Investigation of low-lying dipole strengths using real photon-scattering experiments

Miriam Müscher¹, Johann Isaak², Florian Kluwig¹, Deniz Savran³, Tanja Schüttler¹, Ronald Schwengner⁴, and Andreas Zilges¹

> ¹Institute for Nuclear Physics, University of Cologne, Germany ²Institute for Nuclear Physics, TU Darmstadt, Germany ³GSI, Darmstadt, Germany ⁴Helmholtz-Zentrum Dresden-Rossendorf, Germany

Giant and Soft Modes of Excitation in Nuclear Structure and Astrophysics

Supported by the BMBF (05P21PKEN9)

muescher@ikp.uni-koeln.de

Outline

- 1. introduction to (γ, γ') experiments
 - method
 - photon sources
- 2. analysis procedure (example ⁶⁴Ni)

- 3. systematic (γ , γ ') investigations
 - Z = 28 region
 - Z = 50 region
 - N = 82 region

4. summary

Outline

- 1. introduction to (γ, γ') experiments
 - method
 - photon sources
- 2. analysis procedure (example ⁶⁴Ni)

- 3. systematic (γ,γ[•]) investigations
 - Z = 28 region
 - Z = 50 region
 - N = 82 region

4. summary

Real photon-scattering experiments

Nuclear Resonance Fluorescence (NRF) method

model-independent extraction of:

- level energies
- spin quantum numbers
- parity quantum numbers
- level lifetimes and total decay widths
- γ -decay branching ratios Γ_f/Γ_0

Photon source: Bremsstrahlung

- mainly unpolarized, continuous photon flux
- multipole-order assignment

energy

Photon source: Bremsstrahlung

- mainly unpolarized, continuous photon flux
- multipole-order assignment
- simultaneous investigation of large energy range
- easy use of calibration standard for absolute photon-flux determination

energy

Photon source: Bremsstrahlung

- mainly unpolarized, continuous photon flux
- multipole-order assignment
- simultaneous investigation of large energy range
- easy use of calibration standard for absolute photon-flux determination
- DHIPS (TU Darmstadt, Germany)
- γELBE (Helmholtz-Zentrum Dresden-Rossendorf, Germany)

energy

• linearly-polarized photons

 \rightarrow distinction between electric and magnetic transitions

- linearly-polarized photons
 - \rightarrow distinction between electric and magnetic transitions
- quasi-monoenergetic γ-ray beam

 $\rightarrow \gamma$ -decay branching and unresolved strength

- linearly-polarized photons
 - \rightarrow distinction between electric and magnetic transitions
- quasi-monoenergetic γ-ray beam
 - $\rightarrow \gamma$ -decay branching and unresolved strength
- HIγS (Duke University, USA)

Outline

- 1. introduction to (γ, γ') experiments
 - method
 - photon sources
- 2. analysis procedure (example ⁶⁴Ni)

- 3. systematic (γ,γ[•]) investigations
 - Z = 28 region
 - Z = 50 region
 - N = 82 region

4. summary

Example: Bremsstrahlung experiments on ⁶⁴Ni

- Bremsstrahlung measurements @ γ ELBE [1] (HZDR, Germany) with E_{max}= 7.3 MeV (LE) and 9.4 MeV (HE)
- ¹¹B as calibration standard
- absolute transition strengths can be extracted

[1] R. Schwengner *et al.*, NIM A **555** (2005) 211

Example: Bremsstrahlung experiments on ⁶⁴Ni

- Bremsstrahlung measurements @ γ ELBE [1] (HZDR, Germany) with E_{max} = 7.3 MeV (LE) and 9.4 MeV (HE)
- ¹¹B as calibration standard
- absolute transition strengths can be extracted
- 4 Compton-shielded HPGe detectors @ θ = 90° and 127°
- multipole-order assignment

[1] R. Schwengner *et al.*, NIM A **555** (2005) 211

M. Müscher, AG Zilges, University of Cologne

Dipole-response investigations using (γ,γ') experiments 4

γELBE: Multipolarity determination

angular distributions of dipole and quadrupole excitations in eveneven nuclei $UPC_{01}(00^{\circ}) = 0 \rightarrow 1 \rightarrow 0$

Intensity ratios

Deexcitation spectra of bremsstrahlung experiment

¹¹B used as calibration standard

7

Deexcitation spectra of bremsstrahlung experiment

Intensity ratios between HE and LE measurement

decreasing feeding contribution with increasing energy

Absolute photon-flux determination @ γ ELBE

simulating photon-flux distribution

9

Absolute photon-flux determination @ γ ELBE

simulating photon-flux distribution

determining detection efficiencies

[1] I. Wiedenhöver, Dissertation (1994)

Absolute photon-flux determination @ γ ELBE

Laser-Compton Backscattering (LCB) experiment on ⁶⁴Ni

 LCB experiments @ HIγS (Duke University, USA) [1] using 26 beam energies between 4.3 and 10.0 MeV

[1] H.R. Weller et al., PPNP 62 (2009) 257

Laser-Compton Backscattering (LCB) experiment on ⁶⁴Ni

- LCB experiments @ $HI_{\gamma}S$ (Duke University, USA) [1] using 26 beam energies between 4.3 and 10.0 MeV

γ³ setup [2]:
 4 HPGe and 4 LaBr₃ detectors

- linearly-polarized photons
 - → parity quantum number assignment

[1] H.R. Weller *et al.*, PPNP **62** (2009) 257 [2] B. Löher *et al.*, NIM A **723** (2013) 136

64 Ni – HIγS spectra (E_{beam} ~ 8 MeV)

HlγS: Asymmetries

12

Combination of complementary experiments

Combination of complementary experiments

HI γ S: Elastic cross section $\sigma_{\gamma\gamma}$

$HI\gamma$ S: Absolute photon-flux determination

$HI\gamma$ S: Absolute photon-flux determination

$HI\gamma$ S: Absolute photon-flux determination

HI γ S: Inelastic cross section $\sigma_{\gamma\gamma'}$

inelastic cross section estimation using first excited states in ⁶⁴Ni

$$\sigma_{\gamma\gamma'} = \frac{A(2^{+})}{N_{T} \cdot \overline{W} \cdot \varepsilon(2^{+}) \cdot \int_{0}^{\infty} N_{\gamma} dE_{\gamma}} \xrightarrow{3648 \text{ keV}} \xrightarrow{1} 2^{+}_{3276 \text{ keV}} \xrightarrow{1} 2^{+}_{3277 \text{ keV}} \xrightarrow{1} 2^{+}_{327 \text{ keV}} \xrightarrow{1} 2^{+$$

HI γ S: Photoabsorption cross section $\sigma_{\gamma} = \sigma_{\gamma\gamma} + \sigma_{\gamma\gamma'}$

Outline

- 1. introduction to (γ, γ') experiments
 - method
 - photon sources
- 2. analysis procedure (example ⁶⁴Ni)

- 3. systematic (γ , γ ') investigations
 - Z = 28 region
 - Z = 50 region
 - N = 82 region

4. summary

Systematic (γ , γ) investigations

picture taken from nndc

Electric dipole response in the Z = 28 region

Fe54: R. Schwengner *et al.*, Phys. Rev. C 101 (2020) 064303
Fe56: T. Shizuma *et al.*, Phys. Rev. C 87 (2013) 024301
F. Bauwens *et al.*, Phys. Rev. C 62 (2000) 024302

Zn66: R. Schwengner *et al.*, Phys. Rev. C **103** (2021) 024312 **Ge74**: R. Massarczyk *et al.*, Phys. Rev. C **92** (2015) 044309 **Ge76**: R. Schwengner *et al.*, Phys. Rev. C **105** (2022) 024303 **Ge isotopes**: A. Jung *et al.*, Nucl. Phys. A **584** (1995) 103

Comparison Z = 28 isotopes

NRF experiments on ^{62}Ni already performed at HI γ S

state-to-state analysis:

increasing fragmentation of dipole strength with increasing neutron excess

F. Bauwens *et al.*, Phys. Rev. C 62 (2000) 024302
M. Scheck *et al.*, Phys. Rev. C 88 (2013) 044304
M. Scheck *et al.*, Phys. Rev. C 87 (2013) 051304R
T. Schüttler, private communication (2022)

Systematic (γ, γ°) investigations

picture taken from nndc

Electric dipole response in the Z = 50 region

Electric dipole response in the Z = 50 region

Case I: ¹²⁰Sn

deviations between (p,p') and (γ , γ ')-bremsstrahlung results above 6.5 MeV

M. Müscher et al., Phys. Rev. C 102 (2020) 014317

Case I: ¹²⁰Sn

deviations between (p,p') and (γ , γ ')-bremsstrahlung results above 6.5 MeV

 \rightarrow solved by taking unresolved transitions and inelastic decays into

Electric dipole response in the Z = 50 region

Case II: ¹²⁸Te

test of generalized Brink-Axel hypothesis:

(photoabsorption and photon-emission process can be treated equivalently)

 \rightarrow photon-strength function (PSF) for both processes same:

Case II: ¹²⁸Te

test of generalized Brink-Axel hypothesis:

(photoabsorption and photon-emission process can be treated equivalently)

 \rightarrow photon-strength function (PSF) for both processes same:

 linked to average γ-decay intensity to lower-lying excited levels (f^p)

J. Isaak et al., Phys. Lett. B 788 (2019) 225

Case II: 128Te

test of generalized Brink-Axel hypothesis:

(photoabsorption and photon-emission process can be treated equivalently)

 \rightarrow photon-strength function (PSF) for both processes same:

- 1. linked to average γ -decay intensity to lower-lying excited levels (f^p)
- 2. calculated from average photoabsorption cross section (f^σ)

J. Isaak *et al.,* Phys. Lett. B **788** (2019) 225

Systematic (γ , γ) investigations

picture taken from nndc

Electric dipole response in the N = 82 region

Xe124-136: H. Von Garrel *et al.*, Phys. Rev. C 73 (2006) 054315
Xe136: D. Savran *et al.*, Phys. Rev. Lett. 100 (2008) 232501
D. Savran *et al.*, Phys. Rev. C. 84 (2011) 2024326

Ba138: N. Pietralla et al., Phys. Rev. Lett. 88 (2001) 012502

Ce140: C. Romig *et al.*, Phys. Lett. B 744 (2015) 369
V. Derya *et al.*, Phys. Rev. C 93 (2016) 034311
B. Löher *et al.*, Phys. Lett. B 756 (2016) 72
Ce142: A. Gade et al., Phys. Rev. 69 (2004) 054321
M. Müscher, Master's thesis (2018)
J. Sieber, Bachelor's thesis (2019)

Nd142: C.T. Angell *et al.*, Phys. Rev. C **86** (2012) 051302R Nd144: F. Kluwig, Master's thesis (2022) Nd146: K. Meul, Bachelor's thesis (2021) Nd150: O. Papst, to be published Nd150/Sm150: J. Kleemann *et al.*, Phys. Rev. C **104** (2021) L061302

Sm148: T. C. Li *et al.*, Phys. Rev. C **71** (2005) 044318 **Sm152:** K. E. Ide *et al.*, Phys. Rev. C **103** (2021) 054302

Ba138 - Sm144: S. Volz *et al.*, Nucl. Phys. A **779** (2006) 1 A. Zilges *et al.*, PPNP **55** (2005) 408 Ba138/Ce140/Sm144: A Zilges *et al.*, Phys. Lett. B **542** (2002) 43

$^{142}Ce - B(E1)$ strength

M. Müscher, to be published

¹⁴²Ce – photoabsorption cross section

elastic cross section σ_{vv} :

M. Müscher, to be published

¹⁴²Ce – photoabsorption cross section

elastic cross section σ_{vv} :

M. Müscher, to be published

Nd-isotopic chain – B(*E1*) strengths

Nd142: S. Volz *et al.*, Nucl. Phys. A **779** (2006) 1 Nd144: F. Kluwig, Master's thesis, University of Cologne (2022) Nd146: K. Meul, Bachelor's thesis, University of Cologne (2021)

M. Müscher, AG Zilges, University of Cologne Dipole-response investigations using (γ, γ') experiments

30

Nd-isotopic chain – B(*E1*) strengths

fragmentation increases with increasing neutron excess

unresolved strength and γ-decay branchings not included

¹⁴⁶Nd just investigated up to 6.5 MeV due to high fragmentation

Nd142: S. Volz *et al.*, Nucl. Phys. A **779** (2006) 1 Nd144: F. Kluwig, Master's thesis, University of Cologne (2022) Nd146: K. Meul, Bachelor's thesis, University of Cologne (2021)

Summary

- complementary NRF experiments
 - bremsstrahlung
 - Laser-Compton-Backscattering

Summary

- complementary NRF experiments
 - bremsstrahlung
 - Laser-Compton-Backscattering
- (γ,γ') data well suited to investigate different topics of nuclear physics

Summary

- complementary NRF experiments
 - bremsstrahlung
 - Laser-Compton-Backscattering
- (γ,γ') data well suited to investigate different topics of nuclear physics
- systematic NRF studies in isotopic and isotonic chains to investigate low-lying dipole response
 - Z = 28
 - Z = 50
 - N = 82

31