Efficient Bosonic and Fermionic Sinkhorn Algorithms for Non-Interacting Ensembles in One-body Reduced Density Matrix Functional Theory in the Canonical Ensemble

Derk P. Kooi
Theoretical Chemistry, VU University Amsterdam, e-mail: derkkooi@gmail.com
Manuscript arXiv:2205.15058 [chem-phys] (under review)
Code: https://www.github.com/DerkKooi/bfsinkhorn
See also Sarina Sutter her talk and arXiv:2209.11663 by S.M. Sutter and K.J.H. Giesbertz

VRIJE
UNIVERSITEIT
AMSTERDAM

- Typical applications of DFT and 1-RDMFT have been at zero-temperature
- Typical applications of DFT and 1-RDMFT have been at zero-temperature
- Finite temperature 1-RDMFT is especially interesting, fractional occupations already present at zero temperature
- Typical applications of DFT and 1-RDMFT have been at zero-temperature
- Finite temperature 1-RDMFT is especially interesting, fractional occupations already present at zero temperature
- Previous work: Grand Canonical 1-RDMFT[1-3]

1. T. Baldsiefen, A. Cangi and E.K.U. Gross. Phys. Rev. A. 92, 052514 (2015), DOI: $10.1103 /$ physreva. 92.052514
2. T. Baldsiefen and E.K.U. Gross. Comp. and Theo. Chem. 1003, 114 (2013), DOI: 10.1016/j.comptc.2012.09.001
3. K.J.H. Giesbertz and M. Ruggenthaler. Physics Reports 806, 1-47 (2019), DOI: 10.1016/j.physrep.2019.01.010

- Typical applications of DFT and 1-RDMFT have been at zero-temperature
- Finite temperature 1-RDMFT is especially interesting, fractional occupations already present at zero temperature
- Previous work: Grand Canonical 1-RDMFT[1-3]
- Canonical ensemble is more complicated, in the thermodynamic limit, choice of ensemble is irrelevant

1. T. Baldsiefen, A. Cangi and E.K.U. Gross. Phys. Rev. A. 92, 052514 (2015), DOI: 10.1103/physreva.92.052514
2. T. Baldsiefen and E.K.U. Gross. Comp. and Theo. Chem. 1003, 114 (2013), DOI: 10.1016/j.comptc.2012.09.001
3. K.J.H. Giesbertz and M. Ruggenthaler. Physics Reports 806, 1-47 (2019), DOI: 10.1016/i.physrep.2019.01.010

- Typical applications of DFT and 1-RDMFT have been at zero-temperature
- Finite temperature 1-RDMFT is especially interesting, fractional occupations already present at zero temperature
- Previous work: Grand Canonical 1-RDMFT[1-3]
- Canonical ensemble is more complicated, in the thermodynamic limit, choice of ensemble is irrelevant
- However, for low temperatures + finite systems: non-negligible effects

1. T. Baldsiefen, A. Cangi and E.K.U. Gross. Phys. Rev. A. 92, 052514 (2015), DOI: $10.1103 /$ physreva. 92.052514
2. T. Baldsiefen and E.K.U. Gross. Comp. and Theo. Chem. 1003, 114 (2013), DOI: 10.1016/j.comptc.2012.09.001
3. K.J.H. Giesbertz and M. Ruggenthaler. Physics Reports 806, 1-47 (2019), DOI: 10.1016/i.physrep.2019.01.010

- Typical applications of DFT and 1-RDMFT have been at zero-temperature
- Finite temperature 1-RDMFT is especially interesting, fractional occupations already present at zero temperature
- Previous work: Grand Canonical 1-RDMFT[1-3]
- Canonical ensemble is more complicated, in the thermodynamic limit, choice of ensemble is irrelevant
- However, for low temperatures + finite systems: non-negligible effects
- When using a (non-interacting) reference system: canonical reference may be "closer" to interacting system than grand canonical reference

1. T. Baldsiefen, A. Cangi and E.K.U. Gross. Phys. Rev. A. 92, 052514 (2015), DOI: 10.1103/physreva.92.052514
2. T. Baldsiefen and E.K.U. Gross. Comp. and Theo. Chem. 1003, 114 (2013), DOI: 10.1016/j.comptc.2012.09.001
3. K.J.H. Giesbertz and M. Ruggenthaler. Physics Reports 806, 1-47 (2019), DOI: 10.1016/i.physrep.2019.01.010

- Finite temperature:
- Finite temperature:
- Warm Dense Matter
- Finite temperature:
- Warm Dense Matter
- Zero temperature (e.g. electrons):
- Finite temperature:
- Warm Dense Matter
- Zero temperature (e.g. electrons):
- Use non-interacting ensemble functionals as "base functional"
- Finite temperature:
- Warm Dense Matter
- Zero temperature (e.g. electrons):
- Use non-interacting ensemble functionals as "base functional"
- Use (canonical) entropy to model correlation energy ${ }^{[4]}$

VUK $=$

- The theoretical foundation of Canonical 1-RDMFT has been laid by Sutter and Giesbertz ${ }^{[5]}$, in particular: unique v-representability
5.S.M. Sutter and K.J.H. Giesbertz. arXiv:2209.11663 [math-ph]
- The theoretical foundation of Canonical 1-RDMFT has been laid by Sutter and Giesbertz[5], in particular: unique v-representability
- In this talk: several steps in establishing practical Canonical 1-RDMFT by introducing a non-interacting reference system
- The theoretical foundation of Canonical 1-RDMFT has been laid by Sutter and Giesbertz ${ }^{[5]}$, in particular: unique v-representability
- In this talk: several steps in establishing practical Canonical 1-RDMFT by introducing a non-interacting reference system
- Focus: methodology, establishing the theory, required algorithms and their implementation in python with jax
- The theoretical foundation of Canonical 1-RDMFT has been laid by Sutter and Giesbertz ${ }^{[5]}$, in particular: unique v-representability
- In this talk: several steps in establishing practical Canonical 1-RDMFT by introducing a non-interacting reference system
- Focus: methodology, establishing the theory, required algorithms and their implementation in python with jax
- The bfsinkhorn package is open source and all figures can be generated with supplied notebooks
5.S.M. Sutter and K.J.H. Giesbertz. arXiv:2209.11663 [math-ph]
- The theoretical foundation of Canonical 1-RDMFT has been laid by Sutter and Giesbertz ${ }^{[5]}$, in particular: unique v-representability
- In this talk: several steps in establishing practical Canonical 1-RDMFT by introducing a non-interacting reference system
- Focus: methodology, establishing the theory, required algorithms and their implementation in python with jax
- The bfsinkhorn package is open source and all figures can be generated with supplied notebooks
- Preliminary investigation of formalism for electrons at zero temperature
5.S.M. Sutter and K.J.H. Giesbertz. arXiv:2209.11663 [math-ph]

5

- Towards approximations: model 2-RDM Γ in terms of 1-RDM γ
- Towards approximations: model 2-RDM Γ in terms of 1-RDM γ

$$
W[\gamma]=\frac{1}{4} \sum_{p q r s}\langle p q||r s\rangle_{ \pm} \Gamma_{p q, r s}[\gamma]
$$

- Towards approximations: model 2-RDM Γ in terms of 1-RDM γ

$$
\begin{aligned}
W[\gamma] & =\frac{1}{4} \sum_{p q r s}\langle p q||r s\rangle_{ \pm} \Gamma_{p q, r s}[\gamma] \\
\Gamma_{p q, r s} & =\gamma_{p r} \gamma_{q s}-\gamma_{p s} \gamma_{q r}+\lambda_{p q, r s}
\end{aligned}
$$

- Towards approximations: model 2-RDM Γ in terms of 1-RDM γ

$$
\begin{aligned}
W[\gamma] & =\frac{1}{4} \sum_{p q r s}\langle p q||r s\rangle_{ \pm} \Gamma_{p q, r s}[\gamma] \\
\Gamma_{p q, r s} & =\gamma_{p r} r_{q s}-\gamma_{p s} \gamma_{q r}+\lambda_{p q, r s} \\
& =n_{p} n_{q}\left(\delta_{p r} \delta_{q s}-\delta_{p s} \delta_{q r}\right)+\lambda_{p q, r s}
\end{aligned}
$$

- Towards approximations: model 2-RDM Γ in terms of 1-RDM γ

$$
\begin{aligned}
& W[\gamma]=\frac{1}{4} \sum_{p q r s}\langle p q||r s\rangle_{ \pm} \Gamma_{p q, r s}[\gamma] \\
& \begin{aligned}
\Gamma_{p q, r s} & =\gamma_{p r} \gamma_{q s}-\gamma_{p s} \gamma_{q r}+\lambda_{p q, r s} \\
& =n_{p} n_{q}\left(\delta_{p r} \delta_{q s}-\delta_{p s} \delta_{q r}\right)+\lambda_{p q, r s} \\
W[\gamma] & =W_{0, \mathrm{GC}}[\gamma]+W_{c}[\gamma]
\end{aligned}
\end{aligned}
$$

- Towards approximations: model 2-RDM Γ in terms of 1-RDM γ

$$
\begin{aligned}
& W[\gamma]=\frac{1}{4} \sum_{p q r s}\langle p q||r s\rangle_{ \pm} \Gamma_{p q, r s}[\gamma] \\
& \begin{aligned}
\Gamma_{p q, r s} & =\gamma_{p r} \gamma_{q s}-\gamma_{p s} \gamma_{q r}+\lambda_{p q, r s} \\
& =n_{p} n_{q}\left(\delta_{p r} \delta_{q s}-\delta_{p s} \delta_{q r}\right)+\lambda_{p q, r s} \\
W[\gamma] & =W_{0, \mathrm{GC}}[\gamma]+W_{c}[\gamma]
\end{aligned}
\end{aligned}
$$

- Towards approximations: model 2-RDM Γ in terms of 1-RDM γ

$$
\begin{aligned}
W[\gamma] & =\frac{1}{4} \sum_{p q r s}\langle p q||r s\rangle_{ \pm} \Gamma_{p q, r s}[\gamma] \\
\Gamma_{p q, r s} & =\gamma_{p r} \gamma_{q s}-\gamma_{p s} \gamma_{q r}+\lambda_{p q, r s} \\
& =n_{p} n_{q}\left(\delta_{p r} \delta_{q s}-\delta_{p s} \delta_{q r}\right)+\lambda_{p q, r s} \\
& \downarrow \\
W[\gamma] & =W_{0, \mathrm{GC}}[\gamma]+W_{c}[\gamma]
\end{aligned}
$$

- Towards approximations: model 2-RDM Γ in terms of 1-RDM γ

$$
\begin{aligned}
& W[\gamma]=\frac{1}{4} \sum_{p q r s}\langle p q||r s\rangle_{ \pm} \Gamma_{p q, r s}[\gamma] \\
& \begin{aligned}
\Gamma_{p q, r s} & =\gamma_{p r} \gamma_{q s}-\gamma_{p s} \gamma_{q r}+\lambda_{p q, r s} \\
& =n_{p} n_{q}\left(\delta_{p r} \delta_{q s}-\delta_{p s} \delta_{q r}\right)+\lambda_{p q, r s} \\
W[\gamma] & \left.=W_{0} \text { GCl } \gamma\right]+W_{c}[\gamma] \\
& \text { Will come back later! }
\end{aligned}
\end{aligned}
$$

- As a minimisation:

6
-As a minimisation:
Canonical: $\quad A^{\beta}[h]=\min _{\hat{\Gamma} \in \mathscr{H}_{N} \otimes \mathscr{H}_{N}, \operatorname{Tr}(\hat{\Gamma})=1}\left(\operatorname{Tr}(\hat{\Gamma} \hat{H})+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right)$

- As a minimisation:

Canonical: $\quad A^{\beta}[h]=\min _{\hat{\Gamma} \in \mathscr{H}_{N} \otimes \mathscr{H}_{N}, \operatorname{Tr}(\hat{\Gamma})=1}\left(\operatorname{Tr}(\hat{\Gamma} \hat{H})+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right)$

- As a minimisation:

Canonical: $\quad A^{\beta}[h]=\min _{\hat{\Gamma} \in \mathscr{H}_{N} \otimes \mathscr{H}_{N}, \operatorname{Tr}(\hat{\Gamma})=1}\left(\operatorname{Tr}(\hat{\Gamma} \hat{H})+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right)$

- As a minimisation:

Canonical: $\quad A^{\beta}[h]=\min _{\hat{\Gamma} \in \mathscr{H}_{N} \otimes \mathscr{H}_{N}, \operatorname{Tr}(\hat{\Gamma})=1}\left(\operatorname{Tr}(\hat{\Gamma} \hat{H})+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right)$
Grand Canonical: $\Omega^{\beta, \mu}[h]=\min _{\hat{\Gamma} \in \mathscr{F} \otimes \mathscr{F}, \operatorname{Tr}(\hat{\Gamma})=1}\left(\operatorname{Tr}(\hat{\Gamma}(\hat{H}-\mu \hat{N}))+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right)$

- As a minimisation:

Canonical: $\quad A^{\beta}[h]=\min _{\hat{\Gamma} \in \mathscr{H}_{N} \otimes \mathscr{H}_{N}, \operatorname{Tr}(\hat{\Gamma})=1}\left(\operatorname{Tr}(\hat{\Gamma} \hat{H})+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right)$
Grand Canonical: $\Omega^{\beta, \mu}[h]=\min _{\hat{\Gamma} \in \mathscr{F} \otimes \mathscr{F}, \operatorname{Tr}(\hat{\Gamma})=1}\left(\operatorname{Tr}(\hat{\Gamma}(\hat{H}-\mu \hat{N}))+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right)$

- The 1-RDM now satisfies for $\beta<\infty$:

$$
\gamma>0, \quad \mathbf{1}-\gamma>0
$$

- As a minimisation:

Canonical:

$$
A^{\beta}[h]=\min _{\hat{\Gamma} \in \mathscr{H}_{N} \otimes \mathscr{H}_{N}, \operatorname{Tr}(\hat{\Gamma})=1}\left(\operatorname{Tr}(\hat{\Gamma} \hat{H})+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right)
$$

Grand Canonical: $\Omega^{\beta, \mu}[h]=\min _{\hat{\Gamma} \in \mathscr{F} \otimes \mathscr{F}, \operatorname{Tr}(\hat{\Gamma})=1}\left(\operatorname{Tr}(\hat{\Gamma}(\hat{H}-\mu \hat{N}))+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right)$

- The 1-RDM now satisfies for $\beta<\infty$:

$$
\gamma>0, \quad \mathbf{1}-\gamma>0 \longleftrightarrow n_{p}>0 \forall p, \quad n_{p}<1 \forall p
$$

- As a minimisation:

Canonical:

$$
A^{\beta}[h]=\min _{\hat{\Gamma} \in \mathscr{H}_{N} \otimes \mathscr{H}_{N}, \operatorname{Tr}(\hat{\Gamma})=1}\left(\operatorname{Tr}(\hat{\Gamma} \hat{H})+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right)
$$

Grand Canonical: $\Omega^{\beta, \mu}[h]=\min _{\hat{\Gamma} \in \mathscr{F} \otimes \mathscr{F}, \operatorname{Tr}(\hat{\Gamma})=1}\left(\operatorname{Tr}(\hat{\Gamma}(\hat{H}-\mu \hat{N}))+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right)$

- The 1-RDM now satisfies for $\beta<\infty$:

$$
\gamma>0, \quad \mathbf{1}-\gamma>0 \longleftrightarrow n_{p}>0 \forall p, \quad n_{p}<1 \forall p
$$

- Furthermore, for any interaction (also no interaction):[3,5] $h \leftrightarrow \gamma$

3. K.J.H. Giesbertz and M. Ruggenthaler. Physics Reports 806, 1-47 (2019), DOI: 10.1016/i.physrep.2019.01.010
4. S.M. Sutter and K.J.H. Giesbertz. arXiv:2209.11663 [math-ph]

- Going to 1-RDMFT:
- Going to 1-RDMFT:

Canonical: $\quad A^{\beta}[h]=\min _{\gamma} A^{\beta}[\gamma]:=\min _{\gamma}\left(\operatorname{Tr}(\gamma h)+W^{\beta}[\gamma]-\frac{1}{\beta} S^{\beta}[\gamma]\right)$

- Going to 1-RDMFT:

Canonical: $\quad A^{\beta}[h]=\min _{\gamma} A^{\beta}[\gamma]:=\min _{\gamma}\left(\operatorname{Tr}(\gamma h)+W^{\beta}[\gamma]-\frac{1}{\beta} S^{\beta}[\gamma]\right)$
Grand Canonical: $\Omega^{\beta, \mu}[h]=\min _{\gamma} \Omega_{h}^{\beta, \mu}[\gamma]:=\min _{\gamma}\left(\operatorname{Tr}(\gamma(h-\mu))+W^{\beta}[\gamma]-\frac{1}{\beta} S^{\beta}[\gamma]\right)$

- Going to 1-RDMFT:

Canonical: $\quad A^{\beta}[h]=\min _{\gamma} A^{\beta}[\gamma]:=\min _{\gamma}\left(\operatorname{Tr}(\gamma h)+W^{\beta}[\gamma]-\frac{1}{\beta} S^{\beta}[\gamma]\right)$
Grand Canonical: $\Omega^{\beta, \mu}[h]=\min _{\gamma} \Omega_{h}^{\beta, \mu}[\gamma]:=\min _{\gamma}\left(\operatorname{Tr}(\gamma(h-\mu))+W^{\beta}[\gamma]-\frac{1}{\beta} S^{\beta}[\gamma]\right)$

- Constrained search:

$$
A_{\mathrm{int}}^{\beta}[\gamma]=W^{\beta}[\gamma]-\frac{1}{\beta} S^{\beta}[\gamma]=\min _{\hat{\Gamma} \rightarrow \gamma}\left(\operatorname{Tr}(\hat{\Gamma} \hat{W})+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right)
$$

- Success of Density Functional Theory (DFT): Kohn-Sham system
- Success of Density Functional Theory (DFT): Kohn-Sham system
- Weakly correlated systems: the single Slater Determinant approximation works well and is computationally efficient
- Success of Density Functional Theory (DFT): Kohn-Sham system
- Weakly correlated systems: the single Slater Determinant approximation works well and is computationally efficient
-1-RDMFT: the 1-RDM is not idempotent \rightarrow no single Slater Determinant
- Success of Density Functional Theory (DFT): Kohn-Sham system
- Weakly correlated systems: the single Slater Determinant approximation works well and is computationally efficient
-1-RDMFT: the 1-RDM is not idempotent \rightarrow no single Slater Determinant
- Non-interacting Hamiltonian[8], but pathological

$$
\hat{H}_{0}=\sum_{p} \epsilon_{p} \hat{n}_{p}:=\sum_{p} \epsilon_{p} a_{p}^{\dagger} a_{p}
$$

8. K.J.H. Giesbertz and E.J. Baerends.
J. Chem. Phys. 132, 194108 (2010), DOI: 10.1063/1.3426319

- Success of Density Functional Theory (DFT): Kohn-Sham system
- Weakly correlated systems: the single Slater Determinant approximation works well and is computationally efficient
-1-RDMFT: the 1-RDM is not idempotent \rightarrow no single Slater Determinant
- Non-interacting Hamiltonian[8], but pathological

$$
\hat{H}_{0}=\sum_{p} \epsilon_{p} \hat{n}_{p}:=\sum_{p} \epsilon_{p} a_{p}^{\dagger} a_{p}
$$

8. K.J.H. Giesbertz and E.J. Baerends.
J. Chem. Phys. 132, 194108 (2010), DOI: 10.1063/1.3426319

- Success of Density Functional Theory (DFT): Kohn-Sham system
- Weakly correlated systems: the single Slater Determinant approximation works well and is computationally efficient
-1-RDMFT: the 1-RDM is not idempotent \rightarrow no single Slater Determinant
- Non-interacting Hamiltonian[8], but pathological

- Success of Density Functional Theory (DFT): Kohn-Sham system
- Weakly correlated systems: the single Slater Determinant approximation works well and is computationally efficient
-1-RDMFT: the 1-RDM is not idempotent \rightarrow no single Slater Determinant
- Non-interacting Hamiltonian[8], but pathological

- Success of Density Functional Theory (DFT): Kohn-Sham system
- Weakly correlated systems: the single Slater Determinant approximation works well and is computationally efficient
-1-RDMFT: the 1-RDM is not idempotent \rightarrow no single Slater Determinant
- Non-interacting Hamiltonian[8], but pathological

$$
\begin{aligned}
& \hat{H}_{0}=\sum_{p} \epsilon_{p} \hat{n}_{p}:=\sum_{p} \epsilon_{p} a_{p}^{\dagger} a_{p} \\
& \left.\mu\right|_{\epsilon_{p}} ^{-\frac{-}{-}-}-0<n_{p}<N \quad 0<n_{p}<1
\end{aligned}
$$

- Success of Density Functional Theory (DFT): Kohn-Sham system
- Weakly correlated systems: the single Slater Determinant approximation works well and is computationally efficient
- 1-RDMFT: the 1-RDM is not idempotent \rightarrow no single Slater Determinant
- Non-interacting Hamiltonian[8], but pathological

$$
\begin{aligned}
& \hat{H}_{0}=\sum_{p} \epsilon_{p} \hat{n}_{p}:=\sum_{p} \epsilon_{p} a_{p}^{\dagger} a_{p} \\
& \text { 8. K.J.H. Giesbertz and E.J. Baerends. } \\
& \text { J. Chem. Phys. 132, } 194108 \text { (2010), } \\
& \text { DOI: 10.1063/1.3426319 }
\end{aligned}
$$

- At finite temperature the DFT advantage vanishes: no more single Slater Determinant
- At finite temperature the DFT advantage vanishes: no more single Slater Determinant
- For 1-RDMFT:

$$
A_{\mathrm{int}}^{\beta}[\gamma]=\min _{\hat{\Gamma} \rightarrow \gamma}\left(\operatorname{Tr}(\hat{\Gamma} \hat{W})+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right)
$$

- At finite temperature the DFT advantage vanishes: no more single Slater Determinant
- For 1-RDMFT:

$$
A_{\mathrm{int}}^{\beta}[\gamma]=\min _{\hat{\Gamma} \rightarrow \gamma}\left(\operatorname{Tr}(\hat{\Gamma} \hat{W})+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right)
$$

- At finite temperature the DFT advantage vanishes: no more single Slater Determinant
- For 1-RDMFT:

$$
\begin{gathered}
A_{\mathrm{int}}^{\beta}[\gamma]=\min _{\hat{\Gamma} \rightarrow \gamma}\left(\operatorname{Tr}(\hat{\Gamma} \hat{W})+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right) \\
\min _{\hat{\Gamma}_{0}^{\beta} \rightarrow \gamma} \frac{1}{\beta} \operatorname{Tr}\left(\hat{\Gamma}_{0}^{\beta} \log \left(\hat{\Gamma}_{0}^{\beta}\right)\right)=\frac{1}{\beta} \min _{\hat{\Gamma}_{0} \rightarrow \gamma} \operatorname{Tr}\left(\hat{\Gamma}_{0} \log \left(\hat{\Gamma}_{0}\right)\right)=-\frac{1}{\beta} S_{0}\left[\left\{n_{p}\right\}\right]
\end{gathered}
$$

- At finite temperature the DFT advantage vanishes: no more single Slater Determinant
- For 1-RDMFT:

$$
\begin{gathered}
A_{\mathrm{int}}^{\beta}[\gamma]=\min _{\hat{\Gamma} \rightarrow \gamma}\left(\operatorname{Tr}(\hat{\Gamma} \hat{W})+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right) \\
\min _{\hat{\Gamma}_{0}^{\beta} \rightarrow \gamma} \frac{1}{\beta} \operatorname{Tr}\left(\hat{\Gamma}_{0}^{\beta} \log \left(\hat{\Gamma}_{0}^{\beta}\right)\right)=\frac{1}{\beta} \min _{\hat{\Gamma}_{0} \rightarrow \gamma} \operatorname{Tr}\left(\hat{\Gamma}_{0} \log \left(\hat{\Gamma}_{0}\right)\right)=-\frac{1}{\beta} S_{0}\left[\left\{n_{p}\right\}\right]
\end{gathered}
$$

- At finite temperature the DFT advantage vanishes: no more single Slater Determinant
- For 1-RDMFT:

$$
\begin{aligned}
& A_{\mathrm{int}}^{\beta}[\gamma]=\min _{\hat{\Gamma} \rightarrow \gamma}\left(\operatorname{Tr}(\hat{\Gamma} \tilde{W})+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right) \\
& \min _{\hat{\Gamma}_{0}^{\beta} \rightarrow \gamma} \frac{1}{\beta} \operatorname{Tr}\left(\hat{\Gamma}_{0}^{\beta} \log \left(\hat{\Gamma}_{0}^{\beta}\right)\right)=\frac{1}{\beta} \min _{\hat{\Gamma}_{0} \rightarrow \gamma} \operatorname{Tr}\left(\hat{\Gamma}_{0} \log \left(\hat{\Gamma}_{0}\right)\right)=-\frac{1}{\beta} S_{0}\left[\left\{n_{p}\right\}\right] \\
& \hat{H}_{0}^{\beta}=\sum_{p} \epsilon_{p}^{\beta}\left[\left\{n_{q}\right\}\right] \hat{n}_{p}
\end{aligned}
$$

- At finite temperature the DFT advantage vanishes: no more single Slater Determinant
- For 1-RDMFT:

$$
\begin{gathered}
A_{\text {int }}^{\beta}[\gamma]=\min _{\hat{\Gamma} \rightarrow \gamma}\left(\operatorname{Tr}(\hat{\Gamma} \hat{W})+\frac{1}{\beta} \operatorname{Tr}(\hat{\Gamma} \log (\hat{\Gamma}))\right) \\
\min _{\hat{\Gamma}_{0}^{\beta} \rightarrow \gamma} \frac{1}{\beta} \operatorname{Tr}\left(\hat{\Gamma}_{0}^{\beta} \log \left(\hat{\Gamma}_{0}^{\beta}\right)\right)=\frac{1}{\beta} \min _{\hat{\Gamma}_{0} \rightarrow \gamma} \operatorname{Tr}\left(\hat{\Gamma}_{0} \log \left(\hat{\Gamma}_{0}\right)\right)=-\frac{1}{\beta} S_{0}\left[\left\{n_{p}\right\}\right] \\
\hat{H}_{0}^{\beta}=\sum_{p} \epsilon_{p}^{\beta}\left[\left\{n_{q}\right\}\right] \hat{n}_{p} \quad \epsilon_{p}^{\beta}=\frac{\beta^{\prime}}{\beta} \epsilon_{p}^{\beta^{\prime}}
\end{gathered}
$$

- Define a non-interacting free energy approximation $A_{0}^{\beta}[\gamma]$:

$$
A_{0}^{\beta}[\gamma]=W_{0}[\gamma]-\frac{1}{\beta} S_{0}\left[\left\{n_{p}\right\}\right]
$$

- Define a non-interacting free energy approximation $A_{0}^{\beta}[\gamma]$:

$$
A_{0}^{\beta}[\gamma]=W_{0}[\gamma]-\frac{1}{\beta} S_{0}\left[\left\{n_{p}\right\}\right]
$$

-Then we need to approximate a correlation free energy functional $A_{c}^{\beta}[\gamma]$:

$$
A_{c}^{\beta}[\gamma]=A_{\mathrm{int}}^{\beta}[\gamma]-A_{0}^{\beta}[\gamma]
$$

- Define a non-interacting free energy approximation $A_{0}^{\beta}[\gamma]$:

$$
A_{0}^{\beta}[\gamma]=W_{0}[\gamma]-\frac{1}{\beta} S_{0}\left[\left\{n_{p}\right\}\right]
$$

-Then we need to approximate a correlation free energy functional $A_{c}^{\beta}[\gamma]$:

$$
A_{c}^{\beta}[\gamma]=A_{\mathrm{int}}^{\beta}[\gamma]-A_{0}^{\beta}[\gamma]
$$

- Note that the functional for the (grand) canonical ensembles are not the same: constrained search over different Hilbert space
- In the Grand Canonical Ensemble all expressions for the non-interacting ensemble are well known:
- In the Grand Canonical Ensemble all expressions for the non-interacting ensemble are well known:

$$
S_{0, \mathrm{GC}}[\{n\}]=-\sum_{p} n_{p} \log \left(n_{p}\right)-\sum_{p}\left(1-n_{p}\right) \log \left(1-n_{p}\right)
$$

- In the Grand Canonical Ensemble all expressions for the non-interacting ensemble are well known:

$$
\begin{aligned}
& S_{0, \mathrm{GC}}[\{n\}]=-\sum_{p} n_{p} \log \left(n_{p}\right)-\sum_{p}\left(1-n_{p}\right) \log \left(1-n_{p}\right) \\
& n_{p}=\frac{1}{e^{\beta\left(\epsilon_{p}-\mu\right)} \mp 1}
\end{aligned}
$$

- In the Grand Canonical Ensemble all expressions for the non-interacting ensemble are well known:

$$
\begin{aligned}
& S_{0, \mathrm{GC}}[\{n\}]=-\sum_{p} n_{p} \log \left(n_{p}\right)-\sum_{p}\left(1-n_{p}\right) \log \left(1-n_{p}\right) \\
& n_{p}=\frac{1}{e^{\beta\left(\epsilon_{p}-\mu\right)} \mp 1} \longleftrightarrow \epsilon_{p}\left[n_{p}\right]=-\frac{1}{\beta} \log \left(\frac{n_{p}}{1 \pm n_{p}}\right)
\end{aligned}
$$

- In the Grand Canonical Ensemble all expressions for the non-interacting ensemble are well known:

$$
\begin{gathered}
S_{0, \mathrm{GC}}[\{n\}]=-\sum_{p} n_{p} \log \left(n_{p}\right)-\sum_{p}\left(1-n_{p}\right) \log \left(1-n_{p}\right) \\
n_{p}=\frac{1}{e^{\beta\left(\epsilon_{p}-\mu\right)} \mp 1} \longleftrightarrow \epsilon_{p}\left[n_{p}\right]=-\frac{1}{\beta} \log \left(\frac{n_{p}}{1 \pm n_{p}}\right) \\
W_{0, \mathrm{GC}}[\gamma]=\frac{1}{2} \sum_{p q} n_{p} n_{q}\langle p q||p q\rangle_{ \pm}
\end{gathered}
$$

- In the Grand Canonical Ensemble all expressions for the non-interacting ensemble are well known:

$$
\begin{gathered}
S_{0, \mathrm{GC}}[\{n\}]=-\sum_{p} n_{p} \log \left(n_{p}\right)-\sum_{p}\left(1-n_{p}\right) \log \left(1-n_{p}\right) \\
n_{p}=\frac{1}{e^{\beta\left(\epsilon_{p}-\mu\right)} \mp 1} \longleftrightarrow \epsilon_{p}\left[n_{p}\right]=-\frac{1}{\beta} \log \left(\frac{n_{p}}{1 \pm n_{p}}\right) \\
W_{0, \mathrm{GC}}[\gamma]=\frac{1}{2} \sum_{p q} n_{p} n_{q}\langle p q||p q\rangle_{ \pm} \quad \Gamma_{p q r s}^{0, \mathrm{GC}}\left[n_{p}, n_{q}\right]=n_{p} n_{q}\left(\delta_{p r} \delta_{q s}-\delta_{p s} \delta_{q r}\right)
\end{gathered}
$$

- In the Canonical Ensemble things are more difficult
- In the Canonical Ensemble things are more difficult
- Methods have been developed for evaluating expectation values ${ }^{[9,10]}$

9. H. Barghati, J. Yu and A.D. Maestro. Phys. Rev. Res. 2, 043206 (2020), DOI: 10.1103/physrevresearch.2.043206
10. P. Borrmann and G. Franke.
J. Chem. Phys. 98, 2484 (1993), DOI: 10.1063/1.464180

- In the Canonical Ensemble things are more difficult
- Methods have been developed for evaluating expectation values ${ }^{[9,10]}$
- Key concept: Auxiliary Partition Functions (APFs)

9. H. Barghati, J. Yu and A.D. Maestro. Phys. Rev. Res. 2, 043206 (2020), DOI: 10.1103/physrevresearch.2.043206
10. P. Borrmann and G. Franke.
J. Chem. Phys. 98, 2484 (1993), DOI: 10.1063/1.464180

- In the Canonical Ensemble things are more difficult
- Methods have been developed for evaluating expectation values ${ }^{[9,10]}$
- Key concept: Auxiliary Partition Functions (APFs)
- $\cup p$: add another orbital with same energy as p

9. H. Barghati, J. Yu and A.D. Maestro. Phys. Rev. Res. 2, 043206 (2020),
DOI: 10.1103/physrevresearch.2.043206
10. P. Borrmann and G. Franke.
J. Chem. Phys. 98, 2484 (1993),

DOI: 10.1063/1.464180

$$
\left\langle\hat{n}_{p}\right\rangle=\frac{e^{-\beta \epsilon_{p}} Z_{N-1}^{U p}}{Z_{N}}
$$

- In the Canonical Ensemble things are more difficult
- Methods have been developed for evaluating expectation values ${ }^{[9,10]}$
- Key concept: Auxiliary Partition Functions (APFs)
- $\cup p$: add another orbital with same energy as p
- $\backslash p$: remove orbital p

$$
\left\langle\hat{n}_{p}\right\rangle=\frac{e^{-\beta \epsilon_{p}} Z_{N-1}^{U p}}{Z_{N}} \quad\left\langle\hat{n}_{p}\right\rangle=\frac{e^{-\beta \epsilon_{p}} Z_{N-1}^{\backslash p}}{Z_{N}}
$$

9. H. Barghati, J. Yu and A.D. Maestro. Phys. Rev. Res. 2, 043206 (2020), DOI: 10.1103/physrevresearch.2.043206 10. P. Borrmann and G. Franke.
J. Chem. Phys. 98, 2484 (1993), DOI: 10.1063/1.464180

- In the Canonical Ensemble things are more difficult
- Methods have been developed for evaluating expectation values ${ }^{[9,10]}$
- Key concept: Auxiliary Partition Functions (APFs)
- $\cup p$: add another orbital with same energy as p
- $\backslash p$: remove orbital p

$$
\begin{aligned}
& \left\langle\hat{n}_{p}\right\rangle=\frac{e^{-\beta \epsilon_{p}} Z_{N-1}^{\cup p}}{Z_{N}} \quad\left\langle\hat{n}_{p}\right\rangle=\frac{e^{-\beta \epsilon_{p}} Z_{N-1}^{\backslash p}}{Z_{N}} \\
& Z_{M}=\frac{1}{M} \sum_{k=1}^{M}(\pm)^{k-1} C_{k} Z_{M-k}
\end{aligned}
$$

- In the Canonical Ensemble things are more difficult
- Methods have been developed for evaluating expectation values ${ }^{[9,10]}$
- Key concept: Auxiliary Partition Functions (APFs)
- $\cup p$: add another orbital with same energy as p
- $\backslash p$: remove orbital p

9. H. Barghati, J. Yu and A.D. Maestro. Phys. Rev. Res. 2, 043206 (2020), DOI: 10.1103/physrevresearch.2.043206 10. P. Borrmann and G. Franke.
J. Chem. Phys. 98, 2484 (1993), DOI: 10.1063/1.464180

$$
\begin{aligned}
& \left\langle\hat{n}_{p}\right\rangle=\frac{e^{-\beta \epsilon_{p}} Z_{N-1}^{\cup p}}{Z_{N}} \quad\left\langle\hat{n}_{p}\right\rangle=\frac{e^{-\beta \epsilon_{p}} Z_{N-1}^{\backslash p}}{Z_{N}} \\
& Z_{M}=\frac{1}{M} \sum_{k=1}^{M}(\pm)^{k-1} C_{k} Z_{M-k} \quad C_{k}=\sum_{p} e^{-\beta k \epsilon_{p}}
\end{aligned}
$$

- In the Canonical Ensemble things are more difficult
- Methods have been developed for evaluating expectation values ${ }^{[9,10]}$
- Key concept: Auxiliary Partition Functions (APFs)
- $\cup p$: add another orbital with same energy as p
- $\backslash p$: remove orbital p

9. H. Barghati, J. Yu and A.D. Maestro. Phys. Rev. Res. 2, 043206 (2020), DOI: 10.1103/physrevresearch.2.043206 10. P. Borrmann and G. Franke.
J. Chem. Phys. 98, 2484 (1993), DOI: 10.1063/1.464180

$$
\begin{aligned}
& \left\langle\hat{n}_{p}\right\rangle=\frac{e^{-\beta \epsilon_{p}} Z_{N-1}^{\cup p}}{Z_{N}} \quad\left\langle\hat{n}_{p}\right\rangle=\frac{e^{-\beta \epsilon_{p}} Z_{N-1}^{\backslash p}}{Z_{N}} \quad Z_{M}^{\cup \backslash \backslash p}=\sum_{k=0}^{M}(\pm)^{k} e^{-\beta k \epsilon_{p}} Z_{M-k} \\
& Z_{M}=\frac{1}{M} \sum_{k=1}^{M}(\pm)^{k-1} C_{k} Z_{M-k} \quad C_{k}=\sum_{p} e^{-\beta k \epsilon_{p}}
\end{aligned}
$$

- However, there is no clear way to invert the relation between ϵ_{p} and n_{p}
- However, there is no clear way to invert the relation between ϵ_{p} and n_{p}
- Due to the results of Sutter and Giesbertz ${ }^{[5]}$ we know that $\left\{\epsilon_{p}\right\} \leftrightarrow\left\{n_{p}\right\}$
- However, there is no clear way to invert the relation between ϵ_{p} and n_{p}
- Due to the results of Sutter and Giesbertz ${ }^{[5]}$ we know that $\left\{\epsilon_{p}\right\} \leftrightarrow\left\{n_{p}\right\}$
- Iterative Sinkhorn algorithm (baseline):

$$
\epsilon_{p}^{(i+1)}=-\frac{1}{\beta} \log \left(n_{p}\right)+\frac{1}{\beta} \log \left(Z_{N-1}^{\mathrm{U} / p(i)}\right)-\frac{1}{\beta} \log \left(Z_{N}^{(i)}\right)
$$

- However, there is no clear way to invert the relation between ϵ_{p} and n_{p}
- Due to the results of Sutter and Giesbertz ${ }^{[5]}$ we know that $\left\{\epsilon_{p}\right\} \leftrightarrow\left\{n_{p}\right\}$
- Iterative Sinkhorn algorithm (baseline):

$$
\epsilon_{p}^{(i+1)}=-\frac{1}{\beta} \log \left(n_{p}\right)+\frac{1}{\beta} \log \left(Z_{N-1}^{\cup /(i)}\right)-\frac{1}{\beta} \log \left(Z_{N}^{(i)}\right)
$$

- Improved algorithm (Bosonic and Fermionic Sinkhorn)
- However, there is no clear way to invert the relation between ϵ_{p} and n_{p}
- Due to the results of Sutter and Giesbertz ${ }^{[5]}$ we know that $\left\{\epsilon_{p}\right\} \leftrightarrow\left\{n_{p}\right\}$
- Iterative Sinkhorn algorithm (baseline):

$$
\epsilon_{p}^{(i+1)}=-\frac{1}{\beta} \log \left(n_{p}\right)+\frac{1}{\beta} \log \left(Z_{N-1}^{\cup /(i)}\right)-\frac{1}{\beta} \log \left(Z_{N}^{(i)}\right)
$$

- Improved algorithm (Bosonic and Fermionic Sinkhorn)

$$
Z_{N}=Z_{N}^{\cup p}-e^{-\beta \epsilon_{p}} Z_{N-1}^{\cup p}
$$

- However, there is no clear way to invert the relation between ϵ_{p} and n_{p}
- Due to the results of Sutter and Giesbertz ${ }^{[5]}$ we know that $\left\{\epsilon_{p}\right\} \leftrightarrow\left\{n_{p}\right\}$
- Iterative Sinkhorn algorithm (baseline):

$$
\epsilon_{p}^{(i+1)}=-\frac{1}{\beta} \log \left(n_{p}\right)+\frac{1}{\beta} \log \left(Z_{N-1}^{\cup / \backslash p(i)}\right)-\frac{1}{\beta} \log \left(Z_{N}^{(i)}\right)
$$

- Improved algorithm (Bosonic and Fermionic Sinkhorn)

$$
Z_{N}=Z_{N}^{\cup p}-e^{-\beta \epsilon_{p}} Z_{N-1}^{\cup p} \quad Z_{N}=Z_{N}^{\backslash p}+e^{-\beta \epsilon_{p}} Z_{N-1}^{\backslash p}
$$

- However, there is no clear way to invert the relation between ϵ_{p} and n_{p}
- Due to the results of Sutter and Giesbertz ${ }^{[5]}$ we know that $\left\{\epsilon_{p}\right\} \leftrightarrow\left\{n_{p}\right\}$
- Iterative Sinkhorn algorithm (baseline):

$$
\epsilon_{p}^{(i+1)}=-\frac{1}{\beta} \log \left(n_{p}\right)+\frac{1}{\beta} \log \left(Z_{N-1}^{\cup /(i)}\right)-\frac{1}{\beta} \log \left(Z_{N}^{(i)}\right)
$$

- Improved algorithm (Bosonic and Fermionic Sinkhorn)

$$
\begin{array}{lc}
Z_{N}=Z_{N}^{\cup p}-e^{-\beta \epsilon_{p}} Z_{N-1}^{\cup p} & Z_{N}=Z_{N}^{\backslash p}+e^{-\beta \epsilon_{p}} Z_{N-1}^{\backslash p} \\
\epsilon_{p}^{(i+1)}=-\frac{1}{\beta} \log \left(\frac{n_{p}}{1 \pm n_{p}}\right)+\frac{1}{\beta} \log \left(Z_{N-1}^{\cup / \backslash p(i)}\right)-\frac{1}{\beta} \log \left(Z_{N}^{\cup / \backslash p(i)}\right)
\end{array}
$$

- However, there is no clear way to invert the relation between ϵ_{p} and n_{p}
- Due to the results of Sutter and Giesbertz ${ }^{[5]}$ we know that $\left\{\epsilon_{p}\right\} \leftrightarrow\left\{n_{p}\right\}$
- Iterative Sinkhorn algorithm (baseline):

$$
\epsilon_{p}^{(i+1)}=-\frac{1}{\beta} \log \left(n_{p}\right)+\frac{1}{\beta} \log \left(Z_{N-1}^{\cup /(i)}\right)-\frac{1}{\beta} \log \left(Z_{N}^{(i)}\right)
$$

- Improved algorithm (Bosonic and Fermionic Sinkhorn)

$$
\begin{array}{ll}
Z_{N}=Z_{N}^{\cup p}-e^{-\beta \epsilon_{p}} Z_{N-1}^{\cup p} & \epsilon_{p}^{\mathrm{GC}} \quad Z_{N}=Z_{N}^{\backslash p}+e^{-\beta \epsilon_{p}} Z_{N-1}^{\backslash p} \\
\epsilon_{p}^{(i+1)}=-\frac{1}{\beta} \log \left(\frac{n_{p}}{1 \pm n_{p}}\right)+\frac{1}{\beta} \log \left(Z_{N-1}^{\cup / \backslash p(i)}\right)-\frac{1}{\beta} \log \left(Z_{N}^{\cup / \backslash p(i)}\right)
\end{array}
$$

VU $/{ }^{m=}$

For numerical stability,

 work with free energies $A_{M}=-\frac{1}{\beta} \log \left(Z_{M}\right)$

For numerical stability,

 work with free energies$$
A_{M}=-\frac{1}{\beta} \log \left(Z_{M}\right)
$$

Compute: $\mathcal{O}\left(N_{\text {orb }}^{2}\right)$

For numerical stability,

 work with free energies$$
A_{M}=-\frac{1}{\beta} \log \left(Z_{M}\right)
$$

Compute: $\mathcal{O}\left(N_{\text {orb }}^{2}\right)$
Memory: $\mathcal{O}\left(N_{\text {orb }}\right)$

For numerical stability,

 work with free energies$$
A_{M}=-\frac{1}{\beta} \log \left(Z_{M}\right)
$$

Compute: $\mathcal{O}\left(N_{\text {orb }}^{2}\right)$
Memory: $\mathcal{O}\left(N_{\text {orb }}\right)$

- Implementation was done in python with jax (263 lines of code)
- Implementation was done in python with jax (263 lines of code) - jax allows for Just-In-Time (JIT) compilation, vectorisation, automatic differentiation
- Implementation was done in python with jax (263 lines of code) - jax allows for Just-In-Time (JIT) compilation, vectorisation, automatic differentiation
- Code works without modification on CPU, GPU and TPU
- Implementation was done in python with jax (263 lines of code)
- jax allows for Just-In-Time (JIT) compilation, vectorisation, automatic differentiation
- Code works without modification on CPU, GPU and TPU
- Test NOON distributions were either "simulated" or obtained from pyscf calculations with CCSD
- Implementation was done in python with jax (263 lines of code)
- jax allows for Just-In-Time (JIT) compilation, vectorisation, automatic differentiation
- Code works without modification on CPU, GPU and TPU
- Test NOON distributions were either "simulated" or obtained from pyscf calculations with CCSD
- Fermions lead to numerical instability:

$$
\log \left(e^{-\beta F_{1}}-e^{-\beta F_{2}}+e^{-\beta F_{3}}-\ldots\right)
$$

- Implementation was done in python with jax (263 lines of code)
- jax allows for Just-In-Time (JIT) compilation, vectorisation, automatic differentiation
- Code works without modification on CPU, GPU and TPU
- Test NOON distributions were either "simulated" or obtained from pyscf calculations with CCSD
- Fermions lead to numerical instability:

$$
\log \left(e^{-\beta F_{1}}-e^{-\beta F_{2}}+e^{-\beta F_{3}}-\ldots\right)
$$

- Implementation was done in python with jax (263 lines of code)
- jax allows for Just-In-Time (JIT) compilation, vectorisation, automatic differentiation
- Code works without modification on CPU, GPU and TPU
- Test NOON distributions were either "simulated" or obtained from pyscf calculations with CCSD
- Fermions lead to numerical instability:

$$
Q_{M}=\frac{Z_{M}}{Z_{M-1}}
$$

$$
\log \left(e^{-\beta F_{1}}-e^{-\beta F_{2}}+e^{-\beta F_{3}}-\ldots\right)
$$

- Implementation was done in python with jax (263 lines of code)
- jax allows for Just-In-Time (JIT) compilation, vectorisation, automatic differentiation
- Code works without modification on CPU, GPU and TPU
- Test NOON distributions were either "simulated" or obtained from pyscf calculations with CCSD
- Fermions lead to numerical instability:

$$
Q_{M}=\frac{Z_{M}}{Z_{M-1}} \quad R_{M}=\frac{C_{M}}{C_{M-1}}
$$

$$
\log \left(e^{-\beta F_{1}}-e^{-\beta F_{2}}+e^{-\beta F_{3}}-\ldots\right)
$$

- Implementation was done in python with jax (263 lines of code)
- jax allows for Just-In-Time (JIT) compilation, vectorisation, automatic differentiation
- Code works without modification on CPU, GPU and TPU
- Test NOON distributions were either "simulated"
$\begin{aligned} & \text { or obtained from pyscf calculations with CCSD } \\ & \text { - Fermions lead to numerical instability: }\end{aligned} Q_{M}=\frac{Z_{M}}{Z_{M-1}} R_{M}=\frac{C_{M}}{C_{M-1}}$

$$
Q_{M}=\frac{Z_{M}}{Z_{M-1}} \quad R_{M}=\frac{C_{M}}{C_{M-1}}
$$

$$
\log \left(e^{-\beta F_{1}}-e^{-\beta F_{2}}+e^{-\beta F_{3}}-\ldots\right) Q_{M}=\frac{1}{M}\left(1-\frac{R_{2}}{Q_{M-1}}\left(1-\frac{R_{3}}{Q_{M-2}}(1+\ldots)\right)\right)
$$

17

17

- We also would like to have $W_{0}[\gamma]$ for the Canonical ensemble

$$
W_{0}[\gamma]=\operatorname{Tr}\left(\hat{\Gamma}_{0} \hat{W}\right)=\frac{1}{2} \sum_{p q}\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle\langle p q \| p q\rangle_{ \pm}
$$

- We also would like to have $W_{0}[\gamma]$ for the Canonical ensemble

$$
W_{0}[\gamma]=\operatorname{Tr}\left(\hat{\Gamma}_{0} \hat{W}\right)=\frac{1}{2} \sum_{p q}\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle\langle p q \| p q\rangle_{ \pm} \quad \text { AO to } N O \ldots
$$

- We also would like to have $W_{0}[\gamma]$ for the Canonical ensemble

$$
W_{0}[\gamma]=\operatorname{Tr}\left(\hat{\Gamma}_{0} \hat{W}\right)=\frac{1}{2} \sum_{p q}\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle\langle p q||p q\rangle_{ \pm} \quad \text { AO to No... }
$$

- Simple expression for non-degenerate orbitals $p \neq q$:

$$
\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle=\mp \frac{e^{\beta \epsilon_{p}} n_{p}-e^{\beta \epsilon_{q}} n_{q}}{e^{\beta \epsilon_{p}}-e^{\beta \epsilon_{q}}}
$$

- We also would like to have $W_{0}[\gamma]$ for the Canonical ensemble

$$
W_{0}[\gamma]=\operatorname{Tr}\left(\hat{\Gamma}_{0} \hat{W}\right)=\frac{1}{2} \sum_{p q}\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle\langle p q \| p q\rangle_{ \pm} \quad \text { AO to } N O \ldots
$$

- Simple expression for non-degenerate orbitals $p \neq q$:
- Same orbital:

$$
\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle=\mp \frac{e^{\beta \epsilon_{p}} n_{p}-e^{\beta \epsilon_{q}} n_{q}}{e^{\beta \epsilon_{p}}-e^{\beta \epsilon_{q}}}
$$

$$
\left\langle\hat{n}_{p}^{2}\right\rangle=\frac{1}{Z_{N}} \sum_{k=1}^{N}(2 k-1) e^{-\beta \epsilon_{p}} Z_{N-k}
$$

- We also would like to have $W_{0}[\gamma]$ for the Canonical ensemble

$$
W_{0}[\gamma]=\operatorname{Tr}\left(\hat{\Gamma}_{0} \hat{W}\right)=\frac{1}{2} \sum_{p q}\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle\langle p q \| p q\rangle_{ \pm} \quad \text { AO to } N O \ldots
$$

- Simple expression for non-degenerate orbitals $p \neq q$:
- Same orbital:

$$
\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle=\mp \frac{e^{\beta \epsilon_{p}} n_{p}-e^{\beta \epsilon_{q}} n_{q}}{e^{\beta \epsilon_{p}}-e^{\beta \epsilon_{q}}}
$$

$$
\left\langle\hat{n}_{p}^{2}\right\rangle=\frac{1}{Z_{N}} \sum_{k=1}^{N}(2 k-1) e^{-\beta \epsilon_{p}} Z_{N-k} \quad\left\langle\hat{n}_{p}^{2}\right\rangle=n_{p}
$$

- We also would like to have $W_{0}[\gamma]$ for the Canonical ensemble

$$
W_{0}[\gamma]=\operatorname{Tr}\left(\hat{\Gamma}_{0} \hat{W}\right)=\frac{1}{2} \sum_{p q}\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle\langle p q \| p q\rangle_{ \pm} \quad \text { AO to NO... }
$$

- Simple expression for non-degenerate orbitals $p \neq q$:
- Same orbital:

$$
\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle=\mp \frac{e^{\beta \epsilon_{p}} n_{p}-e^{\beta \epsilon_{q}} n_{q}}{e^{\beta \epsilon_{p}}-e^{\beta \epsilon_{q}}}
$$

$$
\left\langle\hat{n}_{p}^{2}\right\rangle=\frac{1}{Z_{N}} \sum_{k=1}^{N}(2 k-1) e^{-\beta \epsilon_{p}} Z_{N-k} \quad\left\langle\hat{n}_{p}^{2}\right\rangle=n_{p}
$$

- Degenerate orbitals $\epsilon_{p}=\epsilon_{q}$

$$
\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle=\frac{1}{Z_{N}} \sum_{k=2}^{N}(\pm)^{k}(k-1) e^{-\beta \epsilon_{p} k} Z_{N-k}
$$

- But why does the choice of ensemble matter at zero-temperature?
- But why does the choice of ensemble matter at zero-temperature?
- Reference ensemble independent of temperature
- But why does the choice of ensemble matter at zero-temperature?
- Reference ensemble independent of temperature

$$
E_{h}[\gamma]=\lim _{\beta \rightarrow \infty} A_{h}^{\beta}[\gamma]=\operatorname{Tr}(h \gamma)+W_{0}[\gamma]+W_{c}[\gamma]
$$

- But why does the choice of ensemble matter at zero-temperature?
- Reference ensemble independent of temperature

$$
\begin{gathered}
E_{h}[\gamma]=\lim _{\beta \rightarrow \infty} A_{h}^{\beta}[\gamma]=\operatorname{Tr}(h \gamma)+W_{0}[\gamma]+W_{c}[\gamma] \\
W_{c}[\gamma]=\lim _{\beta \rightarrow \infty} A_{c}^{\beta}[\gamma]=W[\gamma]-W_{0}[\gamma]
\end{gathered}
$$

- But why does the choice of ensemble matter at zero-temperature?
- Reference ensemble independent of temperature

$$
\begin{gathered}
E_{h}[\gamma]=\lim _{\beta \rightarrow \infty} A_{h}^{\beta}[\gamma]=\operatorname{Tr}(h \gamma)+W_{0}[\gamma]+W_{c}[\gamma] \\
W_{c}[\gamma]=\lim _{\beta \rightarrow \infty} A_{c}^{\beta}[\gamma]=W[\gamma]-W_{0}[\gamma]
\end{gathered}
$$

- Different $W_{0}[\gamma]$ from different $\Gamma_{p q, p q}^{0}=\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle$
- But why does the choice of ensemble matter at zero-temperature?
- Reference ensemble independent of temperature

$$
\begin{gathered}
E_{h}[\gamma]=\lim _{\beta \rightarrow \infty} A_{h}^{\beta}[\gamma]=\operatorname{Tr}(h \gamma)+W_{0}[\gamma]+W_{c}[\gamma] \\
W_{c}[\gamma]=\lim _{\beta \rightarrow \infty} A_{c}^{\beta}[\gamma]=W[\gamma]-W_{0}[\gamma]
\end{gathered}
$$

- Different $W_{0}[\gamma]$ from different $\Gamma_{p q, p q}^{0}=\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle$
- For canonical: need B/F Sinkhorn
- But why does the choice of ensemble matter at zero-temperature?
- Reference ensemble independent of temperature

$$
\begin{gathered}
E_{h}[\gamma]=\lim _{\beta \rightarrow \infty} A_{h}^{\beta}[\gamma]=\operatorname{Tr}(h \gamma)+W_{0}[\gamma]+W_{c}[\gamma] \\
W_{c}[\gamma]=\lim _{\beta \rightarrow \infty} A_{c}^{\beta}[\gamma]=W[\gamma]-W_{0}[\gamma]
\end{gathered}
$$

- Different $W_{0}[\gamma]$ from different $\Gamma_{p q, p q}^{0}=\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle$
- For canonical: need B/F Sinkhorn
- Is there an advantage to the canonical $W_{0}[\gamma]$?
- But why does the choice of ensemble matter at zero-temperature?
- Reference ensemble independent of temperature

$$
\begin{gathered}
E_{h}[\gamma]=\lim _{\beta \rightarrow \infty} A_{h}^{\beta}[\gamma]=\operatorname{Tr}(h \gamma)+W_{0}[\gamma]+W_{c}[\gamma] \\
W_{c}[\gamma]=\lim _{\beta \rightarrow \infty} A_{c}^{\beta}[\gamma]=W[\gamma]-W_{0}[\gamma]
\end{gathered}
$$

- Different $W_{0}[\gamma]$ from different $\Gamma_{p q, p q}^{0}=\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle$
- For canonical: need B/F Sinkhorn
- Is there an advantage to the canonical $W_{0}[\gamma]$?

$$
\sum_{q} \Gamma_{p q, p q}^{0, G C}=\left(N-n_{p}\right) n_{p}
$$

- But why does the choice of ensemble matter at zero-temperature?
- Reference ensemble independent of temperature

$$
\begin{gathered}
E_{h}[\gamma]=\lim _{\beta \rightarrow \infty} A_{h}^{\beta}[\gamma]=\operatorname{Tr}(h \gamma)+W_{0}[\gamma]+W_{c}[\gamma] \\
W_{c}[\gamma]=\lim _{\beta \rightarrow \infty} A_{c}^{\beta}[\gamma]=W[\gamma]-W_{0}[\gamma]
\end{gathered}
$$

- Different $W_{0}[\gamma]$ from different $\Gamma_{p q, p q}^{0}=\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle$
- For canonical: need B/F Sinkhorn
- Is there an advantage to the canonical $W_{0}[\gamma]$?

$$
\sum_{q} \Gamma_{p q, p q}^{0, G C}=\left(N-n_{p}\right) n_{p} \quad \quad \sum_{q} \Gamma_{p q, p q}^{0, C}=(N-1) n_{p}=\sum_{q} \Gamma_{p q, p q}
$$

- Our non-interacting density matrix will in general break (spin) symmetries

$$
\operatorname{Tr}\left(\hat{\Gamma}_{0} \hat{S}^{2}\right) \neq \operatorname{Tr}\left(\hat{\Gamma} \hat{S}^{2}\right)
$$

- Our non-interacting density matrix will in general break (spin) symmetries

$$
\operatorname{Tr}\left(\hat{\Gamma}_{0} \hat{S}^{2}\right) \neq \operatorname{Tr}\left(\hat{\Gamma} \hat{S}^{2}\right)
$$

- We can alleviate this by restricting our Hilbert (sub)space
- Our non-interacting density matrix will in general break (spin) symmetries

$$
\operatorname{Tr}\left(\hat{\Gamma}_{0} \hat{S}^{2}\right) \neq \operatorname{Tr}\left(\hat{\Gamma} \hat{S}^{2}\right)
$$

- We can alleviate this by restricting our Hilbert (sub)space

```
Canonical: }\quad\mp@subsup{\mathscr{H}}{N}{
```

- Our non-interacting density matrix will in general break (spin) symmetries

$$
\operatorname{Tr}\left(\hat{\Gamma}_{0} \hat{S}^{2}\right) \neq \operatorname{Tr}\left(\hat{\Gamma} \hat{S}^{2}\right)
$$

- We can alleviate this by restricting our Hilbert (sub)space

```
Canonical: }\quad\mp@subsup{\mathscr{H}}{N}{
Grand Canonical: \mathscr{F}
```

- Our non-interacting density matrix will in general break (spin) symmetries

$$
\operatorname{Tr}\left(\hat{\Gamma}_{0} \hat{S}^{2}\right) \neq \operatorname{Tr}\left(\hat{\Gamma} \hat{S}^{2}\right)
$$

- We can alleviate this by restricting our Hilbert (sub)space

$$
\begin{array}{lc}
\text { Canonical: } & \mathscr{H}_{N} \\
\text { Grand Canonical: } & \mathscr{F} \\
\hat{S}_{z} \text { restricted: } & \hat{S}_{z}\left|\Phi_{P}\right\rangle=S_{z}\left|\Phi_{P}\right\rangle
\end{array}
$$

- Our non-interacting density matrix will in general break (spin) symmetries

$$
\operatorname{Tr}\left(\hat{\Gamma}_{0} \hat{S}^{2}\right) \neq \operatorname{Tr}\left(\hat{\Gamma} \hat{S}^{2}\right)
$$

- We can alleviate this by restricting our Hilbert (sub)space

$$
\begin{array}{lc}
\text { Canonical: } & \mathscr{H}_{N} \\
\text { Grand Canonical: } & \mathscr{F} \\
\hat{S}_{z} \text { restricted: } & \hat{S}_{z}\left|\Phi_{P}\right\rangle=S_{z}\left|\Phi_{P}\right\rangle
\end{array} \quad \mathcal{S}_{z} \subset \mathscr{H}_{N}
$$

- Our non-interacting density matrix will in general break (spin) symmetries

$$
\operatorname{Tr}\left(\hat{\Gamma}_{0} \hat{S}^{2}\right) \neq \operatorname{Tr}\left(\hat{\Gamma} \hat{S}^{2}\right)
$$

- We can alleviate this by restricting our Hilbert (sub)space

$$
\begin{array}{lcl}
\text { Canonical: } & \mathscr{H}_{N} & \\
\text { Grand Canonical: } & \mathscr{F} \\
\hat{S}_{z} \text { restricted: } & \hat{S}_{z}\left|\Phi_{P}\right\rangle=S_{z}\left|\Phi_{P}\right\rangle & \mathcal{S}_{z} \subset \mathscr{H}_{N} \\
\hat{S}^{2} \text { restricted: } & \hat{S}^{2}\left|\Xi_{P}\right\rangle=S^{2}\left|\Xi_{P}\right\rangle &
\end{array}
$$

- Our non-interacting density matrix will in general break (spin) symmetries

$$
\operatorname{Tr}\left(\hat{\Gamma}_{0} \hat{S}^{2}\right) \neq \operatorname{Tr}\left(\hat{\Gamma} \hat{S}^{2}\right)
$$

- We can alleviate this by restricting our Hilbert (sub)space

$$
\begin{array}{lcl}
\text { Canonical: } & \mathscr{H}_{N} & \\
\text { Grand Canonical: } & \mathscr{F} & \\
\hat{S}_{z} \text { restricted: } & \hat{S}_{z}\left|\Phi_{P}\right\rangle=S_{z}\left|\Phi_{P}\right\rangle & \mathcal{S}_{z} \subset \mathscr{H}_{N} \\
\hat{S}^{2} \text { restricted: } & \hat{S}^{2}\left|\Xi_{P}\right\rangle=S^{2}\left|\Xi_{P}\right\rangle & \mathcal{S}^{2} \subset \mathcal{S}_{z}
\end{array}
$$

- Our non-interacting density matrix will in general break (spin) symmetries

$$
\operatorname{Tr}\left(\hat{\Gamma}_{0} \hat{S}^{2}\right) \neq \operatorname{Tr}\left(\hat{\Gamma} \hat{S}^{2}\right)
$$

- We can alleviate this by restricting our Hilbert (sub)space

$$
\begin{array}{lcl}
\text { Canonical: } & \mathscr{H}_{N} & \\
\text { Grand Canonical: } & \mathscr{F} & \\
\hat{S}_{z} \text { restricted: } & \hat{S}_{z}\left|\Phi_{P}\right\rangle=S_{z}\left|\Phi_{P}\right\rangle & \mathcal{S}_{z} \subset \mathscr{H}_{N} \\
\hat{S}^{2} \text { restricted: } & \hat{S}^{2}\left|\Xi_{P}\right\rangle=S^{2}\left|\Xi_{P}\right\rangle & \mathcal{S}^{2} \subset \mathcal{S}_{z}
\end{array}
$$

Less variational
freedom

11. E.H. Lieb. Phys. Rev. Lett. 46, 457 (1981), DOI:
10.1103/PhysRevLett. 46.457

- As of yet: only evaluation on exact 1-RDMs at zero temperature
- As of yet: only evaluation on exact 1-RDMs at zero temperature - Improve stability for fermions
- As of yet: only evaluation on exact 1-RDMs at zero temperature
- Improve stability for fermions
- Self-consistent optimisation, integrating with pyscf(ad)
- As of yet: only evaluation on exact 1-RDMs at zero temperature
- Improve stability for fermions
- Self-consistent optimisation, integrating with pyscf(ad)
- Calculate $\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle=\frac{e^{-\beta\left(\epsilon_{p}+\epsilon_{q}\right)} Z_{N-2}^{U / \text { pq }}}{Z_{N}}$
- As of yet: only evaluation on exact 1-RDMs at zero temperature
- Improve stability for fermions
- Self-consistent optimisation, integrating with pyscf(ad)
- Calculate $\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle=\frac{e^{-\beta\left(\epsilon_{p}+\epsilon_{q}\right)} Z_{N-2}^{\mathrm{U} \backslash p q}}{Z_{N}}$
- Obtain $\frac{\partial W_{0}[\gamma]}{\partial n_{p}}$, via $\frac{\partial \epsilon_{q}}{\partial n_{p}}$ from automatic differentiation or implicit function theorem
- As of yet: only evaluation on exact 1-RDMs at zero temperature
- Improve stability for fermions
- Self-consistent optimisation, integrating with pyscf(ad)
- Calculate $\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle=\frac{e^{-\beta\left(\epsilon_{p}+\epsilon_{q}\right)} Z_{N-2}^{\cup / \backslash p q}}{Z_{N}}$
- Obtain $\frac{\partial W_{0}[\gamma]}{\partial n_{p}}$, via $\frac{\partial \epsilon_{q}}{\partial n_{p}}$ from automatic differentiation or implicit function theorem
- The missing correlation functional $A_{c}^{\beta}[\gamma]$
- As of yet: only evaluation on exact 1-RDMs at zero temperature
- Improve stability for fermions
- Self-consistent optimisation, integrating with pyscf(ad)
- Calculate $\left\langle\hat{n}_{p} \hat{n}_{q}\right\rangle=\frac{e^{-\beta\left(\epsilon_{p}+\epsilon_{q}\right)} Z_{N-2}^{\mathrm{U} \backslash p q}}{Z_{N}}$
- Obtain $\frac{\partial W_{0}[\gamma]}{\partial n_{p}}$, via $\frac{\partial \epsilon_{q}}{\partial n_{p}}$ from automatic differentiation or implicit function theorem
- The missing correlation functional $A_{c}^{\beta}[\gamma]$
- In preparation: a reference that takes into account part of the interaction

27
VUK=

- Finite temperature 1-RDMFT in the canonical ensemble was studied numerically for the first time
- Finite temperature 1-RDMFT in the canonical ensemble was studied numerically for the first time
- A (canonical) non-interacting reference system was introduced
- Finite temperature 1-RDMFT in the canonical ensemble was studied numerically for the first time
- A (canonical) non-interacting reference system was introduced
- Bosonic and Fermionic Sinkhorn algorithms were derived and implemented in the bfsinkhorn package
- Finite temperature 1-RDMFT in the canonical ensemble was studied numerically for the first time
- A (canonical) non-interacting reference system was introduced
- Bosonic and Fermionic Sinkhorn algorithms were derived and implemented in the bfsinkhorn package
- The algorithms were shown to be efficient and perform well for both "simulated" and ground-state 1-RDMs
- Finite temperature 1-RDMFT in the canonical ensemble was studied numerically for the first time
- A (canonical) non-interacting reference system was introduced
- Bosonic and Fermionic Sinkhorn algorithms were derived and implemented in the bfsinkhorn package
- The algorithms were shown to be efficient and perform well for both "simulated" and ground-state 1-RDMs
- A study of the corresponding canonical approximation to the interaction $W_{0}[\gamma]$ revealed interesting behaviour w.r.t. grand canonical

- Klaas J.H. Giesbertz, Paola Gori Giorgi, Evert Jan Baerends, Sarina M. Sutter and Mauricio Rodríguez Mayorga for insightful discussions

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

- Klaas J.H. Giesbertz, Paola Gori Giorgi, Evert Jan Baerends, Sarina M.

Sutter and Mauricio Rodríguez Mayorga for insightful discussions

- Klaas J.H. Giesbertz, Paola Gori Giorgi and Sarina M. Sutter for a careful reading of the manuscript and helpful comments

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

- Klaas J.H. Giesbertz, Paola Gori Giorgi, Evert Jan Baerends, Sarina M.

Sutter and Mauricio Rodríguez Mayorga for insightful discussions

- Klaas J.H. Giesbertz, Paola Gori Giorgi and Sarina M. Sutter for a careful reading of the manuscript and helpful comments
- Financial support:
-Netherlands Organisation for Scientific Research under Vici grant 724.017.001 (Paola Gori Giorgi)

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

- Manuscript: arXiv:2205.15058 (under review)

- Manuscript: arXiv:2205.15058 (under review)

- bfsinkhorn: https://www.github.com/DerkKooi/bfsinkhorn

1. T. Baldsiefen, A. Cangi and E.K.U. Gross. Phys. Rev. A. 92, 052514 (2015), DOI: $10.1103 /$ physreva. 92.052514
2. T. Baldsiefen and E.K.U. Gross. Comp. and Theo. Chem. 1003, 114 (2013), DOI: 10.1016/j.comptc. 2012.09 .001
3. K.J.H. Giesbertz and M. Ruggenthaler. Physics Reports 806, 1-47 (2019), DOI: 10.1016/j.physrep.2019.01.010
4. J. Wang and E.J. Baerends. Phys. Rev. Lett. 128, 013001 (2022), DOI: 10.1103/PhysRevLett. 128.013001
5. S.M. Sutter and K.J.H. Giesbertz. arXiv:2209.11663 [math-ph]
6. A.J. Coleman, Rev. Mod. Phys. 35, 668 (1963). DOI: 10.1103/RevModPhys.35.668
7. S.M. Valone. Phys. Rev. B 44, 1509 (1991), DOI: 10.1103/PhysRevB.44.1509
8. K.J.H. Giesbertz and E.J. Baerends. J. Chem. Phys. 132, 194108 (2010), DOI: 10.1063/1.3426319
9. H. Barghati, J. Yu and A.D. Maestro. Phys. Rev. Res. 2, 043206 (2020), DOI: 10.1103/physrevresearch. 2.043206
10. P. Borrmann and G. Franke. J. Chem. Phys. 98, 2484 (1993), DOI: 10.1063/1.464180
11. E.H. Lieb. Phys. Rev. Lett. 46, 457 (1981), DOI: 10.1103/PhysRevLett. 46.457

$$
\begin{gathered}
h_{p p}-\frac{1}{\beta} \frac{\partial S_{0}\left[\left\{n_{q}\right\}\right]}{\partial n_{p}}+\frac{\partial W_{0}[\gamma]}{\partial n_{p}}+\frac{A_{c}^{\beta}[\gamma]}{\partial n_{p}}=0 \\
\epsilon_{p}^{0, \beta(i+1)}=h_{p p}^{(i)}+\frac{\partial W_{0}\left[\gamma^{(i)}\right]}{\partial n_{p}}+\frac{\partial A_{c}^{\beta}\left[\gamma^{(i)}\right]}{\partial n_{p}^{(i)}} \longrightarrow n_{p}^{(i+1)}\left[\left\{\epsilon_{q}^{0, \beta(i+1)}\right\}\right]
\end{gathered}
$$

- We need to optimise w.r.t. NOONs $\left\{n_{p}\right\}$ and NOs $\left\{\phi_{p}(\mathrm{x})\right\}$
- Taking the derivative of $A^{\beta}[\gamma]$ w.r.t. n_{p} :

$$
\begin{gathered}
h_{p p}-\frac{1}{\beta} \frac{\partial S_{0}\left[\left\{n_{q}\right\}\right]}{\partial n_{p}}+\frac{\partial W_{0}[\gamma]}{\partial n_{p}}+\frac{A_{c}^{\beta}[\gamma]}{\partial n_{p}}=0 \\
\epsilon_{p}^{0, \beta(i+1)}=h_{p p}^{(i)}+\frac{\partial W_{0}\left[\gamma^{(i)}\right]}{\partial n_{p}}+\frac{\partial A_{c}^{\beta}\left[\gamma^{(i)}\right]}{\partial n_{p}^{(i)}} \longrightarrow n_{p}^{(i+1)}\left[\left\{\epsilon_{q}^{0, \beta(i+1)}\right\}\right]
\end{gathered}
$$

- Optimisation over NOs yields effective one-particle Schrödinger equation
- Analogous for Grand Canonical

31
VU/ F^{m}

- Shift by a constant and either match the strongly or weakly occupied

35
vu $=$

- At finite temperature we have instead:
- At finite temperature we have instead:

Canonical:

$$
\hat{\Gamma}^{\beta}=\frac{e^{-\beta \hat{H}}}{Z^{\beta}}, \quad Z^{\beta}=\operatorname{Tr}\left(e^{-\beta \hat{H}}\right)
$$

- At finite temperature we have instead:

Canonical:

$$
\hat{\Gamma}^{\beta}=\frac{e^{-\beta \hat{H}}}{Z^{\beta}}, \quad Z^{\beta}=\operatorname{Tr}\left(e^{-\beta \hat{H}}\right)
$$

Grand Canonical: $\quad \hat{\Gamma}^{\beta, \mu}=\frac{e^{-\beta(\hat{H}-\mu \hat{N})}}{\mathscr{Z}^{\beta, \mu}}, \quad \mathscr{Z}^{\beta, \mu}=\operatorname{Tr}\left(e^{-\beta(\hat{H}-\mu \hat{N})}\right)$

- At finite temperature we have instead:

$$
\begin{array}{ll}
\text { Canonical: } & \hat{\Gamma}^{\beta}=\frac{e^{-\beta \hat{H}}}{Z^{\beta}}, \quad Z^{\beta}=\operatorname{Tr}\left(e^{-\beta \hat{H}}\right) \\
\text { Grand Canonical: } & \hat{\Gamma}^{\beta, \mu}=\frac{e^{-\beta(\hat{H}-\mu \hat{N})}}{\mathscr{X}^{\beta, \mu}}, \quad \mathscr{Z}^{\beta, \mu}=\operatorname{Tr}\left(e^{-\beta(\hat{H}-\mu \hat{N})}\right)
\end{array}
$$

- Note the different Hilbert spaces (single particle space \mathfrak{h})
- At finite temperature we have instead:

Canonical:

$$
\hat{\Gamma}^{\beta}=\frac{e^{-\beta \hat{H}}}{Z^{\beta}}, \quad Z^{\beta}=\operatorname{Tr}\left(e^{-\beta \hat{H}}\right)
$$

Grand Canonical: $\quad \hat{\Gamma}^{\beta, \mu}=\frac{e^{-\beta(\hat{H}-\mu \hat{N})}}{\mathscr{Z}^{\beta, \mu}}, \quad \mathscr{Z}^{\beta, \mu}=\operatorname{Tr}\left(e^{-\beta(\hat{H}-\mu \hat{N})}\right)$

- Note the different Hilbert spaces (single particle space \mathfrak{h})

$$
\text { Canonical: } \quad \mathscr{H}_{N}=\bigvee_{i=1}^{N} \mathfrak{h}
$$

- At finite temperature we have instead:

Canonical:

$$
\hat{\Gamma}^{\beta}=\frac{e^{-\beta \hat{H}}}{Z^{\beta}}, \quad Z^{\beta}=\operatorname{Tr}\left(e^{-\beta \hat{H}}\right)
$$

Grand Canonical: $\quad \hat{\Gamma}^{\beta, \mu}=\frac{e^{-\beta(\hat{H}-\mu \hat{N})}}{\mathscr{Z}^{\beta, \mu}}, \quad \mathscr{Z}^{\beta, \mu}=\operatorname{Tr}\left(e^{-\beta(\hat{H}-\mu \hat{N})}\right)$

- Note the different Hilbert spaces (single particle space \mathfrak{h})

Canonical: $\quad \mathscr{H}_{N}=\bigvee_{i=1}^{N} \mathfrak{h} \quad \mathscr{H}_{N}=\bigwedge_{i=1}^{N} \mathfrak{h}$

- At finite temperature we have instead:

$$
\begin{array}{ll}
\text { Canonical: } & \hat{\Gamma}^{\beta}=\frac{e^{-\beta \hat{H}}}{Z^{\beta}}, \quad Z^{\beta}=\operatorname{Tr}\left(e^{-\beta \hat{H}}\right) \\
\text { Grand Canonical: } & \hat{\Gamma}^{\beta, \mu}=\frac{e^{-\beta(\hat{H}-\mu \hat{N})}}{\mathscr{X}^{\beta, \mu}}, \quad \mathscr{Z}^{\beta, \mu}=\operatorname{Tr}\left(e^{-\beta(\hat{H}-\mu \hat{N})}\right)
\end{array}
$$

- Note the different Hilbert spaces (single particle space \mathfrak{h})

$$
\text { Canonical: } \quad \mathscr{H}_{N}=\bigvee_{i=1}^{N} \mathfrak{h} \quad \mathscr{H}_{N}=\bigwedge_{i=1}^{N} \mathfrak{h} \quad \hat{\Gamma}^{\beta} \in \mathscr{H}_{N} \otimes \mathscr{H}_{N}
$$

- At finite temperature we have instead:

Canonical:

$$
\hat{\Gamma}^{\beta}=\frac{e^{-\beta \hat{H}}}{Z^{\beta}}, \quad Z^{\beta}=\operatorname{Tr}\left(e^{-\beta \hat{H}}\right)
$$

Grand Canonical: $\quad \hat{\Gamma}^{\beta, \mu}=\frac{e^{-\beta(\hat{H}-\mu \hat{N})}}{\mathscr{Z}^{\beta, \mu}}, \quad \mathscr{L}^{\beta, \mu}=\operatorname{Tr}\left(e^{-\beta(\hat{H}-\mu \hat{N})}\right)$

- Note the different Hilbert spaces (single particle space \mathfrak{h})

Canonical: $\quad \mathscr{H}_{N}=\bigvee_{i=1}^{N} \mathfrak{h} \quad \mathscr{H}_{N}=\bigwedge_{i=1}^{N} \mathfrak{h} \quad \hat{\Gamma}^{\beta} \in \mathscr{H}_{N} \otimes \mathscr{H}_{N}$
Grand Canonical: $\quad \mathscr{F}=\bigoplus_{N=0}^{\infty} \mathscr{H}_{N} \quad \quad \hat{\Gamma}^{\beta, \mu} \in \mathscr{F} \otimes \mathscr{F}$

$$
\left.\begin{array}{l}
\mathcal{S}_{z}=\left\{\begin{array}{ll}
\left|\Phi_{P}\right\rangle \in \mathscr{H}_{N} \mid & \hat{S}_{z}\left|\Phi_{P}\right\rangle=S_{z}\left|\Phi_{P}\right\rangle
\end{array}\right\} \\
\mathcal{S}_{z}=\left\{\left|\Xi_{P}\right\rangle \in \mathscr{H}_{N}\left|\quad \hat{S}^{2}\right| \Xi_{P}\right\rangle=S^{2}\left|\Xi_{P}\right\rangle
\end{array}\right\}
$$

