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Electronic-Structure Problem: 

Hamiltonian of N electrons moving in the field of clamped nuclei
(Born-Oppenheimer approximation):

.Rfor fixed nuclear configuration

( ) ( ) ( ) ( )    ˆ ˆ ˆT (r) V (r) V (r,R) Φ r  R  Φ r+ + =∈BO BO BO
e ee en R R

This is an exponentially hard problem!!



Example: Aluminium atom (13 electrons)

depends on 39 coordinates

rough table of the wavefunction

10 entries per coordinate: ⇒ 1039 entries
1 byte per entry: ⇒ 1039 bytes
1012 bytes per SSD: ⇒ 1027 SSDs
20 g per SSD: ⇒ 2×1028 g SSDs

( )1 13r ,...,rΨ
 

Why don’t we just solve the many-particle SE?

For Ti atom the required mass of SSDs exceeds mass
of the universe



Two fundamentally different classes of ab-initio approaches:

• Wave function approaches

-- Quantum Monte Carlo
-- Configuration interaction
-- Tensor product decomposition/DMRG

Scaling of algorithms often less than exponential!

• “Functional Theories”



Two fundamentally different classes of ab-initio approaches:

• Wave function approaches

-- Quantum Monte Carlo
-- Configuration interaction
-- Tensor product decomposition/DMRG

Scaling of algorithms often less than exponential!

• “Functional Theories”

Write total energy as functional 
of a simpler quantity and minimize
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(r, r ') G(r, r ',0 )+γ =

MBPT RDMFT

)'tt,'r,r(G −

“Functional Theories”

DFT

)r,r()r( γ=ρ

Functional:
Φxc[G]

or  Σxc[G]
easy (e.g. GW)
numerically

heavy

Functional:
Exc[γ]

difficult

moderate

Functional:
Exc[ρ]

or  vxc[ρ]
very difficult

light 
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• Basics of Density-Functional Theory (DFT)
• Magnetism and superconductivity within DFT
• Basics of Reduced-Density-Matrix-Functional Theory (RDMFT)
• Approximate functionals
• RDMFT results for molecules
• Towards RDMFT for strongly correlated solids



ESSENCE OF DENSITY-FUNTIONAL THEORY

• Every observable quantity of a
quantum system can be calculated
from the density of the system
ALONE

• The density of particles interacting
with each other can be calculated as
the density of an auxiliary system of
non-interacting particles



ESSENCE OF DENSITY-FUNTIONAL THEORY

• Every observable quantity of a
quantum system can be calculated
from the density of the system
ALONE

• The density of particles interacting
with each other can be calculated as
the density of an auxiliary system of
non-interacting particles

Hohenberg-Kohn theorem (1964)
Kohn-Sham theorem (1965) 
(for the ground state)



HOHENBERG-KOHN THEOREM

1. v(r)                  ρ(r)
one-to-one correspondence between external potentials v(r) and ground-state 
densities ρ(r). Consequence: Many-body WF is uniquely determined by the density, 
Ψ = Ψ[ρ], and hence all expectation values w.r.t. Ψ[ρ] are functionals of ρ(r).

2. Variational principle
Given a particular system characterized by the external potential v0(r).  There 
exists a functional,  EHK [ρ], such that the solution of the Euler-Lagrange equation

yields the exact ground-state energy E0 and ground-state density ρ0(r) of this 
system 

3. EHK[ρ] =  < Ψ[ρ]|T+Vee+V0| Ψ[ρ]> = F[ρ]  + ρ(r) v0(r) d3r

F[ρ] is  UNIVERSAL. In practice,  F[ρ] needs to be approximated

1—1

( ) [ ] 0E
r HK =ρ

δρ
δ



KOHN-SHAM EQUATIONS

EHK[ρ] = TS[ρ] +    ρ(r) v0(r) d3r + EH[ρ] + Εxc[ρ]

whereTS[ρ] is the kinetic energy functional of non-interacting particles

( ) [ ] 0E
r HK =ρ

δρ
δ yields the Kohn-Sham equations:
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Rewrite HK functional as:

Walter Kohn: “The KS equations are an exactification of the Hartree 
mean-field equation”



KOHN-SHAM EQUATIONS

EHK[ρ] = TS[ρ] +    ρ(r) v0(r) d3r + EH[ρ] + Εxc[ρ]

whereTS[ρ] is the kinetic energy functional of non-interacting particles

( ) [ ] 0E
r HK =ρ

δρ
δ yields the Kohn-Sham equations:

( ) ( ) ( )( ) ( ) ( )H xc/ 2 v v [ ] v [ ]−∇ + + ρ + ρ φ =∈ φ2
o j j jr r r  r r

Rewrite HK functional as:

Exc[ρ] is a universal functional of the density which, in practice, needs
to be approximated (e.g.  LDA, GGAs, metaGGAs, hybrid functionals). 

Walter Kohn: “The KS equations are an exactification of the Hartree 
mean-field equation”.  It yields the true density of the interacting system.
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The functional  Exc[ρ]  is universal:

Curse or blessing?

Only ONE functional needs to 
be approximated

Functional can be systematically improved, i.e. results will 
improve -on average- for all systems. Systematic improvement
for a single given system is not possible. 



DFT description of quantum phases:

Magnetism and 

Superconductivity



MAGNETIC SYSTEMS

In principle, Hohenberg-Kohn theorem guarantees that m(r) is a 
functional of the density:  m(r) = m[ρ](r). In practice, good 
approximations for the functional m[ρ] are not known.  

Quantity of interest: Spin magnetization density m(r)

Include m(r) as basic variable in the formalism, in addition 
to the density ρ(r).



MAGNETIC SYSTEMS

Quantity of interest: Spin magnetization density m(r)

In principle, Hohenberg-Kohn theorem guarantees that m(r) is a 
functional of the density:  m(r) = m[ρ](r). In practice, good 
approximations for the functional m[ρ] are not known.  

Include m(r) as basic variable in the formalism, in addition 
to the density ρ(r).

Is this really true for periodic solids?



0
ˆ ˆ ˆm(r) (r) (r)+

α αβ β
αβ

= µ ψ σ ψ∑ 

HK theorem

[ ]  1-1 (r),m(r)   v(r), B(r) ρ ←→  




total energy:

[ ] [ ] ( )∫ ⋅−ρ+ρ=ρ )r(m)r(B)r()r(vrdm,Fm,E 3
B,v









universal

( ) ( ) ( ) ( )3 3
eev,B

ˆˆ ˆ ˆ ˆH T V r v r d r m r B r d r= + + ρ − ⋅∫ ∫





Start from fully interacting Hamiltonian with Zeeman term:



KS scheme

For simplicity: ,

vxc[ρ,m] = δExc[ρ,m]/δ ρ Bxc[ρ,m] = δExc[ρ,m]/δ m

ρ (r) = ρ+ (r) + ρ- (r)  , m (r) = ρ+ (r) - ρ- (r)  , ρ± = Σϕ j
± 2

B → 0  limit
These equations do not reduce to the original KS equations for
B → 0 if, in this limit, the system has a finite m(r).

( )

0
B(r) 0

B r

 
 =  
 
 



( )

0
m(r) 0

m r

 
 =  
 
 



[ ] [ ] )()(             )(B           )(v)(v
m2 oH

2

rrrrr jjj
±±=∈±








−µ±+++

∇
− ϕϕvxc(r) Bxc(r)



DENSITY-FUNTIONAL THEORY OF THE 
SUPERCONDUCTING STATE

• Include order parameter, χ , characterising 
superconductivity as additional “density”

BASIC IDEA:

L.N. Oliveira, E.K.U.G., W. Kohn, PRL 60, 2430 (1988)



General (model-independent) characterization of superconductors:  
Off-diagonal long-range order of the 2-body density matrix:

( )( ) ( ) ( ) ( ) ( )'yˆyˆxˆ'xˆ'yy,'xx2
↓↑

+
↑

+
↓ ψψψψ=ρ

( ) ( ) ( ) ( )'yˆyˆ  xˆ'xˆ YX ↓↑
+
↑

+
↓∞→− ψψ⋅ψψ →

2
'xx +

2
'yy + ( )'x,x∗χ ( )'y,yχ

( ) ( ) ( )'rˆrˆ'r,r ↓↑ ψψ=χ order parameter of the N-S 
phase transition



S N∆ F PB

χ

x x

m

ANALOGY

“proximity effect”

Hamiltonian

( )∫ ∫∫ +∆++= .c.H)'r,r(*             'rdrd- r)d(v       ŴT̂Ĥ 333
eeee r( )rρ̂ ( )'r,r χ̂

Exc = Exc[ρ,χ] 



( ) ( ) ( )* 3 3
N N 2 N N 2 N 2 Nγ r,r =N× L Ψ r ',x ,…x Ψ r,x ,…x  d x …d x′ ∫ ∫
      

One-body reduced density matrix (1-RDM)

• for integer particle number N:

• for fractional particle number  M = No+ω ( 0≤ ω ≤ 1)
( ) ( ) ( ) ( )r,rr,r 1r,r 1NN 00

′ωγ+′γω−=′γ +



Diagonalization yields the natural orbitals and 
their occupation numbers nj:

( )rj


ϕ

( ) ( ) ( )rnrdrr,r jj
3

j


ϕ=′′ϕ′γ∫

Basics of Reduced Density Matrix Functional Theory



• Total energy is a unique functional          of the 1-RDM[ ]γE

Note:  For given the follow from( )r,r ′γ
 ( ){ } jj n,r    



ϕ

diagonalization, i.e. [ ] [ ]γϕ=ϕγ= jjjj     , nn

Consequence: Any explicit functional
is an implicit functional of γ

( )      j jE n , r ϕ 


Central Theorem by Gilbert (1975):  There is a rigorous 1-1 
correspondence   Ψgs (r1,r2…,rN) γ(r,r’)

• Ground-state energy can be calculated by minimizing [ ]γE

[ ] [ ] ( ) ( ) [ ] [ ]γ+γ+γ+γ=γ ∫ xcH
3

extkintot EErd r,r rvEE 



Functional Minimization
Constraints

ii  
n N,=∑
( ) ( )* 3

 i j ijd r ,φ φ = δ∫ r r

,1n0 i ≤≤

where N is the number of electrons.

orthonormality constraint.

N-representability constraint, guarantees that γ comes 
from an ensemble of fermionic many-body wavefunctions.









Functional Minimization
Constraints

ii  
n N,=∑
( ) ( )* 3

 i j ijd r ,φ φ = δ∫ r r

,1n0 i ≤≤

where N is the number of electrons.

orthonormality constraint.

N-representability constraint, guarantees that γ comes 
from an ensemble of fermionic many-body wavefunctions.

• The first two are enforced through Lagrange multipliers. The quantity to 
minimize becomes:

µ: chemical potential.







( )tot i i j ij
i ij

E     n N      
= − − − φ φ − δ 

 
∑ ∑F µ ijε



N-representability condition  0 ≤ nj ≤ 1 generally leads to border 
minimum. 
i.e. one can still minimize but at minimum0

n
F

j

≠
∂
∂

n2

n1

F(n1,n2)

1

1



Total-energy functional:

[ ] [ ] ( ) ( ) [ ] [ ]γ+γ+γ+γ=γ ∫ xcH
3

extkintot EErd r,r rvEE 

4 major differences to DFT:

• Kinetic-energy functional is known exactly

( ) ( )∫ ∫ ′γ






 ∇
−′−δ′= r,r 

2
 rr rdrdE

2
33

kin


∑
∞

=

ϕ
∇

−ϕ=
1j

j

2

 jj  
2

 n

Hence             does not contain any kinetic contributions,
and therefore there is no adiabatic connection and no
coupling-constant-integration formula for Exc.

[ ]γxcE



• The energy minimum is not necessarily a stationary point
because minimum may be on the border, i.e. there exists 
no variational equation [ ]

( ) 0
r,r

F
=

′δγ
γδ


• There exists no Kohn-Sham system reproducing the 
interacting             ,  because the non-interacting (KS)  
1-RDM is idempotent while the interacting one is not.

( )r,r ′γ


• There is no HK-like 1-1 correspondence between the 1-RDM
and non-local external potentials   
(proof by counter example).  

( )r,r ′γ
 ( )r,rv ′ 



FUNCTIONALS

[ ] ( ) ( ) ( ) ( )* *
j j k k3 3

H
j,k

r  r  r '  r '1E d rd r
2 r r

φ φ φ φ
′γ =

′−∑ ∫
   

kjnn

[ ] ( ) ( ) ( ) ( )* *
j j k k3 3

xc
j,k

r  r '  r '  r1E d rd r
2 r r

φ φ φ φ
′γ = −

′−∑ ∫
   

kjkjnn σσδ

A.M.K. Müller, Phys. Lett. 105A, 446 (1984)

Hartree term

Approximation for the xc energy functional



[ ] ( ) ( ) ( ) ( )
∑ ∫ ′−

ϕϕϕϕ
′=γ

k,j

*
kk

*
jj33

H rr
'r 'r r r

rrdd
2
1E



kjnn

[ ] ( ) ( ) ( ) ( )
∑ ∫ ′−

ϕϕϕϕ
′−=γ

k,j

*
kk

*
jj33

xc rr
r 'r 'r r

rrdd
2
1E



kjkjnn σσδ



[ ] ( ) ( ) ( ) ( )
∑ ∫ ′−

ϕϕϕϕ
′=γ

k,j

*
kk

*
jj33

H rr
'r 'r r r

rrdd
2
1E



kjnn

[ ] ( ) ( ) ( ) ( )
∑ ∫ ′−

ϕϕϕϕ
′−=γ

k,j

*
kk

*
jj33

xc rr
r 'r 'r r

rrdd
2
1E



kjkjnn σσδ

Self-interaction correction by 
S. Goedecker, C.J. Umrigar, Phys. Rev. Lett. 81, 866 (1998)

kj≠

kj≠



The BBC functionals

O. Gritsenko, K. Pernal, E.J. Baerends, JCP 122, 204102 (2005). 

, for ,  weakly occupied,

( , ) , for ,  strongly occupied,

,  otherwise.                       

i j

i j i j

i j

n n i j

f n n n n i j

n n

−
= 


• BBC2:  Additionally, omission the square root if both orbitals are
strongly occupied:

• BBC3:   Inclusion of anti-bonding in the list of strongly occupied
orbitals. 
Removal of SI terms. 

 Hierarchy of corrections to the Müller functional
 key idea: Distinction between strongly and weakly occupied orbitals

f• BBC1:  Sign change of   , if  both orbitals are weakly occupied:

, ,  weakly occupied,
( , )

,  otherwise.                 

i j

i j

i j

n n i j
f n n

n n

−= 




Many approximations have the form

[ ] ( ) ( ) ( ) ( )
∑ ∫ ′−

ϕϕϕϕ
′−=γ

k,j

*
kk

*
jj33

xc rr
r 'r 'r r

rrdd
2
1E



f(nj,nk)

“power functional”      f(nj,nk) = (njnk)α

α = 1   leads to Hartree-Fock
α = ½  Müller functional

Müller functional overcorrelates, HF has no correlation
α can be viewed as “mixing parameter” 

S. Sharma, J.K. Dewhurst, N.N. Lathiotakis , E.K.U.G.,  
Phys. Rev. B (Rapid Comm.) 78, 201103 (2008)
N.N. Lathiotakis, S. Sharma, J.K. Dewhurst, F. Eich, M.A.L. Marques, E.K.U.G.,  
Phys. Rev. A (Rapid Comm.) 79, 040501 (2009) 



G2/97 test set of molecules [1]:
148 neutral molecules including 29 radicals, 35
non-hydrogen systems, 22 hydrocarbons, 47
substituted hydrocarbons and 15 inorganic
hydrides.

 Cartesian 6-31G* Gaussian basis-set

L.A. Curtiss et al., JCP 106, 1063 (1997); ibid. 109, 42 (1998).







N.N. Lathiotakis, S. Sharma, N. Helbig, J.K. Dewhurst, M.A.L. Marques, F. Eich, 
T. Baldsiefen, A. Zacarias, E.K.U.G., Zeitschrift für Physikalische Chemie 224, 467 (2010)



Ultimate goal: Ab-initio treatment of 
“strongly correlated systems”



Chemists’ paradigm: H2  dissociation



Chemists’ paradigm: H2  dissociation



For large internuclear separation, the occupation numbers of the  bonding 
and anti-bonding NOs become 50%-50%, i.e. the explicit dependence on 
the occupation numbers allows RDMFT to deal with degeneracies 
and near-degeneracies. 

For large internuclear separation, RDMFT beats HF, DFT (LDA/GGA) 
and scGW.

HOW COME??



Paradigm of strongly correlated solid: Mott insulator

Experimentally, Mott insulators are materials which, at low
temperatures, are antiferromagnetic insulators that stay 
insulating when heated above the Néel temperature. 

Prototype: periodic chain of equidistant hydrogen atoms 
without magnetic order

KS system: 1 electron per unit cell, half-filled band
metallic (independent of xc functional)

Kohn-Sham system very different from the true system 

formally no problem: Density of a metallic KS system can
reproduce density of real-world insulator 



KS xc
0

true gap : ∆ = ∆ + ∆



Side remark on periodic solids: 

The 1-RDM of a metal can always be distinguished 
from the 1-RDM of an insulator

Metal:  γ(r,r’)  decays  algebraically for large |r-r’|

Insulator: γ(r,r’)  decays exponentially for large |r-r’|
decay constant is proportional to the gap



The Fundamental Gap

E(M) ≡ ground-state energy of M-electron system

For fractional particle number M, N0 < M < N0 + 1 (with
N0 integer), the correct definition of E(M) follows from the
low-temperature limit of a grand-canonical ensemble

( ) ( )∑ ⋅=
∈NN

N NEwME

For Coulomb systems E(N) is upward convex (Lieb’s conjecture).
This implies

( ) ( ) ( )0 0 0E N (1 )E N E N 1+ ω = − ω + ω + for  0 ≤ ω≤ 1

N
N

M w N
∈

= ⋅∑
N



N-1 N N+1 N+2
M

E(
M

)
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Ionization potential:

( ) ( ) ( )NE1NENI −−≡

Electron affinity:

( ) ( ) ( )1NENENA +−≡

Fundamental gap:

( ) ( )NANI −≡∆ (for charge-neutral N-electron system)

for periodic solids:    ∆ =  fundamental gap

for finite systems:       chemical hardness=
∆
2



N-1 N N+1 N+2
M

E(
M

)

( ) ( ) ( )NE1NENI −−≡

( ) ( ) ( )1NENENA +−≡

Chemical potential:

( ) ( ) ( )
( )








+≤<−
<<−−

=
∂

∂
≡µ

1NMN:NA
NM1N:NI

M
MEM has a jump at M=N

( ) ( ) ( ) ( )η−µ−η+µ=+−=∆ NNNINA
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In DFT:

( ) ( ) ( ) ( )[ ]η−−η++∈−=∈∆ NvNvN N xcxc
KS
HOMO

KS
LUMO

KS∆ xc∆



Discontinuity of µ(M) for the LiH molecule

The discontinuity of µ(M) at N=4 electrons for LiH



Discontinuity of µ(M) for the LiH molecule

The discontinuity of µ(M) at N=4 electrons for LiH



Fundamental gap of semiconductors and insulators
S. Sharma, J.K. Dewhurst, N.N. Lathiotakis and E.K.U.G., Phys. Rev. B 78 (Rapid Comm.), 201103 (2008) 





What’s next?

• Finite-temperature RDMFT:       Goal: Ab-initio calculation of 
the phase diagram of strongly 
correlated solids

• Real-time dynamics of coupled 
electron-phonon system in terms
electronic and phononic 1RDMs: 

Goals: Ab-initio description of 
decoherence, thermalization, and
laser-induced phase transitions 

• Construct novel GF-functionals
in the RDMFT way:                Exc[G] = Exc[nj(ω), φj(r,ω)]

( ) ( ) ( )3
j j jwhere   G r,r ,ω φ r ,ω d r = n (ω)φ r,ω′ ′ ′∫

   
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