

Towards an in-principle-exact density matrix functional embedding theory

Saad Yalouz and Emmanuel Fromager

Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, Université de Strasbourg, Strasbourg, France

International workshop on RDMFT, ECT*, Trento, Italy

05/10/2022

Local evaluation of the energy (in a localised spin-orbital basis)

So-called "lattice representation"

$$\langle \hat{H} \rangle = \sum_{pq} h_{pq} \langle \hat{c}_p^{\dagger} \hat{c}_q \rangle + \frac{1}{2} \sum_{pqrs} \langle pq | rs \rangle \langle \hat{c}_p^{\dagger} \hat{c}_q^{\dagger} \hat{c}_s \hat{c}_r \rangle$$
One-electron
Two-electron

density matrix

density matrix

Local evaluation of the energy (in a localised spin-orbital basis)

Clusterization through a unitary one-electron transformation

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. **109**, 186404 (2012). S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

Density matrix embedding theory (DMET)

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. **109**, 186404 (2012). S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

Clusterization through a unitary one-electron transformation

Clusterization through a unitary one-electron transformation

Single-impurity case

Quantum bath

Column vector

S. Sekaran, O. Bindech, and E. Fromager, to be submitted (2022).

Single-impurity case

Column vector

Clusterization through a unitary one-electron transformation

S. Sekaran, O. Bindech, and E. Fromager, to be submitted (2022).

¹B.-X. Zheng, PhD thesis, arXiv:1803.10259 (2018).

²F. Rotella and I. Zambettakis, Appl. Math. Lett. **12**, 29 (1999).

³S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B **104**, 035121 (2021).

⁴S. Yalouz, S. Sekaran, and M. Saubanère, arXiv:2209.10302 (2022).

Embedding based on idempotent density matrices

Unitary-transformed density matrix

S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021).

Embedding based on idempotent density matrices

Unitary-transformed density matrix

S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021).

Non-interacting bath embedding of a single interacting impurity

$$\hat{h}^{\mathscr{C}} \stackrel{single\ impurity}{\to} \hat{h}^{\mathscr{C}} + \langle pp | pp \rangle \hat{c}^{\dagger}_{p\uparrow} \hat{c}^{\dagger}_{p\downarrow} \hat{c}_{p\downarrow} \hat{c}_{p\uparrow}$$

Exact non-interacting embedding Approximate interacting embedding

S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. **12**, 2706 (2016). S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B **104**, 035121 (2021).

Single-impurity embedding for a 400-site uniform Hubbard ring

L = 400 sites

Exact

Non-interacting bath embedding of a single impurity

S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. **12**, 2706 (2016).

S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021).

Density-functional exactification of single-impurity DMET (for Hubbard)

$$v_{\text{Hxc}}(n) = \tilde{\mu}^{\text{imp}}(n) + \dots$$

The "low-level" full-size non-interacting system of DMET is becoming the **Kohn-Sham system!** **Density-functional exactification of single-impurity DMET** (for Hubbard)

Functional-free DFT!

The "low-level" full-size non-interacting system of DMET is becoming the **Kohn-Sham system!**

Pure State v-Representability of Density Matrix Embedding Theory

Fabian M. Faulstich,[⊥] Raehyun Kim,[⊥] Zhi-Hao Cui, Zaiwen Wen, Garnet Kin-Lic Chan, and Lin Lin*

Idempotent

Non-idempotent

 $\hat{h} = \sum t_{pq} \hat{c}_p^{\dagger} \hat{c}_q + \sum v_p \hat{c}_p^{\dagger} \hat{c}_p$ $p \neq q$ p

$$\hat{h} = \sum_{p \neq q} t_{pq} \hat{c}_p^{\dagger} \hat{c}_q + \sum_p v_p \hat{c}_p^{\dagger} \hat{c}_p$$
Diagonalization
$$\hat{h} = \sum_k \varepsilon_k \hat{a}_k^{\dagger} \hat{a}_k$$

$$\begin{bmatrix} 1_1 & 0 \\ 0 & 0 \\ \ddots & 0 \end{bmatrix} = \left\{ \left\langle \hat{a}_k^{\dagger} \hat{a}_{k'} \right\rangle_{\hat{h}} \right\}$$

Delocalised molecular orbital representation

$$\hat{h} = \sum_{p \neq q} t_{pq} \hat{c}_{p}^{\dagger} \hat{c}_{q} + \sum_{p} v_{p} \hat{c}_{p}^{\dagger} \hat{c}_{p}$$

$$\stackrel{\text{Diagonalization}}{\longrightarrow} \hat{h} = \sum_{k} \varepsilon_{k} \hat{a}_{k}^{\dagger} \hat{a}_{k}$$

$$\stackrel{\mathbf{1}_{1}}{\longrightarrow} \underbrace{\mathbf{0}}_{0 \rightarrow 0} = \left\{ \left\langle \hat{a}_{k}^{\dagger} \hat{a}_{k'} \right\rangle_{\hat{h}} \right\} \quad \longleftarrow \quad = \left\{ \left\langle \hat{c}_{p}^{\dagger} \hat{c}_{q} \right\rangle_{\hat{h}} \right\}$$

Delocalised molecular orbital representation

Localised molecular orbital representation

$$\hat{h} = \sum_{p \neq q} t_{pq} \hat{c}_{p}^{\dagger} \hat{c}_{q} + \sum_{p} v_{p} \hat{c}_{p}^{\dagger} \hat{c}_{p}$$
Diagonalization
$$\hat{h} = \sum_{k} \varepsilon_{k} \hat{a}_{k}^{\dagger} \hat{a}_{k}$$
Key (idempotent) ingredient
in the quantum embedding
$$\hat{\mathbf{1}_{1}} \cdot \mathbf{0}_{k} = \left\{ \left\langle \hat{a}_{k}^{\dagger} \hat{a}_{k'} \right\rangle_{\hat{h}} \right\}$$

$$= \left\{ \left\langle \hat{c}_{p}^{\dagger} \hat{c}_{q} \right\rangle_{\hat{h}} \right\}$$

Delocalised molecular orbital representation

Localised molecular orbital representation

$$\hat{h} = \sum_{p \neq q} t_{pq} \hat{c}_p^{\dagger} \hat{c}_q + \sum_p v_p \hat{c}_p^{\dagger} \hat{c}_p + \sum_{p > q} \sigma_{pq} \left(\hat{c}_p^{\dagger} \hat{c}_q - \hat{c}_q^{\dagger} \hat{c}_p \right)$$
Diagonalization
$$\hat{h} = \sum_k \varepsilon_k \hat{\bar{a}}_k \hat{a}_k$$

$$\hat{h} = \sum_{p \neq q} t_{pq} \hat{c}_p^{\dagger} \hat{c}_q + \sum_p v_p \hat{c}_p^{\dagger} \hat{c}_p + \sum_{p > q} \sigma_{pq} \left(\hat{c}_p^{\dagger} \hat{c}_q - \hat{c}_q^{\dagger} \hat{c}_p \right)$$
Diagonalization
$$\hat{h} = \sum_k \varepsilon_k \hat{a}_k \hat{a}_k$$

$$\left[\hat{a}_k, \hat{a}_{k'} \right]_+ = \delta_{kk'}$$
Bi-orthonormal solutions

$$\hat{h} = \sum_{p \neq q} t_{pq} \hat{c}_p^{\dagger} \hat{c}_q + \sum_p v_p \hat{c}_p^{\dagger} \hat{c}_p + \sum_{p > q} \sigma_{pq} \left(\hat{c}_p^{\dagger} \hat{c}_q - \hat{c}_q^{\dagger} \hat{c}_p \right)$$
Diagonalization
$$\begin{bmatrix} \hat{a}_k, \hat{a}_{k'} \end{bmatrix}_+ = \delta_{kk'}$$

$$\hat{h} = \sum_k \varepsilon_k \hat{a}_k \hat{a}_k$$
Bi-orthonormal solutions

Left solutions

$$\hat{h}^{\dagger} | \Phi^L \rangle = \left(\sum_{k}^{occ.} \varepsilon_k \right) | \Phi^L \rangle$$

$$|\Phi^L\rangle = \prod_k^{occ.} \hat{a}_k^{\dagger} |\operatorname{vac}\rangle$$

Right solutions

$$\hat{h} | \Phi^R \rangle = \left(\sum_{k}^{occ.} \varepsilon_k \right) | \Phi^R \rangle$$

 $|\Phi^R\rangle = \prod_{k}^{occ.} \hat{\overline{a}}_k |\operatorname{vac}\rangle$

$$\hat{h} = \sum_{p \neq q} t_{pq} \hat{c}_p^{\dagger} \hat{c}_q + \sum_p v_p \hat{c}_p^{\dagger} \hat{c}_p + \sum_{p > q} \sigma_{pq} \left(\hat{c}_p^{\dagger} \hat{c}_q - \hat{c}_q^{\dagger} \hat{c}_p \right)$$
Diagonalization
$$\hat{h} = \sum_k \varepsilon_k \hat{a}_k \hat{a}_k$$

$$\frac{1_{11} \cdot 0}{0 \cdot 0} = \left\{ \left\langle \hat{a}_k \hat{a}_{k'} \right\rangle_{\hat{h}} = \left\langle \Phi^L \left| \hat{a}_k \hat{a}_{k'} \right| \Phi^R \right\rangle \right\}$$

Delocalised molecular orbital representation

$$\hat{h} = \sum_{p \neq q} t_{pq} \hat{c}_{p}^{\dagger} \hat{c}_{q} + \sum_{p} v_{p} \hat{c}_{p}^{\dagger} \hat{c}_{p} + \sum_{p > q} \sigma_{pq} \left(\hat{c}_{p}^{\dagger} \hat{c}_{q} - \hat{c}_{q}^{\dagger} \hat{c}_{p} \right)$$

$$Diagonalization$$

$$\hat{h} = \sum_{k} \varepsilon_{k} \hat{a}_{k} \hat{a}_{k}$$

$$(bi-orthonormally speaking)$$

$$\hat{h} = \left\{ \langle \hat{a}_{k} \hat{a}_{k'} \rangle_{\hat{h}} \right\}$$

$$= \left\{ \langle \hat{c}_{p}^{\dagger} \hat{c}_{q} \rangle_{\hat{h}} \right\}$$

Delocalised molecular orbital representation

Localised molecular orbital representation

What about an indirect mapping of the 1RDM?

Kohn-Sham DFT

Regular Kohn-Sham determinant

$$\overline{\gamma} = \overline{\gamma}^{\text{ref}} = \gamma^{\text{KS}}$$

No explicit density-matrix functional description of electron correlation

What about an indirect mapping of the 1RDM?

Not physical

What about an indirect mapping of the 1RDM?

Not physical

Correlation in the 1RDM seen as a deviation from hermiticity

Looking for a variational principle...

$$\delta \left\{ h \left[\gamma^{\text{ref}} \right] + E_{\text{Hxc}} \left[n_{\gamma^{\text{ref}}} \right] + \mathcal{W}_{c} \left[n_{\gamma^{\text{ref}}}, \Delta \overline{\gamma} \right] \right\} = 0$$

$$\underbrace{Will \text{ introduce}}_{\text{non-hermiticity}}$$

Correlation in the 1RDM seen as a deviation from hermiticity

Looking for a variational principle...

Correlation in the 1RDM seen as a deviation from hermiticity

Looking for a variational principle...

$$\delta \left\{ h \left[\gamma^{\text{ref}} \right] + E_{\text{Hxc}} \left[n_{\gamma^{\text{ref}}} \right] + \mathcal{W}_{c} \left[n_{\gamma^{\text{ref}}}, \Delta \overline{\gamma} \right] \right\} = 0$$

Can we map (indirectly) a correlated 1RDM onto a non-interacting and non-hermitian system?

Numerical experiment: Mapping through cost function minimisation

$$\min_{\{v_p\},\{\sigma_{pq}\}} \left\{ \sum_{p \ge q} \left(\gamma_{pq}^{FCI} - \frac{3}{2} \overline{\gamma}_{pq} + \frac{1}{2} \overline{\gamma}_{qp} \right)^2 \right\}$$

For this optimisation, we use scipy AND QuantNbody

Saad Yalouz

qnb QuantNBody

An open access python package for quantum chemistry/physics to manipulate many-body operators and wave functions

Available on : https://github.com/SYalouz/QuantNBody

Preliminary results: Symmetric Hubbard dimer

Preliminary results: Asymmetric Hubbard dimer

Preliminary results: Symmetric 4-site Hubbard chain

Preliminary results: Asymmetric 4-site Hubbard chain

Funding

"Lab of Excellence" project: LabEx CSC (ANR-10-LABX-0026-CSC)

« Initiative d'Excellence » (IdEx) grant University of Strasbourg

CoLab ANR project

