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Motivation — consider a fermionic interacting system

H(k)=h+£rV

» h — single-particle Hamiltonian
> 1 — interaction

» x > 0 — interaction strength
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No interactions — Hartree-Fock state
If k =0, then H = h.
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N-fermion ground state:
[HF(h) = f} ... £} |vac) =t |¢1,..., én).

If kK > 0, then the ground state is in principle a superposition of all

the configurations
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Back to k =0

[HE(h) = £1, ... £} Jvac) =: |1, éw)
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Complete active space ansatz
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Complete active space ansatz

H(k)=h+£KV, r<<1
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virtual orbitals
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Complete active space ansatz

W)= D CiyinlXins s Xin) € A” (Cd) :
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Complete active space self consistent field ansatz
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Complete active space self consistent field ansatz:
> optimisation over the coefficients ¢;; . ;,,

> optimisation over the active orbitals |x1),...,|xd)-

Multi configurational self consistent field ansatz:

» only a subset of all configurations |x;,, ..., X;,) enters the
ansatz |U,,),

» optimisation over the the coefficients and the active orbitals
‘Xl)) SRR |Xd>



Multi configurational self consistent field ansatz
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Multi configurational self consistent field ansatz
optimisation

o) = > CipinXirs o Xin)s IXk) = ZUMW
(i1,...,in)ET
Eycscr = min U (U | H[W ).

Potential issues:
» computing (¥, |H|¥,,) in different orbital bases,

» convergence of the minimisation,

> large number of configurations (*).

A systematic construction of ansatz states that involves few
configurations relative to the active Hilbert space size (7).




Natural orbitals & natural occupation numbers

The one-fermion reduced density matrix
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The d x d matrix p (|¥,)) can be diagonalised:
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Natural orbitals & natural occupation numbers

The one-fermion reduced density matrix

pij (|¥n)) = <\I]n‘f;jfxzmjn>
The d x d matrix p (|¥,)) can be diagonalised:
d
p(1Wn)) = > nalk) (k|
k=1
so that ngy >ng > -+ > ny.
» Numbers ny,...,ng are the natural occupation numbers.

» Orbitals |1),...,|d) are the natural orbitals.
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Pauli constraints

Consider the map:

A" ((Cd> > |\I/n> — p(lan>) — (nl,. ,nd), ny>ng > >ny

k=1,....d

Question: What is the image of the map |¥,,) — (ng,
It is contained in the d-dimensional hypercube 0 < n; <1,

.. ,nd)?

(1,0,1)

(1,1,1)
(0,0,1)

ns

(1,1,0)
(0,0,0)

(0,1,0)

m]
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Pauli constraints and CASSCF

A CASSCF ansatz = saturation of Pauli constraints.

» Coreorbitals: ny =1, k=1,...,dcore.

» Virtual orbitals: ny = 0, k > dcore + d, d - number of active
orbitals.

This leaves the effective Hibert space

A" ()

of n = N — d.ore active electrons distributed on d active orbitals.

Strategy: Start with small n,d and incrementally increase the size
of the active space and the number of active electrons.
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Generalised Pauli constraints

The Pauli constraints 0 < n; < 1 are not the only ones! (On
top of ordering ny > --- > ng and normalisation
ny+ -+ ng =n).
» If n =2, then ng, = nok41 (ng = 0 is d odd).
» If n =3 and d = 6, then we have further constraints by
Borland and Dennis (1972).

ni+mneg=mny+ns=n3+ns=1,

ng < ns + ng -

» Forn=3,d=7ord=S8 there are 4 and 31 inequalities
respectively.
Breakthrough by Klyachko (2005) — the image of
|[¥,,) = (n1,...,nq) is a convex polytope + an algorithm for
finding the polytope. Current record: n =5, d = 11.



Borland-Dennis polytope (1972) — A® (C9)

ni+mng=mny+ns=n3g+ng=1



Borland-Dennis polytope (1972) — A® (C9)

ni+mng=mny+ns=n3g+ng=1
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Hartree-Fock method

|\I”n> — (]-7 ]-7 1707 0,0) — HF

1
2°2




Hartree-Fock method

[¥,) — (1,1,1,0,0,0) = HF = |¥,) =11,2,3).
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Pinning-based multiconfigurational ansatz
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What if |U,,) — (ny,.
constraint?

, M) saturates a generalised Pauli

n4g = N5 + Ng




Pinning-based multiconfigurational ansatz

3,5, 6) |4,5,6)

m 12,4, 6)

12,3,6)

1,3,5)

/

1,2,3) *1,2,4)

,4,5)

|T,) = c1]1,2,3) 4 21,4, 5) + 32,4, 6).



Pinning-based multiconfigurational ansatz — general setting
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Pinning-based multiconfigurational ansatz — general setting

) d .
° Py o |\, vertices
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Theorem (C Schilling et al 2020 & T Maciazek et al 2020)

If occupation numbers saturate a generalised Pauli constraint,
then the configurations entering the n-fermion state lie on the
hyperplane containing that face.




Ansatz associated with an extremal edge

13,5, 6)

12,3,6)

Ny

I1,2,4)

|W,,) = c1|1,2,3) + c2|1,4,5).
This is CASSCF with nqy = 1 and ng = 0!



A family of MCSCF ansatz states

For d = 6 and n = 3 we have constructed a nested family of
MCSCF ansatz states.

HF extremal regular
vertex edge face
12, 4,6)
|l7 273>
o o—
I1,2,3) 11,2,3) I1,4,5)

I1,4,5)

Cl|13273>+62|17475> Cl|17213>+62‘17475>

CASSCF + ¢3/2,4,6)
ni=1, ng=0
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MCSCF ansatz states in higher dimensions
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MCSCF ansatz states in higher dimensions

regular faces

extremal two-dimensional
facets

Numerics — work in progress... (T. Maciazek, C. Schilling, P.
Knowles).
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[ So defined ansatz states contain very few configurations. ]
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MCSCF ansatz states — properties

[ So defined ansatz states contain very few configurations.

Example N = 3 and d = 8. Consider a regular face of the
polytope:

1911 + 11ne — 21ng — 13n4 — 515 — 5ng + 3ny + 1lng < 9.
Task: Find configurations |i1, i2,13) satisfying
1911 + 11ng — 21ns — 13n4 — 515 — d5ng + 3ny + 1lng = 9.
Try: [1,5,6), i.e.
no=ng=ng=ny=ng =0, ny=ns=ng=1.
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MCSCF ansatz states — properties

So defined ansatz states contain very few configurations.

Example N = 3 and d = 8. Consider a regular face of the
polytope:
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MCSCF ansatz states — properties

So defined ansatz states contain very few configurations.

Example N = 3 and d = 8. Consider a regular face of the
polytope:

1917 4+ 11ng — 21ng — 13ng4 — dns — dng + 3ny + 11lng < 9.
The configurations that saturate the inequality are: |1, 2, 3),

1,5,6), 1,3,8), [2,5,7), 5,7,8), [2,4,8), [1,4,7), |2,6,7),
16,7,8).

Only 9 configurations out of the total of (3) = 56.
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Methods

1,2,...,n) \
locally no pure states

® mapped beyond here!
[

Derivation of the ansatz:
> differential-geometric and group-theoretic methods,

» the the map |V,,) — (n1,...,ng) is singular on the regular
boundary of the polytope,

» kernel of the derivative matrix is nontrivial = constraints
for |U,,).
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A construction of families of MCSCF variational ansatz states
implied by the (quasi)pinning of the natural occupation
numbers to the boundary of the spectral polytope.

Advantage: a systematic way of using fewer configurations.
Advantage: naturally contains CASSCF hierarchy.

Disadvantage: the polytopes are explicitly known only up to
d<11.

» They still could be used effectively in combination with
CASSCF methods.
Outlook:
P Imposing spin conservation symmetries allows to include more

| 2

spin-orbitals.

Numerical applications.
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Spin-adapted MCSCF ansatz states

So far, we have considered spinless fermions or spin-orbitals

’X1T>7‘X1¢>7"'7‘XTT>7 ’X1"¢>7 d=2r.

Restrict to the Hilbert space of fixed total spin, .S, and fixed total
spin-z component, S .

The orbital one-electron reduced density matrix (a 7 x 7 matrix) is
given by

po (10)iy = (Wal (£ fir + 11 ) 1),

Diagonalise po (|¥,,)) to obtain natural orbital occupation
numbers (no.1,...,n0,), NO,1 =+ > NO ;-

The image of |¥,,) — (no1,...,n0,) is again a convex polytope
(depends on n, r, S, S,).



Four-electron triplet » = 4 (courtesy of M Altunbulak)

1.4

1.2
no.3

1.0

0.8

0.6

0.6 0.8 1.0 12 14 2.0

no,2

So far, polytopes up to » = 7 (so 14 spin-orbitals).
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Singular faces

Is there an ansatz associated with the face ns = ng?

There are states mapped beyond this face, so no ansatz!

m]
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Reflected polytope ns <> ng

Face ns = ng is not extremal.

Ny



Reflected polytope ns <> ng

Face ns = ng is not extremal.

ny

One of the edges is not extremal as well.



Reflected polytope ny <> nj

Face ny = ns is not extremal.

This edge is extremal = another ansatz!



Degenerate natural occupation numbers

If |¥,,) = (n1,...,nq) and n; = n;y1, then the choice of natural
orbitals |i) and |i + 1) is not unique.

i) — ali) £ bl + 1), |i+1) — i)+ dli + 1).

Theorem 2 (C Schilling et al 2020 & T Maciazek et al 2020)

Assume |¥,,) — (n1,...,ngq) with degenerate (ni,...,ng)
belonging to exactly one regular face of the polytope given
by the inequality

Aing+---+ Ang < B. (]_)

Then there exists a basis of natural orbitals where |¥,,) is a
linear combination of Slater determinants whose occupation
numbers saturate (2).




Degenerate natural occupation numbers

Theorem 2 (C Schilling et al 2020 & T Maciazek et al 2020)

Assume |¥,,) — (n1,...,nq) with degenerate (ni,...,ng)
belonging to exactly one regular face of the polytope given
by the inequality

A1n1+---+Annd§B. (2)

Then there exists a basis of natural orbitals where |U,,) is a
linear combination of Slater determinants whose occupation
numbers saturate (2).

. J

* correct under a technical combinatorial assumption which we
have checked to be satisfied for any system where the generalised
Pauli constraints are explicitly known.



