Implications of pinned occupation numbers for natural orbital expansions

Tomasz Maciążek
School of Mathematics, University of Bristol, UK

In collaboration with:

Christian Schilling (LMU, Munich), Carlos L Benavides-Riveros (MPIPKS Dresden), Adam Sawicki (CTP PAS, Warsaw), David Gross \& Alexandre Lopes (University of Cologne),

Implications of pinned occupation numbers for natural orbital expansions: I \& II (2020), New Journal of Physics. 22, 023001 \& 023002

Motivation - consider a fermionic interacting system

$$
H(\kappa)=h+\kappa V
$$

- h - single-particle Hamiltonian
- V - interaction
- $\kappa>0$ - interaction strength

No interactions - Hartree-Fock state

If $\kappa=0$, then $H \equiv h$.

N-fermion ground state:

$$
|H F(h)\rangle=f_{\phi_{1}}^{\dagger} \ldots f_{\phi_{N}}^{\dagger}|v a c\rangle=:\left|\phi_{1}, \ldots, \phi_{N}\right\rangle .
$$

No interactions - Hartree-Fock state

If $\kappa=0$, then $H \equiv h$.

N-fermion ground state:

$$
|H F(h)\rangle=f_{\phi_{1}}^{\dagger} \ldots f_{\phi_{N}}^{\dagger}|v a c\rangle=:\left|\phi_{1}, \ldots, \phi_{N}\right\rangle .
$$

If $\kappa>0$, then the ground state is in principle a superposition of all the configurations

$$
\left|\Phi_{N}(\kappa)\right\rangle=\sum_{i_{1}<\cdots<i_{N}} c_{i_{1}, \ldots, i_{N}}(\kappa)\left|\phi_{i_{1}}, \ldots, \phi_{i_{N}}\right\rangle \in \Lambda^{N}\left(\mathbb{C}^{D}\right) .
$$

Back to $\kappa=0$

$$
|H F(h)\rangle=f_{\phi_{1}}^{\dagger} \ldots f_{\phi_{N}}^{\dagger}|v a c\rangle=:\left|\phi_{1}, \ldots, \phi_{N}\right\rangle
$$

Complete active space ansatz

$$
H(\kappa)=h+\kappa V, \quad \kappa \ll 1
$$

Complete active space ansatz

$$
H(\kappa)=h+\kappa V, \quad \kappa \ll 1
$$

Complete active space ansatz

$$
H(\kappa)=h+\kappa V, \quad \kappa \ll 1
$$

Complete active space ansatz

$$
\left|\Psi_{n}\right\rangle=\sum_{1<i_{1}<\cdots<i_{n}<d} c_{i_{1}, \ldots, i_{n}}\left|\chi_{i_{1}}, \ldots, \chi_{i_{n}}\right\rangle \in \Lambda^{n}\left(\mathbb{C}^{d}\right)
$$

Complete active space self consistent field ansatz

$$
\left|\Psi_{n}\right\rangle=\sum_{i_{1}<\cdots<i_{n}} c_{i_{1}, \ldots, i_{n}}\left|\chi_{i_{1}}, \ldots, \chi_{i_{n}}\right\rangle \in \Lambda^{n}\left(\mathbb{C}^{d}\right) .
$$

Complete active space self consistent field ansatz:

- optimisation over the coefficients $c_{i_{1}, \ldots, i_{n}}$,
- optimisation over the active orbitals $\left|\chi_{1}\right\rangle, \ldots,\left|\chi_{d}\right\rangle$.

Complete active space self consistent field ansatz

$$
\left|\Psi_{n}\right\rangle=\sum_{i_{1}<\cdots<i_{n}} c_{i_{1}, \ldots, i_{n}}\left|\chi_{i_{1}}, \ldots, \chi_{i_{n}}\right\rangle \in \Lambda^{n}\left(\mathbb{C}^{d}\right) .
$$

Complete active space self consistent field ansatz:

- optimisation over the coefficients $c_{i_{1}, \ldots, i_{n}}$,
- optimisation over the active orbitals $\left|\chi_{1}\right\rangle, \ldots,\left|\chi_{d}\right\rangle$.

Multi configurational self consistent field ansatz:

- only a subset of all configurations $\left|\chi_{i_{1}}, \ldots, \chi_{i_{n}}\right\rangle$ enters the ansatz $\left|\Psi_{n}\right\rangle$,
- optimisation over the the coefficients and the active orbitals $\left|\chi_{1}\right\rangle, \ldots,\left|\chi_{d}\right\rangle$.

Multi configurational self consistent field ansatz optimisation

$$
\begin{gathered}
\left|\Psi_{n}\right\rangle=\sum_{\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{I}} c_{i_{1}, \ldots, i_{n}}\left|\chi_{i_{1}}, \ldots, \chi_{i_{n}}\right\rangle, \quad\left|\chi_{k}\right\rangle=\sum_{l} U_{k l}\left|\psi_{k}\right\rangle \\
E_{M C S C F}=\min _{c_{i_{1}, \ldots, i_{n}}, U}\left\langle\Psi_{n}\right| H\left|\Psi_{n}\right\rangle
\end{gathered}
$$

Multi configurational self consistent field ansatz optimisation

$$
\begin{gathered}
\left|\Psi_{n}\right\rangle=\sum_{\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{I}} c_{i_{1}, \ldots, i_{n}}\left|\chi_{i_{1}}, \ldots, \chi_{i_{n}}\right\rangle, \quad\left|\chi_{k}\right\rangle=\sum_{l} U_{k l}\left|\psi_{k}\right\rangle \\
E_{M C S C F}=\min _{c_{i_{1}, \ldots, i_{n}}, U}\left\langle\Psi_{n}\right| H\left|\Psi_{n}\right\rangle
\end{gathered}
$$

Potential issues:

- computing $\left\langle\Psi_{n}\right| H\left|\Psi_{n}\right\rangle$ in different orbital bases,
\rightarrow convergence of the minimisation,
- large number of configurations $\binom{d}{n}$.

Multi configurational self consistent field ansatz optimisation

$$
\begin{gathered}
\left|\Psi_{n}\right\rangle=\sum_{\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{I}} c_{i_{1}, \ldots, i_{n}}\left|\chi_{i_{1}}, \ldots, \chi_{i_{n}}\right\rangle, \quad\left|\chi_{k}\right\rangle=\sum_{l} U_{k l}\left|\psi_{k}\right\rangle \\
E_{M C S C F}=\min _{c_{i_{1}, \ldots, i_{n}}, U}\left\langle\Psi_{n}\right| H\left|\Psi_{n}\right\rangle
\end{gathered}
$$

Potential issues:

- computing $\left\langle\Psi_{n}\right| H\left|\Psi_{n}\right\rangle$ in different orbital bases,
\rightarrow convergence of the minimisation,
- large number of configurations $\binom{d}{n}$.

This talk

A systematic construction of ansatz states that involves few configurations relative to the active Hilbert space size $\binom{d}{n}$.

Natural orbitals \& natural occupation numbers

The one-fermion reduced density matrix

$$
\rho_{i j}\left(\left|\Psi_{n}\right\rangle\right)=\left\langle\Psi_{n}\right| f_{\chi_{j}}^{\dagger} f_{\chi_{i}}\left|\Psi_{n}\right\rangle .
$$

The $d \times d$ matrix $\rho\left(\left|\Psi_{n}\right\rangle\right)$ can be diagonalised:

$$
\rho\left(\left|\Psi_{n}\right\rangle\right)=\sum_{k=1}^{d} n_{k}|k\rangle\langle k|
$$

so that $n_{1} \geq n_{2} \geq \cdots \geq n_{d}$.

Natural orbitals \& natural occupation numbers

The one-fermion reduced density matrix

$$
\rho_{i j}\left(\left|\Psi_{n}\right\rangle\right)=\left\langle\Psi_{n}\right| f_{\chi_{j}}^{\dagger} f_{\chi_{i}}\left|\Psi_{n}\right\rangle
$$

The $d \times d$ matrix $\rho\left(\left|\Psi_{n}\right\rangle\right)$ can be diagonalised:

$$
\rho\left(\left|\Psi_{n}\right\rangle\right)=\sum_{k=1}^{d} n_{k}|k\rangle\langle k|
$$

so that $n_{1} \geq n_{2} \geq \cdots \geq n_{d}$.

- Numbers n_{1}, \ldots, n_{d} are the natural occupation numbers.
- Orbitals $|1\rangle, \ldots,|d\rangle$ are the natural orbitals.

Pauli constraints

Consider the map:
$\Lambda^{n}\left(\mathbb{C}^{d}\right) \ni\left|\Psi_{n}\right\rangle \rightarrow \rho\left(\left|\Psi_{n}\right\rangle\right) \rightarrow\left(n_{1}, \ldots, n_{d}\right), \quad n_{1} \geq n_{2} \geq \cdots \geq n_{d}$.

Pauli constraints

Consider the map:
$\Lambda^{n}\left(\mathbb{C}^{d}\right) \ni\left|\Psi_{n}\right\rangle \rightarrow \rho\left(\left|\Psi_{n}\right\rangle\right) \rightarrow\left(n_{1}, \ldots, n_{d}\right), \quad n_{1} \geq n_{2} \geq \cdots \geq n_{d}$.
Question: What is the image of the map $\left|\Psi_{n}\right\rangle \rightarrow\left(n_{1}, \ldots, n_{d}\right)$?

Pauli constraints

Consider the map:
$\Lambda^{n}\left(\mathbb{C}^{d}\right) \ni\left|\Psi_{n}\right\rangle \rightarrow \rho\left(\left|\Psi_{n}\right\rangle\right) \rightarrow\left(n_{1}, \ldots, n_{d}\right), \quad n_{1} \geq n_{2} \geq \cdots \geq n_{d}$.

Question: What is the image of the map $\left|\Psi_{n}\right\rangle \rightarrow\left(n_{1}, \ldots, n_{d}\right)$?
It is contained in the d-dimensional hypercube $0 \leq n_{k} \leq 1$, $k=1, \ldots, d$.

Pauli constraints and CASSCF

A CASSCF ansatz \equiv saturation of Pauli constraints.

Pauli constraints and CASSCF

A CASSCF ansatz \equiv saturation of Pauli constraints.

- Core orbitals: $n_{k}=1, k=1, \ldots, d_{\text {core }}$.

Pauli constraints and CASSCF

A CASSCF ansatz \equiv saturation of Pauli constraints.

- Core orbitals: $n_{k}=1, k=1, \ldots, d_{\text {core }}$.
- Virtual orbitals: $n_{k}=0, k>d_{\text {core }}+d, d$ - number of active orbitals.

Pauli constraints and CASSCF

A CASSCF ansatz \equiv saturation of Pauli constraints.

- Core orbitals: $n_{k}=1, k=1, \ldots, d_{\text {core }}$.
- Virtual orbitals: $n_{k}=0, k>d_{\text {core }}+d, d$ - number of active orbitals.

This leaves the effective Hibert space

$$
\Lambda^{n}\left(\mathbb{C}^{d}\right)
$$

of $n=N-d_{\text {core }}$ active electrons distributed on d active orbitals.

Pauli constraints and CASSCF

A CASSCF ansatz \equiv saturation of Pauli constraints.

- Core orbitals: $n_{k}=1, k=1, \ldots, d_{\text {core }}$.
- Virtual orbitals: $n_{k}=0, k>d_{\text {core }}+d, d$ - number of active orbitals.

This leaves the effective Hibert space

$$
\Lambda^{n}\left(\mathbb{C}^{d}\right)
$$

of $n=N-d_{\text {core }}$ active electrons distributed on d active orbitals.
Strategy: Start with small n, d and incrementally increase the size of the active space and the number of active electrons.

Generalised Pauli constraints

The Pauli constraints $0 \leq n_{k} \leq 1$ are not the only ones! (On top of ordering $n_{1} \geq \cdots \geq n_{d}$ and normalisation
$\left.n_{1}+\cdots+n_{d}=n\right)$.

Generalised Pauli constraints

The Pauli constraints $0 \leq n_{k} \leq 1$ are not the only ones! (On top of ordering $n_{1} \geq \cdots \geq n_{d}$ and normalisation
$\left.n_{1}+\cdots+n_{d}=n\right)$.

- If $n=2$, then $n_{2 k}=n_{2 k+1}\left(n_{d}=0\right.$ is d odd $)$.

Generalised Pauli constraints

The Pauli constraints $0 \leq n_{k} \leq 1$ are not the only ones! (On top of ordering $n_{1} \geq \cdots \geq n_{d}$ and normalisation
$\left.n_{1}+\cdots+n_{d}=n\right)$.

- If $n=2$, then $n_{2 k}=n_{2 k+1}\left(n_{d}=0\right.$ is d odd $)$.
- If $n=3$ and $d=6$, then we have further constraints by Borland and Dennis (1972).

$$
\begin{gathered}
n_{1}+n_{6}=n_{2}+n_{5}=n_{3}+n_{4}=1 \\
n_{4} \leq n_{5}+n_{6}
\end{gathered}
$$

Generalised Pauli constraints

The Pauli constraints $0 \leq n_{k} \leq 1$ are not the only ones! (On top of ordering $n_{1} \geq \cdots \geq n_{d}$ and normalisation
$\left.n_{1}+\cdots+n_{d}=n\right)$.

- If $n=2$, then $n_{2 k}=n_{2 k+1}\left(n_{d}=0\right.$ is d odd $)$.
- If $n=3$ and $d=6$, then we have further constraints by Borland and Dennis (1972).

$$
\begin{gathered}
n_{1}+n_{6}=n_{2}+n_{5}=n_{3}+n_{4}=1 \\
n_{4} \leq n_{5}+n_{6}
\end{gathered}
$$

- For $n=3, d=7$ or $d=8$ there are 4 and 31 inequalities respectively.

Generalised Pauli constraints

The Pauli constraints $0 \leq n_{k} \leq 1$ are not the only ones! (On top of ordering $n_{1} \geq \cdots \geq n_{d}$ and normalisation
$n_{1}+\cdots+n_{d}=n$).

- If $n=2$, then $n_{2 k}=n_{2 k+1}\left(n_{d}=0\right.$ is d odd $)$.
- If $n=3$ and $d=6$, then we have further constraints by Borland and Dennis (1972).

$$
\begin{gathered}
n_{1}+n_{6}=n_{2}+n_{5}=n_{3}+n_{4}=1 \\
n_{4} \leq n_{5}+n_{6}
\end{gathered}
$$

- For $n=3, d=7$ or $d=8$ there are 4 and 31 inequalities respectively.
Breakthrough by Klyachko (2005) - the image of $\left|\Psi_{n}\right\rangle \rightarrow\left(n_{1}, \ldots, n_{d}\right)$ is a convex polytope + an algorithm for finding the polytope. Current record: $n=5, d=11$.

Borland-Dennis polytope $(1972)-\Lambda^{3}\left(\mathbb{C}^{6}\right)$

$$
n_{1}+\mathbf{n}_{\mathbf{6}}=n_{2}+\mathbf{n}_{\mathbf{5}}=n_{3}+\mathbf{n}_{\mathbf{4}}=1
$$

Borland-Dennis polytope $(1972)-\Lambda^{3}\left(\mathbb{C}^{6}\right)$

$$
n_{1}+\mathbf{n}_{\mathbf{6}}=n_{2}+\mathbf{n}_{\mathbf{5}}=n_{3}+\mathbf{n}_{\mathbf{4}}=1
$$

$$
n_{4} \leq n_{5}+n_{6}, \quad n_{1} \geq n_{2} \geq \ldots \geq n_{6} \geq 0
$$

Hartree-Fock method

$\left|\Psi_{n}\right\rangle \rightarrow(1,1,1,0,0,0)=H F$

Hartree-Fock method

$$
\left|\Psi_{n}\right\rangle \rightarrow(1,1,1,0,0,0)=H F \Longrightarrow\left|\Psi_{n}\right\rangle=|1,2,3\rangle
$$

Pinning-based multiconfigurational ansatz

What if $\left|\Psi_{n}\right\rangle \rightarrow\left(n_{1}, \ldots, n_{6}\right)$ saturates a generalised Pauli constraint?

$$
n_{4}=n_{5}+n_{6}
$$

Pinning-based multiconfigurational ansatz

Pinning-based multiconfigurational ansatz - general setting

Pinning-based multiconfigurational ansatz - general setting

Pinning-based multiconfigurational ansatz - general setting

Ansatz associated with an extremal edge

$$
\left|\Psi_{n}\right\rangle=c_{1}|1,2,3\rangle+c_{2}|1,4,5\rangle .
$$

This is CASSCF with $n_{1}=1$ and $n_{6}=0$!

A family of MCSCF ansatz states

For $d=6$ and $n=3$ we have constructed a nested family of MCSCF ansatz states.

MCSCF ansatz states in higher dimensions

MCSCF ansatz states in higher dimensions

Numerics - work in progress... (T. Maciazek, C. Schilling, P. Knowles).

MCSCF ansatz states - properties

So defined ansatz states contain very few configurations.

MCSCF ansatz states - properties

So defined ansatz states contain very few configurations.
Example $N=3$ and $d=8$. Consider a regular face of the polytope:

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8} \leq 9 .
$$

MCSCF ansatz states - properties

So defined ansatz states contain very few configurations.
Example $N=3$ and $d=8$. Consider a regular face of the polytope:

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8} \leq 9
$$

Task: Find configurations $\left|i_{1}, i_{2}, i_{3}\right\rangle$ satisfying

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8}=9
$$

MCSCF ansatz states - properties

So defined ansatz states contain very few configurations.
Example $N=3$ and $d=8$. Consider a regular face of the polytope:

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8} \leq 9
$$

Task: Find configurations $\left|i_{1}, i_{2}, i_{3}\right\rangle$ satisfying

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8}=9
$$

Try: $|2,4,6\rangle$, i.e.

$$
n_{1}=n_{3}=n_{5}=n_{7}=n_{8}=0, \quad n_{2}=n_{4}=n_{6}=1
$$

MCSCF ansatz states - properties

So defined ansatz states contain very few configurations.
Example $N=3$ and $d=8$. Consider a regular face of the polytope:

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8} \leq 9
$$

Task: Find configurations $\left|i_{1}, i_{2}, i_{3}\right\rangle$ satisfying

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8}=9
$$

Try: $|2,4,6\rangle$, i.e.

$$
n_{1}=n_{3}=n_{5}=n_{7}=n_{8}=0, \quad n_{2}=n_{4}=n_{6}=1
$$

$19 \cdot 0+11 \cdot 1-21 \cdot 0-13 \cdot 1-5 \cdot 0-5 \cdot 1+3 \cdot 0+11 \cdot 0=11-13-5=-7 \neq 9$.

MCSCF ansatz states - properties

So defined ansatz states contain very few configurations.
Example $N=3$ and $d=8$. Consider a regular face of the polytope:

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8} \leq 9
$$

Task: Find configurations $\left|i_{1}, i_{2}, i_{3}\right\rangle$ satisfying

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8}=9
$$

Try: $|2,4,6\rangle$, i.e.

$$
n_{1}=n_{3}=n_{5}=n_{7}=n_{8}=0, \quad n_{2}=n_{4}=n_{6}=1
$$

$19 \cdot 0+11 \cdot 1-21 \cdot 0-13 \cdot 1-5 \cdot 0-5 \cdot 1+3 \cdot 0+11 \cdot 0=11-13-5=-7 \neq 9$.
Configuration $|2,4,6\rangle$ does not enter the ansatz!

MCSCF ansatz states - properties

So defined ansatz states contain very few configurations.
Example $N=3$ and $d=8$. Consider a regular face of the polytope:

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8} \leq 9
$$

Task: Find configurations $\left|i_{1}, i_{2}, i_{3}\right\rangle$ satisfying

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8}=9
$$

MCSCF ansatz states - properties

So defined ansatz states contain very few configurations.
Example $N=3$ and $d=8$. Consider a regular face of the polytope:

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8} \leq 9
$$

Task: Find configurations $\left|i_{1}, i_{2}, i_{3}\right\rangle$ satisfying

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8}=9
$$

Try: $|1,5,6\rangle$, i.e.

$$
n_{2}=n_{3}=n_{4}=n_{7}=n_{8}=0, \quad n_{1}=n_{5}=n_{6}=1
$$

MCSCF ansatz states - properties

So defined ansatz states contain very few configurations.
Example $N=3$ and $d=8$. Consider a regular face of the polytope:

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8} \leq 9
$$

Task: Find configurations $\left|i_{1}, i_{2}, i_{3}\right\rangle$ satisfying

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8}=9
$$

Try: $|1,5,6\rangle$, i.e.

$$
n_{2}=n_{3}=n_{4}=n_{7}=n_{8}=0, \quad n_{1}=n_{5}=n_{6}=1
$$

$19 \cdot 1+11 \cdot 0-21 \cdot 0-13 \cdot 0-5 \cdot 1-5 \cdot 1+3 \cdot 0+11 \cdot 0=19-5-5=9$.

MCSCF ansatz states - properties

So defined ansatz states contain very few configurations.
Example $N=3$ and $d=8$. Consider a regular face of the polytope:

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8} \leq 9
$$

Task: Find configurations $\left|i_{1}, i_{2}, i_{3}\right\rangle$ satisfying

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8}=9
$$

Try: $|1,5,6\rangle$, i.e.

$$
n_{2}=n_{3}=n_{4}=n_{7}=n_{8}=0, \quad n_{1}=n_{5}=n_{6}=1
$$

$19 \cdot 1+11 \cdot 0-21 \cdot 0-13 \cdot 0-5 \cdot 1-5 \cdot 1+3 \cdot 0+11 \cdot 0=19-5-5=9$.
Configuration $|1,5,6\rangle$ does enter the ansatz!

MCSCF ansatz states - properties

So defined ansatz states contain very few configurations.

Example $N=3$ and $d=8$. Consider a regular face of the polytope:

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8} \leq 9
$$

The configurations that saturate the inequality are: $|1,2,3\rangle$, $|1,5,6\rangle,|1,3,8\rangle,|2,5,7\rangle,|5,7,8\rangle,|2,4,8\rangle,|1,4,7\rangle,|2,6,7\rangle$, $|6,7,8\rangle$.

MCSCF ansatz states - properties

So defined ansatz states contain very few configurations.

Example $N=3$ and $d=8$. Consider a regular face of the polytope:

$$
19 n_{1}+11 n_{2}-21 n_{3}-13 n_{4}-5 n_{5}-5 n_{6}+3 n_{7}+11 n_{8} \leq 9
$$

The configurations that saturate the inequality are: $|1,2,3\rangle$, $|1,5,6\rangle,|1,3,8\rangle,|2,5,7\rangle,|5,7,8\rangle,|2,4,8\rangle,|1,4,7\rangle,|2,6,7\rangle$, $|6,7,8\rangle$.

Only 9 configurations out of the total of $\binom{8}{3}=56$.

Methods

Derivation of the ansatz:

- differential-geometric and group-theoretic methods,
- the the map $\left|\Psi_{n}\right\rangle \rightarrow\left(n_{1}, \ldots, n_{d}\right)$ is singular on the regular boundary of the polytope,

Methods

Derivation of the ansatz:

- differential-geometric and group-theoretic methods,
- the the map $\left|\Psi_{n}\right\rangle \rightarrow\left(n_{1}, \ldots, n_{d}\right)$ is singular on the regular boundary of the polytope,
- kernel of the derivative matrix is nontrivial \Longrightarrow constraints for $\left|\Psi_{n}\right\rangle$.

Summary

- A construction of families of MCSCF variational ansatz states implied by the (quasi)pinning of the natural occupation numbers to the boundary of the spectral polytope.

Summary

- A construction of families of MCSCF variational ansatz states implied by the (quasi)pinning of the natural occupation numbers to the boundary of the spectral polytope.
- Advantage: a systematic way of using fewer configurations.

Summary

- A construction of families of MCSCF variational ansatz states implied by the (quasi)pinning of the natural occupation numbers to the boundary of the spectral polytope.
- Advantage: a systematic way of using fewer configurations.
- Advantage: naturally contains CASSCF hierarchy.

Summary

- A construction of families of MCSCF variational ansatz states implied by the (quasi)pinning of the natural occupation numbers to the boundary of the spectral polytope.
- Advantage: a systematic way of using fewer configurations.
- Advantage: naturally contains CASSCF hierarchy.
- Disadvantage: the polytopes are explicitly known only up to $d \leq 11$.

Summary

- A construction of families of MCSCF variational ansatz states implied by the (quasi)pinning of the natural occupation numbers to the boundary of the spectral polytope.
- Advantage: a systematic way of using fewer configurations.
- Advantage: naturally contains CASSCF hierarchy.
- Disadvantage: the polytopes are explicitly known only up to $d \leq 11$.
- They still could be used effectively in combination with CASSCF methods.

Summary

- A construction of families of MCSCF variational ansatz states implied by the (quasi)pinning of the natural occupation numbers to the boundary of the spectral polytope.
- Advantage: a systematic way of using fewer configurations.
- Advantage: naturally contains CASSCF hierarchy.
- Disadvantage: the polytopes are explicitly known only up to $d \leq 11$.
- They still could be used effectively in combination with CASSCF methods.

Outlook:

- Imposing spin conservation symmetries allows to include more spin-orbitals.

Summary

- A construction of families of MCSCF variational ansatz states implied by the (quasi)pinning of the natural occupation numbers to the boundary of the spectral polytope.
- Advantage: a systematic way of using fewer configurations.
- Advantage: naturally contains CASSCF hierarchy.
- Disadvantage: the polytopes are explicitly known only up to $d \leq 11$.
- They still could be used effectively in combination with CASSCF methods.

Outlook:

- Imposing spin conservation symmetries allows to include more spin-orbitals.
- Numerical applications.

Spin-adapted MCSCF ansatz states

So far, we have considered spinless fermions or spin-orbitals

$$
\left|\chi_{1 \uparrow}\right\rangle,\left|\chi_{1 \downarrow}\right\rangle, \ldots,\left|\chi_{r \uparrow}\right\rangle,\left|\chi_{r \downarrow}\right\rangle, \quad d=2 r .
$$

Spin-adapted MCSCF ansatz states

So far, we have considered spinless fermions or spin-orbitals

$$
\left|\chi_{1 \uparrow}\right\rangle,\left|\chi_{1 \downarrow}\right\rangle, \ldots,\left|\chi_{r \uparrow}\right\rangle,\left|\chi_{r \downarrow}\right\rangle, \quad d=2 r .
$$

Restrict to the Hilbert space of fixed total spin, S, and fixed total $\operatorname{spin}-z$ component, S_{z}.

Spin-adapted MCSCF ansatz states

So far, we have considered spinless fermions or spin-orbitals

$$
\left|\chi_{1 \uparrow}\right\rangle,\left|\chi_{1 \downarrow}\right\rangle, \ldots,\left|\chi_{r \uparrow}\right\rangle,\left|\chi_{r \downarrow}\right\rangle, \quad d=2 r .
$$

Restrict to the Hilbert space of fixed total spin, S, and fixed total spin- z component, S_{z}.
The orbital one-electron reduced density matrix (a $r \times r$ matrix) is given by

$$
\rho_{O}\left(\left|\Psi_{n}\right\rangle\right)_{i j}=\left\langle\Psi_{n}\right|\left(f_{j \uparrow}^{\dagger} f_{i \uparrow}+f_{j \downarrow}^{\dagger} f_{i \downarrow}\right)\left|\Psi_{n}\right\rangle .
$$

Spin-adapted MCSCF ansatz states

So far, we have considered spinless fermions or spin-orbitals

$$
\left|\chi_{1 \uparrow}\right\rangle,\left|\chi_{1 \downarrow}\right\rangle, \ldots,\left|\chi_{r \uparrow}\right\rangle,\left|\chi_{r \downarrow}\right\rangle, \quad d=2 r .
$$

Restrict to the Hilbert space of fixed total spin, S, and fixed total spin- z component, S_{z}.
The orbital one-electron reduced density matrix (a $r \times r$ matrix) is given by

$$
\rho_{O}\left(\left|\Psi_{n}\right\rangle\right)_{i j}=\left\langle\Psi_{n}\right|\left(f_{j \uparrow}^{\dagger} f_{i \uparrow}+f_{j \downarrow}^{\dagger} f_{i \downarrow}\right)\left|\Psi_{n}\right\rangle .
$$

Diagonalise $\rho_{O}\left(\left|\Psi_{n}\right\rangle\right)$ to obtain natural orbital occupation numbers $\left(n_{O, 1}, \ldots, n_{O, r}\right), n_{O, 1} \geq \cdots \geq n_{O, r}$.

Spin-adapted MCSCF ansatz states

So far, we have considered spinless fermions or spin-orbitals

$$
\left|\chi_{1 \uparrow}\right\rangle,\left|\chi_{1 \downarrow}\right\rangle, \ldots,\left|\chi_{r \uparrow}\right\rangle,\left|\chi_{r \downarrow}\right\rangle, \quad d=2 r .
$$

Restrict to the Hilbert space of fixed total spin, S, and fixed total spin- z component, S_{z}.
The orbital one-electron reduced density matrix (a $r \times r$ matrix) is given by

$$
\rho_{O}\left(\left|\Psi_{n}\right\rangle\right)_{i j}=\left\langle\Psi_{n}\right|\left(f_{j \uparrow}^{\dagger} f_{i \uparrow}+f_{j \downarrow}^{\dagger} f_{i \downarrow}\right)\left|\Psi_{n}\right\rangle .
$$

Diagonalise $\rho_{O}\left(\left|\Psi_{n}\right\rangle\right)$ to obtain natural orbital occupation numbers $\left(n_{O, 1}, \ldots, n_{O, r}\right), n_{O, 1} \geq \cdots \geq n_{O, r}$.
The image of $\left|\Psi_{n}\right\rangle \rightarrow\left(n_{O, 1}, \ldots, n_{O, r}\right)$ is again a convex polytope (depends on n, r, S, S_{z}).

Four-electron triplet $r=4$ (courtesy of M Altunbulak)

So far, polytopes up to $r=7$ (so 14 spin-orbitals).

Singular faces

Is there an ansatz associated with the face $n_{5}=n_{6}$?

Singular faces

Is there an ansatz associated with the face $n_{5}=n_{6}$?

There are states mapped beyond this face, so no ansatz!

Reflected polytope $n_{5} \leftrightarrow n_{6}$

Face $n_{5}=n_{6}$ is not extremal.

Reflected polytope $n_{5} \leftrightarrow n_{6}$

Face $n_{5}=n_{6}$ is not extremal.

One of the edges is not extremal as well.

Reflected polytope $n_{4} \leftrightarrow n_{5}$

Face $n_{4}=n_{5}$ is not extremal.

This edge is extremal \Longrightarrow another ansatz!

Degenerate natural occupation numbers

If $\left|\Psi_{n}\right\rangle \rightarrow\left(n_{1}, \ldots, n_{d}\right)$ and $n_{i}=n_{i+1}$, then the choice of natural orbitals $|i\rangle$ and $|i+1\rangle$ is not unique.

$$
|i\rangle \rightarrow a|i\rangle+b|i+1\rangle, \quad|i+1\rangle \rightarrow c|i\rangle+d|i+1\rangle .
$$

Theorem 2 (C Schilling et al 2020 \& T Maciazek et al 2020)

Assume $\left|\Psi_{n}\right\rangle \rightarrow\left(n_{1}, \ldots, n_{d}\right)$ with degenerate $\left(n_{1}, \ldots, n_{d}\right)$ belonging to exactly one regular face of the polytope given by the inequality

$$
\begin{equation*}
A_{1} n_{1}+\cdots+A_{n} n_{d} \leq B \tag{1}
\end{equation*}
$$

Then there exists a basis of natural orbitals where $\left|\Psi_{n}\right\rangle$ is a linear combination of Slater determinants whose occupation numbers saturate (2).

Degenerate natural occupation numbers

Theorem 2* (C Schilling et al 2020 \& T Maciazek et al 2020)

Assume $\left|\Psi_{n}\right\rangle \rightarrow\left(n_{1}, \ldots, n_{d}\right)$ with degenerate $\left(n_{1}, \ldots, n_{d}\right)$ belonging to exactly one regular face of the polytope given by the inequality

$$
\begin{equation*}
A_{1} n_{1}+\cdots+A_{n} n_{d} \leq B \tag{2}
\end{equation*}
$$

Then there exists a basis of natural orbitals where $\left|\Psi_{n}\right\rangle$ is a linear combination of Slater determinants whose occupation numbers saturate (2).

* correct under a technical combinatorial assumption which we have checked to be satisfied for any system where the generalised Pauli constraints are explicitly known.

