Diverging Exchange Force and Form of the Exact Density Matrix Functional

Christian Schilling

Arnold Sommerfeld Centre for Theoretical Physics, LMU Munich

For translationally invariant one-band lattice models, we exploit the *ab initio* knowledge of the natural orbitals to simplify reduced density matrix functional theory (RDMFT). Striking underlying features are discovered: First, within each symmetry sector, the interaction functional \mathcal{F} depends only on the natural occupation numbers \boldsymbol{n} . The respective sets \mathcal{P}_N^1 and \mathcal{E}_N^1 of pure and ensemble *N*-representable one-matrices coincide. Second, and most importantly, the exact functional is strongly shaped by the geometry of the polytope $\mathcal{E}_N^1 \equiv \mathcal{P}_N^1$, described by linear constraints $D^{(j)}(\boldsymbol{n}) \geq 0$. For smaller systems, it follows as $\mathcal{F}[\boldsymbol{n}] = \sum_{i,i'} \overline{V}_{i,i'} \sqrt{D^{(i)}(\boldsymbol{n}) D^{(i')}(\boldsymbol{n})}$. This generalizes to systems of arbitrary size by replacing each $D^{(i)}$ by a linear combination of $\{D^{(j)}(\boldsymbol{n})\}$ and adding a non-analytical term involving the interaction \hat{V} . Third, the gradient $d\mathcal{F}/d\boldsymbol{n}$ is shown to diverge on the boundary $\partial \mathcal{E}_N^1$, suggesting that the fermionic exchange symmetry manifests itself within RDMFT in the form of an "exchange force". All findings hold for systems with non-fixed particle number as well and \hat{V} can be *any p*-particle interaction. As an illustration, we derive the *exact* functional for the Hubbard square.