Richardson-Gaudin Wavefunctions for Strong Correlation

Paul Andrew Johnson

Department of Chemistry, Université Laval

October 10, 2022

Weak and Strong Correlation

Weak correlation

- Dispersion effects
- For molecules: one resonance structure
- HOMO-LUMO gap large compared with electronic repulsion

Weak correlation

- Dispersion effects
- For molecules: one resonance structure
- HOMO-LUMO gap large compared with electronic repulsion

Strong correlation

- Bond-stretching / breaking
- Motion of electrons rigidly coupled
- For molecules: many resonance structures
- HOMO-LUMO gap small compared with electronic repulsion
- "How many bonds?"

Weak correlation

- Dispersion effects
- For molecules: one resonance structure
- HOMO-LUMO gap large compared with electronic repulsion

Strong correlation

- Bond-stretching / breaking
- Motion of electrons rigidly coupled
- For molecules: many resonance structures
- HOMO-LUMO gap small compared with electronic repulsion
- "How many bonds?"

Any system far from a mean-field of electrons (aufbau). Try to subdivide effects and treat correctly at the mean-field level.

Weakly-correlated:

$$|\Psi\rangle = |\mathsf{HF}\rangle + \sum_{i,a} C_{i,a} |\Phi_i^a\rangle + \sum_{ij,ab} C_{ij,ab} |\Phi_{ij}^{ab}\rangle + \dots$$

Series "converges" provided that Hartree-Fock is a reasonable approximation to the exact result.

Weakly-correlated:

$$|\Psi\rangle = |\mathsf{HF}\rangle + \sum_{i,a} C_{i,a} |\Phi_i^a\rangle + \sum_{ij,ab} C_{ij,ab} |\Phi_{ij}^{ab}\rangle + \dots$$

Series "converges" provided that Hartree-Fock is a reasonable approximation to the exact result.

Problem: can we define a "reference" state for strongly-correlated systems such that a short expansion converges?

Weakly-correlated:

$$|\Psi\rangle = |\mathsf{HF}\rangle + \sum_{i,a} C_{i,a} |\Phi_i^a\rangle + \sum_{ij,ab} C_{ij,ab} |\Phi_{ij}^{ab}\rangle + \dots$$

Series "converges" provided that Hartree-Fock is a reasonable approximation to the exact result.

Problem: can we define a "reference" state for strongly-correlated systems such that a short expansion converges?

- Productive to expand in seniority
- Solve seniority problems individually
- Start with weakly-correlated pairs rather than electrons

Seniority and DOCI

- $\bullet\,$ Seniority, $\Omega\colon$ the number of unpaired electrons of a given MO diagram
- Doubly-Occupied Configuration Interaction: DOCI, all diagrams with seniority zero
- Pair mean-fields have DOCI as best possible case

Bytautas JCP 135, 044119 (2011)

su(2): Pairs

Individual electrons:

$$a_i^{\dagger}a_j + a_j a_i^{\dagger} = \delta_{ij}$$

su(2): Pairs

Individual electrons:

$$a_i^{\dagger}a_j + a_j a_i^{\dagger} = \delta_{ij}$$

In one spatial orbital, can make / remove pairs:

$$S^{+} = a_{\uparrow}^{\dagger} a_{\downarrow}^{\dagger} , \quad S^{-} = a_{\downarrow} a_{\uparrow} , \quad S^{z} = \frac{1}{2} \left(a_{\uparrow}^{\dagger} a_{\uparrow} + a_{\downarrow}^{\dagger} a_{\downarrow} - 1 \right)$$

$$[S^+, S^-] = 2S^z, \quad [S^z, S^{\pm}] = \pm S^{\pm}$$

su(2): Pairs

Individual electrons:

$$a_i^{\dagger}a_j + a_j a_i^{\dagger} = \delta_{ij}$$

In one spatial orbital, can make / remove pairs:

$$S^{+} = a_{\uparrow}^{\dagger} a_{\downarrow}^{\dagger} , \quad S^{-} = a_{\downarrow} a_{\uparrow} , \quad S^{z} = \frac{1}{2} \left(a_{\uparrow}^{\dagger} a_{\uparrow} + a_{\downarrow}^{\dagger} a_{\downarrow} - 1 \right)$$

$$[S^+, S^-] = 2S^z, \quad [S^z, S^{\pm}] = \pm S^{\pm}$$

Extends to any number of spatial orbitals cleanly:

$$S_i^+ = a_{i\uparrow}^\dagger a_{i\downarrow}^\dagger , \quad S_i^- = a_{i\downarrow} a_{i\uparrow} , \quad S_i^z = \frac{1}{2} \left(a_{i\uparrow}^\dagger a_{i\uparrow} + a_{i\downarrow}^\dagger a_{i\downarrow} - 1 \right)$$
$$\left[S_i^+, S_j^- \right] = 2\delta_{ij} S_i^z , \quad \left[S_i^z, S_j^\pm \right] = \pm \delta_{ij} S_i^\pm$$

6/24

Geminal Mean-field wavefunctions: $\prod_a G_a^\dagger \left| \theta \right\rangle$

Geminal Mean-field wavefunctions: $\prod_a G_a^{\dagger} |\theta\rangle$ • RHF: $G_a^{\dagger} = S_a^+$

Geminal Mean-field wavefunctions: $\prod_a G_a^{\dagger} \ket{\theta}$

- RHF: $G_a^{\dagger} = S_a^+$
- Geminal Power (AGP): $G_a^{\dagger} = \sum_i g_i S_i^+$
- Richardson-Gaudin (RG) states: $G_a^{\dagger} = \sum_i \frac{S_i^+}{u_a \varepsilon_i}$
- Product of Interacting Geminals (APIG): $G_a^{\dagger} = \sum_i g_{ai} S_i^{\dagger}$

Geminal Mean-field wavefunctions: $\prod_a G_a^{\dagger} \ket{\theta}$

- RHF: $G_a^{\dagger} = S_a^+$
- Geminal Power (AGP): $G_a^{\dagger} = \sum_i g_i S_i^+$
- Richardson-Gaudin (RG) states: $G_a^{\dagger} = \sum_i \frac{S_i^+}{u_a \varepsilon_i}$
- Product of Interacting Geminals (APIG): $G_a^{\dagger} = \sum_i g_{ai} S_i^{\dagger}$ Occupied-Virtual separation type:
 - GVB/PP: $G_a^{\dagger} = S_a^+ S_{a+M}^+$

• APSG:
$$G_a^{\dagger} = S_a^+ + \sum_{b \in \mathcal{A}} g_{ab} S_b^+$$

• AP1roG/pCCD: $G_a^{\dagger} = S_a^+ + \sum_{b \in virt} g_{ab} S_b^+$

Geminal Mean-field wavefunctions: $\prod_a G_a^{\dagger} \ket{\theta}$

- RHF: $G_a^{\dagger} = S_a^+$
- Geminal Power (AGP): $G_a^{\dagger} = \sum_i g_i S_i^+$
- Richardson-Gaudin (RG) states: $G_a^{\dagger} = \sum_i \frac{S_i^+}{u_a \varepsilon_i}$
- Product of Interacting Geminals (APIG): $G_a^{\dagger} = \sum_i g_{ai}S_i^{\dagger}$ Occupied-Virtual separation type:
 - GVB/PP: $G_a^{\dagger} = S_a^+ S_{a+M}^+$

• APSG:
$$G_a^{\dagger} = S_a^+ + \sum_{b \in \mathcal{A}} g_{ab} S_b^+$$

• AP1roG/pCCD: $G_a^{\dagger} = S_a^+ + \sum_{b \in virt} g_{ab} S_b^+$

Geminal wavefunction \approx Natural-Orbital functionals.

Explicit AGP and APSG Implicit RG states and APIG

$$\hat{H}_{BCS} = \frac{1}{2} \sum_{i} \varepsilon_i \hat{n}_i - \frac{g}{2} \sum_{ij} S_i^+ S_j^-$$

Competition between aufbau filling and pair scattering.

$$\hat{H}_{BCS} = \frac{1}{2} \sum_{i} \varepsilon_i \hat{n}_i - \frac{g}{2} \sum_{ij} S_i^+ S_j^-$$

Competition between aufbau filling and pair scattering. Richardson, Gaudin (specific example of Bethe Ansatz):

$$|\{u\}\rangle = \left(\sum_{i} \frac{S_i^+}{u_1 - \varepsilon_i}\right) \left(\sum_{i} \frac{S_i^+}{u_2 - \varepsilon_i}\right) \dots \left(\sum_{i} \frac{S_i^+}{u_M - \varepsilon_i}\right) |\theta\rangle$$

$$\hat{H}_{BCS} = \frac{1}{2} \sum_{i} \varepsilon_i \hat{n}_i - \frac{g}{2} \sum_{ij} S_i^+ S_j^-$$

Competition between aufbau filling and pair scattering. Richardson, Gaudin (specific example of Bethe Ansatz):

$$|\{u\}\rangle = \left(\sum_{i} \frac{S_{i}^{+}}{u_{1} - \varepsilon_{i}}\right) \left(\sum_{i} \frac{S_{i}^{+}}{u_{2} - \varepsilon_{i}}\right) \dots \left(\sum_{i} \frac{S_{i}^{+}}{u_{M} - \varepsilon_{i}}\right) |\theta\rangle$$

Can show that

$$\hat{H}_{BCS} \left| \{u\} \right\rangle = E \left| \{u\} \right\rangle + (garbage)$$

$$\hat{H}_{BCS} = \frac{1}{2} \sum_{i} \varepsilon_i \hat{n}_i - \frac{g}{2} \sum_{ij} S_i^+ S_j^-$$

Competition between aufbau filling and pair scattering. Richardson, Gaudin (specific example of Bethe Ansatz):

$$|\{u\}\rangle = \left(\sum_{i} \frac{S_{i}^{+}}{u_{1} - \varepsilon_{i}}\right) \left(\sum_{i} \frac{S_{i}^{+}}{u_{2} - \varepsilon_{i}}\right) \dots \left(\sum_{i} \frac{S_{i}^{+}}{u_{M} - \varepsilon_{i}}\right) |\theta\rangle$$

Can show that

$$\hat{H}_{BCS} \left| \{u\} \right\rangle = E \left| \{u\} \right\rangle + (garbage)$$

So $|\{u\}\rangle$ a solution provided garbage disappears, or

$$\frac{2}{g} + \sum_{i} \frac{1}{u_a - \varepsilon_i} + \sum_{b \neq a} \frac{2}{u_b - u_a} = 0.$$

Variational Program

Use RG states to approximate energy of Coulomb Hamiltonian \hat{H}_C

$$E = \min_{\{\varepsilon\},g} \frac{\langle \{u\} | \hat{H}_C | \{u\} \rangle}{\langle \{u\} | \{u\} \rangle}$$

Variational Program

Use RG states to approximate energy of Coulomb Hamiltonian \hat{H}_C

$$E = \min_{\{\varepsilon\},g} \frac{\langle \{u\} | \hat{H}_C | \{u\} \rangle}{\langle \{u\} | \{u\} \rangle}$$

- $\{\varepsilon\},g$ define reduced BCS Hamiltonian
- Solve Richardson's equations for $\{u\}$
- Construct (normalized)

$$\gamma_i = \langle \{u\} | \hat{n}_i | \{u\} \rangle$$
$$D_{ij} = \langle \{u\} | \hat{n}_i \hat{n}_j | \{u\} \rangle$$
$$P_{ij} = \langle \{u\} | S_i^+ S_j^- | \{u\} \rangle$$

Variational Program

Use RG states to approximate energy of Coulomb Hamiltonian \hat{H}_C

$$E = \min_{\{\varepsilon\},g} \frac{\langle \{u\} | \hat{H}_C | \{u\} \rangle}{\langle \{u\} | \{u\} \rangle}$$

- $\{\varepsilon\},g$ define reduced BCS Hamiltonian
- Solve Richardson's equations for $\{u\}$
- Construct (normalized)

$$\begin{split} \gamma_i &= \langle \{u\} | \hat{n}_i | \{u\} \rangle \\ D_{ij} &= \langle \{u\} | \hat{n}_i \hat{n}_j | \{u\} \rangle \\ P_{ij} &= \langle \{u\} | S_i^+ S_j^- | \{u\} \rangle \end{split}$$

System: {ε}, g
States: {u} ≈ pair energies

10 / 24

APIG scalar products

$$\langle \{h\}|\{g\}\rangle = \sum_{\mathcal{P}} \prod_{P \in \mathcal{P}} \Gamma\left(\{h\}_P \cup \{g\}_P\right)$$

Sums of all possible rank-q contractions:

$$\Gamma\left(h_{a_1},\ldots,h_{a_q},g_{b_1},\ldots,g_{b_q}\right) = (-1)^{(q-1)}q!(q-1)!\sum_i h_{a_1}^i\ldots h_{a_q}^i g_{b_1}^i\ldots g_{b_q}^i$$

APIG scalar products

$$\langle \{h\}|\{g\}\rangle = \sum_{\mathcal{P}} \prod_{P \in \mathcal{P}} \Gamma\left(\{h\}_P \cup \{g\}_P\right)$$

Sums of all possible rank-q contractions:

$$\Gamma\left(h_{a_1},\ldots,h_{a_q},g_{b_1},\ldots,g_{b_q}\right) = (-1)^{(q-1)}q!(q-1)!\sum_i h_{a_1}^i\ldots h_{a_q}^i g_{b_1}^i\ldots g_{b_q}^i$$

Become feasible in 3 distinct ways:

RG Rank-reduction: all rank-q contractions writeable as rank-1 $\{u\}$ a solution of Richardson's equations $\rightarrow 1$ determinant

APIG scalar products

$$\langle \{h\}|\{g\}\rangle = \sum_{\mathcal{P}} \prod_{P \in \mathcal{P}} \Gamma\left(\{h\}_P \cup \{g\}_P\right)$$

Sums of all possible rank-q contractions:

$$\Gamma\left(h_{a_1},\dots,h_{a_q},g_{b_1},\dots,g_{b_q}\right) = (-1)^{(q-1)}q!(q-1)!\sum_i h_{a_1}^i\dots h_{a_q}^i g_{b_1}^i\dots g_{b_q}^i$$

Become feasible in 3 distinct ways:

RG Rank-reduction: all rank-q contractions writeable as rank-1 $\{u\}$ a solution of Richardson's equations $\rightarrow 1$ determinant

AGP Recursion: contractions depend only on the rank

- determinant of power-sum symmetric polynomials
- Very clean recursion for scalar products

APIG scalar products

$$\langle \{h\}|\{g\}\rangle = \sum_{\mathcal{P}} \prod_{P \in \mathcal{P}} \Gamma\left(\{h\}_P \cup \{g\}_P\right)$$

Sums of all possible rank-q contractions:

$$\Gamma\left(h_{a_1},\dots,h_{a_q},g_{b_1},\dots,g_{b_q}\right) = (-1)^{(q-1)}q!(q-1)!\sum_i h_{a_1}^i\dots h_{a_q}^i g_{b_1}^i\dots g_{b_q}^i$$

Become feasible in 3 distinct ways:

RG Rank-reduction: all rank-q contractions writeable as rank-1 $\{u\}$ a solution of Richardson's equations $\rightarrow 1$ determinant AGP Recursion: contractions depend only on the rank

- determinant of power-sum symmetric polynomials
- Very clean recursion for scalar products

APSG Sparsity: only diagonal rank-1 contractions are non-zero

b)

P. A. Johnson (Université Laval)

5

7 8 9

3 4

.

*× × ×

.

P. A. Johnson (Université Laval)

RDM elements require computing rapidities $\{u\}$

$$\frac{2}{g} + \sum_{i} \frac{1}{u_a - \varepsilon_i} + \sum_{b(\neq a)} \frac{2}{u_b - u_a} = 0$$

RDM elements require computing rapidities $\{u\}$

$$\frac{2}{g} + \sum_{i} \frac{1}{u_a - \varepsilon_i} + \sum_{b(\neq a)} \frac{2}{u_b - u_a} = 0$$

Use variables U_i , then root-find a Lagrange interpolation polynomial for $\{u\}$

$$U_i = \sum_a \frac{g}{\varepsilon_i - u_a}, \qquad 0 = U_i^2 - 2U_i - g \sum_{k(\neq i)} \frac{U_k - U_i}{\varepsilon_k - \varepsilon_i}$$

Equations are solved by adiabatic evolution from g=0

$$0 = U_i(U_i - 2)$$

Solutions at g = 0 are Slater determinants labelled by occupations and **evolve uniquely**. Unambiguous to label states based on g = 0, e.g. 111000, 110100, ..., 000111

RDM elements require computing rapidities $\{u\}$

$$\frac{2}{g} + \sum_{i} \frac{1}{u_a - \varepsilon_i} + \sum_{b(\neq a)} \frac{2}{u_b - u_a} = 0$$

Use variables U_i , then root-find a Lagrange interpolation polynomial for $\{u\}$

$$U_i = \sum_a \frac{g}{\varepsilon_i - u_a}, \qquad 0 = U_i^2 - 2U_i - g \sum_{k(\neq i)} \frac{U_k - U_i}{\varepsilon_k - \varepsilon_i}$$

Equations are solved by adiabatic evolution from g=0

$$0 = U_i(U_i - 2)$$

Solutions at g = 0 are Slater determinants labelled by occupations and **evolve uniquely**. Unambiguous to label states based on g = 0, e.g. 111000, 110100, ..., 000111 **RDM elements now only require variables** U_i .

P. A. Johnson (Université Laval)

13/24

After assigning occupations at g = 0, dynamic g-step approach:

- Attempt large step with a Taylor series
- Reject, and retry with half-step if terms in series grow
- Newton-Raphson solve
- $\bullet\,$ Reject, and retry if norm of $\{U\}$ changes by more than threshold

Number of steps required grows only **logarithmically** with g.

a)

RG 1010 smoothly transitions from RHF + pairs to GVB

a)

 The RG states are the DOCI states: non-interacting RG pairs is the physical picture

- The RG states are the DOCI states: non-interacting RG pairs is the physical picture
- Correct description of excited states requires OO for each state...

b)

8 ġ 10

b)

b)

Can compute matrix elements between RG eigenvectors:

- Each state parametrized by distinct solution of $\{u\}$
- Transition matrix elements require determinants (but less clean)
- Analogue of aufbau principle for RG states
- On paper: each RG state couples with each other RG state

Can compute matrix elements between RG eigenvectors:

- Each state parametrized by distinct solution of $\{u\}$
- Transition matrix elements require determinants (but less clean)
- Analogue of aufbau principle for RG states
- On paper: each RG state couples with each other RG state
- Numerically: Couplings decrease with "excitation level"

Can compute matrix elements between RG eigenvectors:

- Each state parametrized by distinct solution of $\{u\}$
- Transition matrix elements require determinants (but less clean)
- Analogue of aufbau principle for RG states
- On paper: each RG state couples with each other RG state
- Numerically: Couplings decrease with "excitation level"

 $D_{ij}^{vw} = \langle \{v\} | \hat{n}_i \hat{n}_j | \{w\} \rangle \qquad P_{ij}^{vw} = \langle \{v\} | S_i^+ S_j^- | \{w\} \rangle$

Can compute matrix elements between RG eigenvectors:

- \bullet Each state parametrized by distinct solution of $\{u\}$
- Transition matrix elements require determinants (but less clean)
- Analogue of aufbau principle for RG states
- On paper: each RG state couples with each other RG state
- Numerically: Couplings decrease with "excitation level"

 $D_{ij}^{vw} = \langle \{v\} | \hat{n}_i \hat{n}_j | \{w\} \rangle$

$$P_{ij}^{vw} = \langle \{v\} | S_i^+ S_j^- | \{w\} \rangle$$

We are building methods for strong electron correlation using exactly solvable models. RG pairs in particular.

Outlook

We are building methods for strong electron correlation using exactly solvable models. RG pairs in particular.

Advantages:

- Variationally feasible mean-field
- Complete set of eigenvectors
- Clean, easy computational expressions
- Potential for sparsity

Outlook

We are building methods for strong electron correlation using exactly solvable models. RG pairs in particular.

Advantages:

- Variationally feasible mean-field
- Complete set of eigenvectors
- Clean, easy computational expressions
- Potential for sparsity

Issues:

Orbital optimization

- Optimization of variational parameters $\{\varepsilon\}, g$
- Choosing the correct RG state
- Transition density matrices expensive
- Degenerate RG states

Outlook

We are building methods for strong electron correlation using exactly solvable models. RG pairs in particular.

Advantages:

- Variationally feasible mean-field
- Complete set of eigenvectors
- Clean, easy computational expressions
- Potential for sparsity

Issues:

Orbital optimization

- Optimization of variational parameters $\{\varepsilon\}, g$
- Choosing the correct RG state
- Transition density matrices expensive
- Degenerate RG states

Machinery to employ RG states as a basis is not difficult!

More than 1 RG state required

More than 1 RG state required

A. E. Stuchberry and J. L. Wood, Physics, 2022, 4, 697-773.

More than 1 RG state required

A. E. Stuchberry and J. L. Wood, *Physics*, **2022**, *4*, 697-773.

Acknowledgments

- Charles-Émile Fecteau
- Mathieu Mainville
- Jean-David Moisset
- Jérémy Boulay
- Samuel Cloutier
- Terence Blaskovits
- Frédéric Berthiaume
- Laurie Carrier
- Daniel Fillion
- Hubert Fortin
- Marianne Gratton
- Meriem Khalfoun

We are looking for PhD students! paul.johnson@chm.ulaval.ca