN}{A} \sum_{i=1}^{Z} r_i Y_{1M}(\hat{r}_i) - \frac{eZ}{A} \sum_{i=1}^{N} r_i Y_{1M}(\hat{r}_i);$$

Skyrme EDF

12

$$\begin{split} m_1 &= \frac{9}{4\pi} \frac{\hbar^2}{2m} \frac{NZ}{A} e^2 \left(1 + \kappa\right) \\ \kappa &\equiv \frac{2m}{\hbar^2} \frac{A}{16NZ} \left[t_1 \left(1 + \frac{x_1}{2}\right) + t_2 \left(1 + \frac{x_2}{2}\right) \right] \\ &\times \int d^3 r \rho_{\perp}^2 \left(1 - \beta^2\right) \end{split}$$

Main contribution (~99%) does not depend on the <u>neutron to</u> proton density differences!!

<u>ρ_n and ρ_p differences:</u>

→ decrease m₁

→ skin mode does not provide an explanation for the experimental pygmy EWSR from OSLO and LAND while it would be compatible with NRF-LEV

Low-energy isovector dipole response: RPA

X. Roca-Maza, G. Pozzi, M. Brenna, K. Mizuyama, and G. Colò Phys. Rev. C 85, 024601 – Published 3 February 2012

13

Physics of Atomic Nuclei 79, 842–850 (2016) Cite this article

Non-energy weighted sum rule work in progress

Model dependence of mo

14

How to relate mo with ground state observables? Can be used for a better understanding of the isovector dipole response?

Non-energy weighted sum rule work in progress

Suggested model dependence of m₀ (?)

15

J. S. Levinger and D. C. Kent Phys. Rev. **95**, 418 – Published 15 July 1954

Conclusions

- → The inverse energy weighted sum rule or polarizability inform us about the isovector properties in EDFs
- → The energy weighted sum rule does not provide clear information on the isovector properties of the Skyrme EDFs. Same for other models?
- → The non-energy weighted sum rule depends on the neutron to proton CM difference. Can we gain information on the isovector channel from this sum rule?
- → ... and from the last two: what about the centroid energy (m_1/m_0) ?

16

Collaborators

- → Gianluca **Colò** (University of Milan)
- → Hiroyuki **Sagawa** (University of Aizu & RIKEN)
- → Shihang **Shen** (Forschungszentrum Jülich)
- → Xavier Vinyes & Mario Centelles (University of Barcelona)
- → Jorge **Piekarewicz** (Florida State University)
- → Nils **Paar** & Dario **Vretenar** (University of Zagreb)
- → Bijay K. Agrawal (Saha Institute of Nuclear Physics)
- → P.-G. **Reinhard** (University of Erlangen-Nürnberg)
- → Yifei Niu (Lanzhou University)
- → Witold **Nazarewicz** (FRIB and Michigan State University)
- → Stephane **Goriely** (Université Libre de Bruxelles)
- → Sophie **Péru** (Université Paris-Saclay, CEA)

Experimental techniques: PYGMY

D. Savran et al. / Progress in Particle and Nuclear Physics 70 (2013) 210-245

Table 2

Main strengths and weaknesses of the different experimental tools. The compared methods are: (a) Discrete (γ, γ') level analysis; (b) Continuous (γ, γ') analysis; (c) Quasi-mono-energetic photons; (d) Coulomb excitation of stable targets; (e) Coulomb excitation in inverse kinematics; (f) $(\alpha, \alpha'\gamma)$ and $(p, p'\gamma)$ experiments; (g) Oslo method. A "+" means a peculiar strength of the method, a "-" a weakness and a "o" stands for an average rating. See detailed discussion in the text.

^a Concerning the beam energy resolution. The γ -decay spectroscopy is equivalent to (a).

NFR-LEV

OSLO

Summary from Progress in Particle and Nuclear Physics 101 (2018) 96-176

EoS par.		Observable	Range	Comments
$ ho_0$		$\langle r_{\rm ch}^2 \rangle^{1/2}$	0.154–0.159	Most accurate EDFs on $M(N, Z)$ and $\langle r_{ch}^2 \rangle^{1/2}$ (see Section 5)
e ₀		M(N,Z)	-16.2 to -15.6	Most accurate EDFs on $M(N, Z)$ and $\langle r_{ch}^2 \rangle^{1/2}$ (see Section 5)
K ₀		M(N,Z)	220-245	Most accurate EDFs on $M(N, Z)$ and $\langle r_{ch}^2 \rangle^{1/2}$ (see Section 5)
		ISGMR	220-260	From EDFs in closed shell nuclei [116]
		ISGMR	250-315	Blaizot's formula [Eq. (32)] [51]
		ISGMR	~200	EDF describing also open shell nuclei [118]
J _		M(N,Z)	29-35.6	Most accurate EDFs on $M(N, Z)$ and $(r_{ch}^2)^{1/2}$ (see Section 5)
0		IVGDR	~24.1(8) + L/8	From EDF analysis $[S(\rho = 0.1 \text{ fm}^{-3}) = 24.1(8) \text{ MeV}][273]$
L.	\rightarrow	PDS	30.2-33.8	From EDF analysis [370]
a	\rightarrow	PDS	31.0-33.6	From EDF analysis [371]
3		α _D	24.5(8) + 0.168(7)L	From EDF analysis ²⁰⁸ Pb [96]
		α _D	30-35	From EDF analysis [179]
0 0-		IAS and Δr_{np}	30.2-33.7	From EDF analysis [325]
Ψ io		AGDR	31.2-35.4	From EDF analysis [401]
2 2	\rightarrow	PDS, α_D , IVGQR, AGDR	32-33	From EDF analysis [508]
·- ŭ		compilation	29.0-32.7	[106]
		compilation	30.7-32.5	[107]
ē		compilation	28.5-34.9	[3]
		M(N,Z)	27-113	Most accurate EDFs on $M(N, Z)$ $\langle r_{ch}^2 \rangle^{1/2}$ (see Section 5)
2 2		ρ_n	40-110	proton- ²⁰⁸ Pb scattering [24]
<u> </u>		ρ_n	0-60	π photoproduction (²⁰⁸ Pb) [181]
		ρ_n	30-80	antiprotonic at. (EDF analysis) [102,509]
0 –		Pweak	>20	Parity violating scattering [27]
<u>v</u> a	\rightarrow	PDS	32-54	From EDF analysis [370]
7		PDS	49.1-80.5	From EDF analysis [371]
- + _		α _D	20-66	From EDF analysis [179]
		IVGQR and ISGQR	19–55	From EDF analysis [101]
2 3		ACDP	35-75	From EDF analysis [325]
50		AGDK	15.2-122.4	From EDF analysis [401]
>ā		rDS, <i>a</i> _D , IVGQK, AGDK	40.5 61.0	
Ó G		compilation	40.5-01.9	[107]
		compilation	30.6-86.8	[3]
				1-1

Summary

with qualitative indication of accuracy needed to describe experiment (note that absolute values might be subject to systematics)

- → $\rho_0 \in [0.154, 0.159]$ fm⁻³ → relative accuracy 2%
 - \rightarrow needed to describe experiment (Rch) $\leq 0.1\%$
- $\rightarrow e_0 \in [15.6, 16.2]$ MeV \rightarrow relative accuracy 4%
 - \rightarrow needed to describe experiment (B) $\leq 0.0001\%$
- \rightarrow K₀ \in [200,260] MeV \rightarrow relative accuracy 25%
 - \rightarrow needed to describe experiment (E_x^{GMR}) \leq 7%
- \rightarrow J \in [30,35] MeV \rightarrow relative accuracy 15%
 - → needed to describe experiment (α) ≤15%
- \rightarrow L \in [20,120] MeV \rightarrow relative accuracy 150%
 - → needed to describe experiment (α) ≤50%

 \rightarrow ...