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Quantum bath 
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Clusterization through a unitary one-electron transformation 
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Clusterization through a unitary one-electron transformation 
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Embedding based on idempotent density matrices
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Embedding based on idempotent density matrices
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Non-interacting bath embedding of a single interacting impurity
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ĥ𝒞 single impurity
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Non-interacting bath embedding of a single impurity
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Density-functional exactification of single-impurity DMET (for Hubbard)

vHxc(n) = μ̃imp(n)+…

S. Sekaran, M. Saubanère, and E. Fromager, Computation 2022, 10, 45.

The “low-level” full-size non-interacting system of DMET  
is becoming the Kohn-Sham system! 
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Density-functional exactification of single-impurity DMET (for Hubbard)

vHxc(n) = μ̃imp(n)+…

S. Sekaran, M. Saubanère, and E. Fromager, Computation 2022, 10, 45.

The “low-level” full-size non-interacting system of DMET  
is becoming the Kohn-Sham system! 

Functional-free DFT! 
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ABSTRACT: Density matrix embedding theory (DMET) for-
mally requires the matching of density matrix blocks obtained from
high-level and low-level theories, but this is sometimes not
achievable in practical calculations. In such a case, the global band
gap of the low-level theory vanishes, and this can require additional
numerical considerations. We find that both the violation of the
exact matching condition and the vanishing low-level gap are
related to the assumption that the high-level density matrix blocks
are noninteracting pure-state v-representable (NI-PS-V), which
assumes that the low-level density matrix is constructed following
the Aufbau principle. To relax the NI-PS-V condition, we develop
an augmented Lagrangian method to match the density matrix blocks without referring to the Aufbau principle. Numerical results for
the 2D Hubbard and hydrogen model systems indicate that, in some challenging scenarios, the relaxation of the Aufbau principle
directly leads to exact matching of the density matrix blocks, which also yields improved accuracy.

1. INTRODUCTION
Density matrix embedding theory (DMET)1−8 is a quantum
embedding theory designed to treat strong correlation effects
in large quantum systems. DMET and its related variants have
been successfully applied to a wide range of systems such as
Hubbard models,1,4,9−15 quantum spin models,16−18 and a
number of strongly correlated molecular and periodic
systems.2,5,8,19−29 The main idea of DMET is to partition the
global quantum system into several “quantum impurities”.
Each impurity is treated accurately via a high-level theory
(such as full configuration interaction (FCI),30−32 coupled
cluster theory,33 density matrix renormalization group
(DMRG),34 etc.). Global information, in particular the one-
electron reduced density matrix (1-RDM), is made consistent
between all of the impurities with the help of a low-level
Hartree−Fock (HF) type of theory. In the self-consistent-field
DMET (SCF-DMET), this global information is then used to
update the impurity problems in the next self-consistent
iteration, until a certain consistency condition of the 1-RDM is
satisfied between the high-level and low-level theories.1−4,35,36

(Throughout this Article, DMET refers to SCF-DMET. This is
in contrast to one-shot DMET, in which the impurity problem
is only solved once without self-consistent updates.)
In DMET, the self-consistency condition can be achieved by

optimizing a correlation potential, which can be viewed as a
Lagrange multiplier associated with the matching condition of
the 1-RDMs. For instance, if the self-consistency condition
only requires electron densities from the high-level and low-
level theories to match (e.g., in ref 4), then the problem of
finding the correlation potential strongly resembles the v-

representability problem in density functional theory
(DFT).37−41 Omitting the spin degree of freedom, an electron
density ρ (often obtained from a many-body calculation) with
N electrons is called noninteracting pure-state v-representable
(NI-PS-V), if ρ can be reconstructed (1) from a single particle
Hamiltonian with potential v (2) using the energetically lowest
N orbitals. Condition (2) is also referred to as the Aufbau
principle. There are densities that are not NI-PS-V, but for
DFT such densities are rare exceptions rather than the norm.41

DMET requires the matching condition for certain 1-RDM
matrix blocks corresponding to the high-level 1-RDMs. The
correlation potential (denoted by u following the convention in
the literature) then consists of matrix blocks of matching
dimensions. While v-representability in DFT usually concerns
a diagonal potential in the real-space basis, the correlation
potential in DMET is expressed as a block diagonal matrix in
the fragment-orbital basis. In a typical DMET calculation, the
1-RDM is assumed to be NI-PS-V; in particular, the low-level
1-RDM is reconstructed following the Aufbau principle.
However, from the very beginning of the development of
DMET, it was noticed that the exact matching of the 1-RDMs
often cannot be achieved.1,2,4 Therefore, as a practical solution,
the matching condition is relaxed into a least-squares
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Density matrix of non-interacting (or mean-field) systems 

ĥ = ∑
p≠q

tpq ̂c†
p ̂cq + ∑

p

vp ̂c†
p ̂cp
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Density matrix of non-interacting (or mean-field) systems 
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Density matrix of non-interacting (or mean-field) systems 
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1

0⋱

0
0 0

11
1⋱ = {⟨ ̂a†

k ̂ak′￼⟩ĥ}
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Density matrix of non-interacting (or mean-field) systems 
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Density matrix of non-interacting (or mean-field) non-hermitian systems 

ĥ = ∑
p≠q

tpq ̂c†
p ̂cq + ∑
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p>q

σpq ( ̂c†
p ̂cq − ̂c†

q ̂cp)
Diagonalization
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Density matrix of non-interacting (or mean-field) non-hermitian systems 

ĥ = ∑
k

εkâk ̂ak

We assume that  
energies remain real

Diagonalization

ĥ = ∑
p≠q

tpq ̂c†
p ̂cq + ∑

p

vp ̂c†
p ̂cp+∑

p>q

σpq ( ̂c†
p ̂cq − ̂c†

q ̂cp)



25

Density matrix of non-interacting (or mean-field) non-hermitian systems 

ĥ = ∑
k

εkâk ̂ak

Diagonalization

[âk, ̂ak′￼]+
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Bi-orthonormal solutions
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p>q

σpq ( ̂c†
p ̂cq − ̂c†
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Density matrix of non-interacting (or mean-field) non-hermitian systems 

ĥ = ∑
k

εkâk ̂ak

Diagonalization [âk, ̂ak′￼]+
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Density matrix of non-interacting (or mean-field) non-hermitian systems 
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Density matrix of non-interacting (or mean-field) non-hermitian systems 

= {⟨ ̂c†
p ̂cq⟩ĥ}
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 representation
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 representation

Diagonalization
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Idempotent 
(bi-orthonormally speaking)   
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What about an indirect mapping of the 1RDM? 

= {γpq} Not physical

= {γref
pq =

p≥q

1
2 (γpq + γqp)} True 1RDM  

in non-interacting  
or mean-field cases

= +
2
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Kohn-Sham DFT

δ {⟨ΦL ĥ ΦR⟩ + EHxc [⟨ΦL ̂n ΦR⟩]} = 0

⇐
ΦL = ΦR = ΦKS Regular Kohn-Sham  

determinant

No explicit density-matrix functional description of electron correlation

γ = γref = γKS

⇐
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= {γpq}

Not physical

= {γref
pq}

= +
2

= + −

{γpq =
p≥q

1
2 (3γpq − γqp)}

What about an indirect mapping of the 1RDM? 

Δγ
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= {γpq}

Not physical

= {γref
pq}

= +
2

= + −

{γpq =
p≥q

1
2 (3γpq − γqp)}

(more) physical

What about an indirect mapping of the 1RDM? 

= {γpq}

Δγ



33

Correlation in the 1RDM seen as a deviation from hermiticity 

Looking for a variational principle…

δ {h [γref] + EHxc [nγref]+𝒲c [nγref, Δγ]} = 0

Will introduce  
non-hermiticity
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Correlation in the 1RDM seen as a deviation from hermiticity 

Looking for a variational principle…

δ {h [γref] + EHxc [nγref]+𝒲c [nγref, Δγ]} = 0

??? Will introduce  
non-hermiticity
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Looking for a variational principle…

δ {h [γref] + EHxc [nγref]+𝒲c [nγref, Δγ]} = 0

???

Can we map (indirectly) a correlated 1RDM  
onto a non-interacting and non-hermitian system? 

Correlation in the 1RDM seen as a deviation from hermiticity 



min
{vp},{σpq} ∑

p≥q
(γFCI

pq −
3
2

γpq +
1
2

γqp)
2

For this optimisation, we use scipy AND QuantNbody 

An open access python package for quantum 
chemistry/physics to manipulate many-body 
operators and wave functions

Available on : https://github.com/SYalouz/QuantNBody

Saad Yalouz

Numerical experiment: Mapping through cost function minimisation 
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Preliminary results: Asymmetric Hubbard dimer
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Non-interacting 
and non-hermitianKinetic (hopping) energy

S. Yalouz and E. Fromager, in preparation (2022).



4 sites - 6 electrons
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Preliminary results: Symmetric 4-site Hubbard chain

Non-interacting and non-hermitianKinetic (hopping) energy

S. Yalouz and E. Fromager, in preparation (2022).



4 sites - 6 electrons
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Preliminary results: Asymmetric 4-site Hubbard chain

vext

Non-interacting and non-hermitianKinetic (hopping) energy

S. Yalouz and E. Fromager, in preparation (2022).
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Monsieur, 
 
Le LabEx Chimie des Systèmes Complexes vous a accordé un financement de 
113000€ pour votre projet intitulé « Towards a systematically improvable density 
matrix functional embedding theory for strongly correlated electronic systems». Nous 
vous souhaitons tout d’abord toutes nos félicitations et la pleine réussite de ce projet.  
 
En tant que lauréat du programme Emerging Investigators du LabEx CSC, vous vous 
engagez à respecter les conditions suivantes : 
 

x Les crédits attribués par le LabEx CSC sont dédiés au financement des projets 
lauréats. Ils doivent être considérés comme des crédits internes et ne peuvent 
pas être soumis à un prélèvement par l’unité d’accueil.  

 
x Le budget prévu à destination des salaires des doctorants, post-doctorants, 

techniciens ou ingénieurs, ainsi que pour l’équipement lourd doit être 
strictement dédié à cet objet et ce sur la durée validée pour le projet. 

 
x Les crédits de fonctionnement peuvent faire l’objet d’une mutualisation 

partielle au sein de l’unité de recherche concernée, selon les accords internes 
à l’unité si cela ne nuit pas à la réalisation du projet. 

 
x Les résultats du projet financé seront publiés par le lauréat sans que le PI (chef 

d'équipe) soit coauteur de l'article. Le lauréat sera l’unique auteur 
correspondant et en dernier dans la liste des auteurs. 
 

En cas de non-respect de ces conditions, l’unité d’accueil et ses équipes pourraient ne 
plus pouvoir postuler à des financements du LabEx CSC et de la FRC, pendant une 
période de 3 ans. 

 
x Pour le suivi des projets financés par le LabEx CSC, il est indispensable de 

faire mention du LabEx CSC (ANR-10-LABX-0026_CSC) dans les sources de 
financements et/ou les remerciements figurant dans vos articles et 
présentations. 
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