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Motivation – consider a fermionic interacting system

H(κ) = h+ κV

I h – single-particle Hamiltonian
I V – interaction
I κ > 0 – interaction strength



No interactions – Hartree-Fock state
If κ = 0, then H ≡ h.

N -fermion ground state:

|HF (h)〉 = f †φ1 . . . f
†
φN
|vac〉 =: |φ1, . . . , φN 〉.

If κ > 0, then the ground state is in principle a superposition of all
the configurations

|ΦN (κ)〉 =
∑

i1<···<iN

ci1,...,iN (κ)|φi1 , . . . , φiN 〉 ∈ ΛN
(
CD
)
.
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Back to κ = 0

|HF (h)〉 = f †φ1 . . . f
†
φN
|vac〉 =: |φ1, . . . , φN 〉

not
occupied

fully
occupied



Complete active space ansatz

H(κ) = h+ κV, κ << 1
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virtual orbitals
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Complete active space self consistent field ansatz

|Ψn〉 =
∑

i1<···<in

ci1,...,in |χi1 , . . . , χin〉 ∈ Λn
(
Cd
)
.

Complete active space self consistent field ansatz:
I optimisation over the coefficients ci1,...,in ,
I optimisation over the active orbitals |χ1〉, . . . , |χd〉.

Multi configurational self consistent field ansatz:
I only a subset of all configurations |χi1 , . . . , χin〉 enters the

ansatz |Ψn〉,
I optimisation over the the coefficients and the active orbitals
|χ1〉, . . . , |χd〉.
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Multi configurational self consistent field ansatz
optimisation

|Ψn〉 =
∑

(i1,...,in)∈I

ci1,...,in |χi1 , . . . , χin〉, |χk〉 =
∑
l

Ukl|ψk〉,

EMCSCF = min
ci1,...,in ,U

〈Ψn|H|Ψn〉.

Potential issues:
I computing 〈Ψn|H|Ψn〉 in different orbital bases,
I convergence of the minimisation,
I large number of configurations

(
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This talk

A systematic construction of ansatz states that involves few
configurations relative to the active Hilbert space size

(
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Natural orbitals & natural occupation numbers

The one-fermion reduced density matrix

ρij (|Ψn〉) = 〈Ψn|f †χj
fχi |Ψn〉.

The d× d matrix ρ (|Ψn〉) can be diagonalised:

ρ (|Ψn〉) =

d∑
k=1

nk|k〉〈k|

so that n1 ≥ n2 ≥ · · · ≥ nd.

I Numbers n1, . . . , nd are the natural occupation numbers.

I Orbitals |1〉, . . . , |d〉 are the natural orbitals.
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Pauli constraints
Consider the map:

Λn
(
Cd
)
3 |Ψn〉 → ρ (|Ψn〉)→ (n1, . . . , nd), n1 ≥ n2 ≥ · · · ≥ nd.

Question: What is the image of the map |Ψn〉 → (n1, . . . , nd)?

It is contained in the d-dimensional hypercube 0 ≤ nk ≤ 1,
k = 1, . . . , d.
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Pauli constraints and CASSCF

A CASSCF ansatz ≡ saturation of Pauli constraints.

I Core orbitals: nk = 1, k = 1, . . . , dcore.

I Virtual orbitals: nk = 0, k > dcore + d, d - number of active
orbitals.

This leaves the effective Hibert space

Λn
(
Cd
)

of n = N − dcore active electrons distributed on d active orbitals.

Strategy: Start with small n, d and incrementally increase the size
of the active space and the number of active electrons.
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Generalised Pauli constraints

The Pauli constraints 0 ≤ nk ≤ 1 are not the only ones! (On
top of ordering n1 ≥ · · · ≥ nd and normalisation
n1 + · · ·+ nd = n).

I If n = 2, then n2k = n2k+1 (nd = 0 is d odd).
I If n = 3 and d = 6, then we have further constraints by

Borland and Dennis (1972).

n1 + n6 = n2 + n5 = n3 + n4 = 1 ,

n4 ≤ n5 + n6 .

I For n = 3, d = 7 or d = 8 there are 4 and 31 inequalities
respectively.

Breakthrough by Klyachko (2005) – the image of
|Ψn〉 → (n1, . . . , nd) is a convex polytope + an algorithm for
finding the polytope. Current record: n = 5, d = 11.
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Borland-Dennis polytope (1972) – Λ3
(
C6
)

n1 + n6 = n2 + n5 = n3 + n4 = 1

HF

n4 ≤ n5 + n6, n1 ≥ n2 ≥ . . . ≥ n6 ≥ 0.
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Hartree-Fock method

HF

|Ψn〉 → (1, 1, 1, 0, 0, 0) = HF

=⇒ |Ψn〉 = |1, 2, 3〉.
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Pinning-based multiconfigurational ansatz

HF

What if |Ψn〉 → (n1, . . . , n6) saturates a generalised Pauli
constraint?

n4 = n5 + n6



Pinning-based multiconfigurational ansatz

|Ψn〉 = c1|1, 2, 3〉+ c2|1, 4, 5〉+ c3|2, 4, 6〉.
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If occupation numbers saturate a generalised Pauli constraint,
then the configurations entering the n-fermion state lie on the
hyperplane containing that face.
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Ansatz associated with an extremal edge

|Ψn〉 = c1|1, 2, 3〉+ c2|1, 4, 5〉.

This is CASSCF with n1 = 1 and n6 = 0!



A family of MCSCF ansatz states

For d = 6 and n = 3 we have constructed a nested family of
MCSCF ansatz states.

HF
vertex

extremal
edge

regular 
face



MCSCF ansatz states in higher dimensions

extremal edges

extremal two-dimensional
facets

regular faces

Numerics – work in progress... (T. Maciazek, C. Schilling, P.
Knowles).
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MCSCF ansatz states – properties

So defined ansatz states contain very few configurations.

Example N = 3 and d = 8. Consider a regular face of the
polytope:

19n1 + 11n2 − 21n3 − 13n4 − 5n5 − 5n6 + 3n7 + 11n8 ≤ 9.

Task: Find configurations |i1, i2, i3〉 satisfying

19n1 + 11n2 − 21n3 − 13n4 − 5n5 − 5n6 + 3n7 + 11n8 = 9.

Try: |2, 4, 6〉, i.e.

n1 = n3 = n5 = n7 = n8 = 0, n2 = n4 = n6 = 1.

19· 0+11· 1−21· 0−13· 1−5· 0−5· 1+3· 0+11· 0 = 11−13−5 = −7 6= 9.

Configuration |2, 4, 6〉 does not enter the ansatz!
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Methods

HF

locally no pure states 
mapped beyond here!

Derivation of the ansatz:
I differential-geometric and group-theoretic methods,
I the the map |Ψn〉 → (n1, . . . , nd) is singular on the regular

boundary of the polytope,

I kernel of the derivative matrix is nontrivial =⇒ constraints
for |Ψn〉.
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Summary

I A construction of families of MCSCF variational ansatz states
implied by the (quasi)pinning of the natural occupation
numbers to the boundary of the spectral polytope.

I Advantage: a systematic way of using fewer configurations.
I Advantage: naturally contains CASSCF hierarchy.
I Disadvantage: the polytopes are explicitly known only up to
d ≤ 11.

I They still could be used effectively in combination with
CASSCF methods.

Outlook:
I Imposing spin conservation symmetries allows to include more

spin-orbitals.
I Numerical applications.
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Spin-adapted MCSCF ansatz states

So far, we have considered spinless fermions or spin-orbitals

|χ1↑〉, |χ1↓〉, . . . , |χr↑〉, |χr↓〉, d = 2r.

Restrict to the Hilbert space of fixed total spin, S, and fixed total
spin-z component, Sz.
The orbital one-electron reduced density matrix (a r × r matrix) is
given by

ρO (|Ψn〉)ij = 〈Ψn|
(
f †j↑fi↑ + f †j↓fi↓

)
|Ψn〉.

Diagonalise ρO (|Ψn〉) to obtain natural orbital occupation
numbers (nO,1, . . . , nO,r), nO,1 ≥ · · · ≥ nO,r.
The image of |Ψn〉 → (nO,1, . . . , nO,r) is again a convex polytope
(depends on n, r, S, Sz).
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Four-electron triplet r = 4 (courtesy of M Altunbulak)

So far, polytopes up to r = 7 (so 14 spin-orbitals).



Singular faces

Is there an ansatz associated with the face n5 = n6?

HF

There are states mapped beyond this face, so no ansatz!
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Reflected polytope n5 ↔ n6

Face n5 = n6 is not extremal.
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Reflected polytope n5 ↔ n6

Face n5 = n6 is not extremal.

HF

One of the edges is not extremal as well.



Reflected polytope n4 ↔ n5

Face n4 = n5 is not extremal.

This edge is extremal =⇒ another ansatz!



Degenerate natural occupation numbers
If |Ψn〉 → (n1, . . . , nd) and ni = ni+1, then the choice of natural
orbitals |i〉 and |i+ 1〉 is not unique.

|i〉 → a|i〉+ b|i+ 1〉, |i+ 1〉 → c|i〉+ d|i+ 1〉.

Theorem 2∗ (C Schilling et al 2020 & T Maciazek et al 2020)

Assume |Ψn〉 → (n1, . . . , nd) with degenerate (n1, . . . , nd)
belonging to exactly one regular face of the polytope given
by the inequality

A1n1 + · · ·+Annd ≤ B. (1)

Then there exists a basis of natural orbitals where |Ψn〉 is a
linear combination of Slater determinants whose occupation
numbers saturate (2).



Degenerate natural occupation numbers

Theorem 2∗ (C Schilling et al 2020 & T Maciazek et al 2020)

Assume |Ψn〉 → (n1, . . . , nd) with degenerate (n1, . . . , nd)
belonging to exactly one regular face of the polytope given
by the inequality

A1n1 + · · ·+Annd ≤ B. (2)

Then there exists a basis of natural orbitals where |Ψn〉 is a
linear combination of Slater determinants whose occupation
numbers saturate (2).

∗ correct under a technical combinatorial assumption which we
have checked to be satisfied for any system where the generalised
Pauli constraints are explicitly known.


